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2.5 Stokes flow past a sphere

[Refs]
Lamb: Hydrodynamics
Acheson : Elementary Fluid Dynamics, p. 223 ft

One of the fundamental results in low Reynolds-number hydrodynamics is the Stokes so-
lution for steady flow past a small sphere. Applications range widely from the determination
of electron charges to the physics of aerosols.

The continuity equation reads
V-¢d=0 (2.5.1)

With inertia neglected, the approximate momentum equation is

0= —vf +vV3q (2.5.2)

Physically, the presssure gradient drives the flow by overcoming viscous resistence, but does
affect the fluid inertia significantly.

Refering to Figure 2.5 for the spherical coordinate system (7,6, ¢). Let the ambient
velocity be upward and along the polar (z) axis: (u,v,w) = (0,0,W). Axial symmetry
demands
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Using a known formula for the divergence in spherical polar coordinates, Eq. (2.5.1) becomes
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An equivalent and physically more revealing way is to write
0 (r*q, sin 0) + 0 (rgesind) =0 (2.5.4)
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As in the case of rectangular coordinates, we define the stream function ¢ to satisify the
continuity equation (2.5.4) identically
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Figure 2.5.1: The spherical coordinates

At infinity, the uniform velocity W along z axis can be decomposed into radial and polar
components
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The corresponding stream function at infinity follows by integration
w
= 77“2 sin?f, 7~ oo (2.5.7)
Using the vector identity
Vx(Vxq)=V(V-q -V (2.5.8)
and (2.5.1), we get
Vij=-Vx(Vxq) =-Vx( (2.5.9)
Taking the curl of (2.5.2) and using (2.5.9) we get
V x(Vx()=0 (2.5.10)

After some straightforward algebra given in the Appendix, we can show that

7=V x < vey ) (2.5.11)
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Now from (2.5.10)
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hence, the momentum equation (2.5.10) becomes a scalar equation for .
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The boundary conditions on the sphere are
=0 ¢g=0 on r=a (2.5.14)
The boundary conditions at oo is
Y — MQ/r? sin? 0 (2.5.15)
Let us try a solution of the form:
U(r,0) = f(r)sin® 0 (2.5.16)
then f is governed by the equi-dimensional differential equation:
2
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whose solutions are of the form f(r) oc 7", It is easy to verify that n = —1,1,2,4 so that
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To satisfy (2.5.15) we set D = 0,C' = W/2. To satisfy (2.5.14) we use (2.5.5) to get
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Finally the stream function is

(2.5.18)



Inside the parentheses, the first term corresponds to the uniform flow, and the second term
to the doublet; together they represent an inviscid flow past a sphere. The third term is
called the Stokeslet, representing the viscous correction.

The velocity components in the fluid are: (cf. (2.5.5) :
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2.5.1 Physical Deductions

1. Streamlines: With respect to the the equator along 0 = 7/2, cos 6 and ¢, are odd while
sinf and gy are even. Hence the streamlines (velocity vectors) are symmetric fore and
aft.

2. Vorticity:
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3. Pressure : From the r-component of momentum equation

dp  pWa

or 3

cosf(= —uV x (V x q))

Integrating with respect to r from r to oo, we get
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4. Stresses and strains: 5 3
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On the sphere, r = a, e,, = 0 hence 7,, = 0 and
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On the other hand
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Hence at r = a:
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The resultant stress on the sphere is parallel to the z axis.
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The constant part exerts a net drag in z direction
2 T 3uW
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This is the celebrated Stokes formula.
A drag coefficient can be defined as
D 6muWa 24 24
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. Fall velocity of a particle through a fluid. Equating the drag and the buoyant weight

of the eparticle
4dr 4
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in cgs units. For a sand grain in water,

hence
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by . 1.5, v=10"%cm?/s

W, = 32,670 a’cm/s (2.5.26)

To have some quantitative ideas, let us consider two sand of two sizes :

a=10"%cm =10""m: W, = 3.27cm/s;
a=10"%cm = 107" = 10um, W, = 0.0327cm/s = 117cm/hr

For a water droplet in air,
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in cgs units. If @ = 1073 ¢cm = 10um, then W, = 1.452 cm/sec.



Details of derivation

Details of (2.5.11).
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Details of (2.5.12).
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