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The measurement of an object’s shape using projected fringe patterns needs a relation between the mea-
sured phase and the object’s height. Among various methods, the Fourier transform profilometry
proposed by Takeda andMutoh [Appl. Opt. 22, 3977–3982 (1983)] is widely used in the literature. Rajoub
et al. have shown that the reference relation given by Takeda is erroneous [J. Opt. A. Pure Appl. Opt. 9,
66–75 (2007)]. This paper follows from Rajoub’s study. Our results for the phase agree with Rajoub’s
results for both parallel- and crossed-optical-axes geometries and for either collimated or noncollimated
projection. Our two main results are: (i) we show experimental evidence of the error in Takeda’s formula
and (ii) we explain the error in Takeda’s derivation and we show that Rajoub’s argument concerning
Takeda’s error is not correct. © 2009 Optical Society of America

OCIS codes: 080.0080, 120.2650.

1. Introduction

The Fourier transform profilometry proposed by
Takeda et al. in the 80s [1,2] has achieved great suc-
cess and is now one of the reference techniques for
three-dimensional (3D) shape measurement [3–14]
(see also a review in [15]). This method uses noncol-
limated projections of a structured light pattern onto
an object (for a review on structured lighting techni-
ques, see [16,17]). The intensity variations of the pro-
jected pattern are captured by a camera; afterward, a
conversion of themeasured phase to the object height
is needed. The usually cited phase-to-height relation
for noncollimated projection is from Takeda and

Mutoh [2] (both in the parallel- and in the crossed-
optical-axes geometries):

hðyÞ ¼ LΔφðyÞ
ΔφðyÞ − ω0D

; ð1:1Þ

where y is the coordinate in the field of view of the
camera (see Fig. 1). In that relation, ΔφðyÞ is the
phase difference when the camera captures the in-
tensity variations over a reference plane and over
the surface of a two-dimensional (2D) object (the x
direction is not considered) whose height h has to
be determined. D is the distance between the projec-
tor and the camera and ω0 ≡ ωp cos θ=Gp, with ωp as
the frequency of the fringes on the projector’s grating
and Gp as the magnification factor of the projector
(ω0 is the frequency of the fringes on the projector
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image plane). Also, the derivation is performed
assuming the camera and the projector that produces
the intensity variations are at the same distance L
from the reference plane.
In a very didactic paper, Rajoub et al. [17] have

shown that this relation is incorrect. These authors
propose a complete calculation relaxing the hypoth-
esis that the camera and the projector are at the
same distance from the reference plane. They pro-
pose an explanation of the error in Takeda’s formula,
which they attribute to an unjustified hypothesis of
collimated projection. Also, in a previous paper [16],
the same authors have derived the phase-to-height
relation for collimated projection. Incidentally, note
that these authors propose a relation between the
height of the object h and the phase φ stored by
the camera when capturing the intensity variations
over the object surface, instead of using the usual
phase difference Δφ.
Our paper follows from Rajoub’s study. Our deriva-

tions concern both collimated and noncollimated
projection for parallel- and crossed-optical-axes
geometries. When we assume that the camera and
the projector are at the same distance L from the re-
ference plane, we find,

– for noncollimated projection in parallel-optical-
axes geometry,

hðx0; y0Þ ¼ LΔφ
Δφ − ω0D

; ð1:2Þ

where

x0 ¼ x −
h
L
x; y0 ¼ y −

h
L
y; ð1:3Þ

– for noncollimated projection in crossed-optical-
axes geometry,

hðx0;y0Þ ¼ LΔφð1þ sin2θy=DÞ2
Δφð1þ sin2θy=DÞ½1− sin2θð1− y=DÞ� −ω0D

;

ð1:4Þ
– for collimated projection in parallel-optical-

axes geometry,

hðx0; y0Þ ¼ −
LΔφ
ω0y

; ð1:5Þ

– for collimated projection in crossed-optical-axes
geometry,

hðx0; y0Þ ¼ LΔφ
ω sin θðL − cot θyÞ : ð1:6Þ

In the above expressions,Δφ stands for ΔφðX 0;Y 0Þ or
Δφðx; yÞ, with ðX 0;Y 0Þ and ðx; yÞ being, respectively,
the coordinates in the image plane of the camera
and the coordinates in the field of view of the camera
(thus X 0 ¼ −Gcx and Y 0 ¼ −Gcy, with Gc the magnifi-
cation factor of the camera).

Throughout this paper, we will compare our
expressions in Eqs. (1.2), (1.3), (1.4), (1.5), and (1.6)
with the expressions existing in the literature.

In this paper, we show experimental measure-
ments performed using a calibrated object only in
the case of noncollimated projection (Section 3).
Our phase-to-height relations in Eqs. (1.2) and (1.4),
together with Eq. (1.3), are shown to give a good de-
termination of the object shape and the errors due to
the use of Takeda’s relation [Eq. (1.1)] are exempli-
fied and discussed (Section 4).

The main contribution of our paper concerns non-
collimated projection (as a consequence, the calcula-
tions concerning collimated projection are collected
in Appendix B). On the one hand, we give a more
tractable phase-to-height relation than that in
[17], useful for direct application to real experiments.
Notably, our Eqs. (1.2), (1.3), and (1.4) concern the
phase difference Δφ (instead of the absolute phase
φ in [16,17]) that is known to compensate unwanted
defects in the projection process [2]. In addition, we
give experimental evidence of the validity of our ex-
pressions. On the other hand, we show that the error
in Takeda’s result is due to an erroneous manipula-
tion of the phases φ (for projection on to the object)
and φ0 (for projection on to the reference plane).
Otherwise, Takeda’s calculations are correct. Our
conclusion differs from Rajoub’s argument, which im-
plies an erroneous use of collimated projection.

Incidentally, some new results in our paper con-
cern: the derivation of the varying fringe spacing
in the crossed-optical-axes configuration and the de-
rivation of the phase-to-height relation for collimated
projection in the parallel-optical-axes geometry.

The paper is organized as follows: in Sec-
tion 2, the phase-to-height relations are derived for

Fig. 1. Reproduction of Takeda’s representation in crossed-
optical-axes geometry. A fringe pattern is projected onto a refer-
ence surface (as point a) and on a deformed surface (point b).
The corresponding phase variation in the intensity recorded by
the camera is ΔφðyÞ (2D object analysis is presented in Takeda’s
paper [2]).
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noncollimated projection. The cases of the parallel-
and the crossed-optical-axes geometries are then
considered as particular cases of this general result.
The comparison with Takeda’s relation is presented.
Section 3 exemplifies our results with experimental
data collected both in the parallel- and crossed-
optical-axes configurations. A discussion on the
obtained phases φ0 and φ is presented, notably, the
change in the fringe spacing in the crossed-optical-
axes geometry (see also Appendix A). In Section 4,
the derivation performed in Ref. [2] is analyzed
and the error that leads to Eq. (1.1) is demonstrated.
Finally, we collect in two appendices the derivation of
the fringe spacing in the crossed-optical-axes geome-
try for noncollimated projection (Appendix A) and
the derivation of the phase-to-height relations for
collimated projection (Appendix B).

2. Derivation of the Phase-to-Height Relations

We consider the configuration of Fig. 2. With the only
exception of this section, all the results presented in
this paper concern the usual configuration, where
the projector and the camera are at the same dis-
tance from the reference plane R (thus Lp ¼ Lc).
In the following, we define the magnification fac-

tors for the projector Gp and for the camera Gc as
for simple lenses with respective focal lengths f p
and f c (positive magnification factors are considered,
it being known that images through lenses are in-
verted): Gp ¼ Lp=ðcos θf pÞ and Gc ¼ f c=Lc.
We also define ωp as the fringe frequency in projec-

tor’s grating (XY plane), ω ¼ ωp=Gp as the fringe fre-
quency in the image plane of the projector (I plane),
and ωc ≡ ω=Gc. We denote Σ as the surface whose
height hðx; yÞ with respect to the reference surface
R is measured.
The image captured by the camera on the ðX 0Y 0Þ

plane is a pattern of gray levels corresponding to
intensity variation IðX 0;Y 0Þ:

IðX 0;Y 0Þ ¼ 1þ cosφðX 0;Y 0Þ: ð2:1Þ

When the fringes are projected onto the reference
planeR, the intensity, or gray level, observed at point
A0ðX 0;Y 0Þ is due to the ray AaA0, whose intensity is
imposed by the intensity at the point A on the projec-
tor grating. Assuming a sinusoidal fringe projection
(with the fringes oriented along the X axis), we have

φ0ðX 0;Y 0Þ ¼ ωpYA: ð2:2Þ

For any reflecting surface Σ different from R, the in-
tensity observed at point A0 changes, because the ray
arriving at A0 is now the ray BbA0. This ray holds the
intensity of the point B on the projector grating.
Thus,

φðX 0;Y 0Þ ¼ ωpYB: ð2:3Þ

By definition, the phase difference ΔφðX 0;Y 0Þ≡
φðX 0;Y 0Þ − φ0ðX 0;Y 0Þ is a measure of the change in
intensity observed on A0.

Thus, the task is to determine the geometric rela-
tions between ðX 0;Y 0Þ on the camera grating and YA
or YB on the projector grating. The derivation is per-
formed in the case of the ray BbA0, propagating from
BðX ;YÞ to bðx0; y0;hÞ on any surface Σ and arriving at
A0ðX 0;Y 0Þ to produce the phase φðX 0;Y 0Þ. Then,
φ0ðX 0;Y 0Þ is deduced for R, being the reflecting
surface (thus, h ¼ 0).

To do that, we use the following geometric rela-
tions. On Fig. 3, we project, along the Ox axis in
the plane x ¼ 0, the rays Cb and bC0 to produce
Cb0 and b0C0 with b0 ¼ ð0; y0;hÞ. The angles α and
β measure, respectively, the angles ð dOCb0Þ and
ð dOC0b0Þ in the plane x ¼ 0. The angle θ ¼ ðdcCOÞ
measures the inclination of the projector’s axis with
respect to the camera’s axis.

Then, the angle α measures the position of the
point B on the projector grating: tan α ¼ −YB=f p.
On the other hand, in the triangle Ccb0, we have
tanðθ þ αÞ ¼ ðDþ y0Þ=ðLp − hÞ. We get

tan α ¼ −
YB

f p
¼ ðDþ y0Þ − tan θðLp − hÞ

tan θðDþ y0Þ þ Lp − h
; ð2:4Þ

which is the first relation YBðy0Þ. Then, the angle β is
a measure of the position A0 on the camera grating:
tan β ¼ −Y 0=f c. In the triangle C0c0b0, the angle β is
involved as well and we get

tan β ¼ −
Y 0

f c
¼ y0

Lc − h
: ð2:5Þ

This gives us the second relation, namely y0ðY 0Þ.
Eliminating y0 from the relations in Eqs. (2.4) and
(2.5), we deduce YBðY 0Þ:Fig. 2. Optical setup.
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YB ¼ −f p
D − ðLc − hÞY 0=f c − tan θðLp − hÞ
Lp − hþ tan θ½D − ðLc − hÞY 0=f c�

; ð2:6Þ

and finally, the Eqs. (2.2) and (2.3) are

φðX 0;Y 0Þ

¼ ωc

cos θ
ð1 − h=LcÞY 0 þGc½ðLp − hÞ tan θ −D�

ð1 − h=LpÞ − tan θL−1
p ½ð1 − h=LcÞY 0=Gc −D� ;

φ0ðX 0;Y 0Þ ¼ ωc

cos θ
Y 0 þGc½Lp tan θ −D�

1 − tan θL−1
p ½Y 0=Gc −D� : ð2:7Þ

The above relation for φðX 0;Y 0Þ is in agreement
with Rajoub’s result, Eq. (36) in [17] (see also the note
in [18]).

To conform with most of the literature, we express
φ as a function of ðx; yÞ owing to x ¼ −X 0=Gc,
y ¼ −Y 0=Gc:

φðx;yÞ

¼ −
ω

cosθ
y−Lp tanθþDþh=LcðLc tanθ−yÞ

1þ tanθðDþyÞ=Lp −h=Lpð1þ tanθy=LcÞ
;

φ0ðx;yÞ ¼−
ω

cosθ
y−Lp tanθþD

1þ tanθðDþyÞ=Lp
: ð2:8Þ

Finally, it is important to note that the shift in the
position is given by δx≡ x0 − x and δy≡ y0 − y, since
the height h is measured at ðx0; y0Þ and not at
ðx; yÞ. The shift in y is directly obtained from
tan β ¼ y=Lc ¼ y0=ðLc − hÞ. The shift in x is easily
obtained by using the property that the ray bC0 coin-
cides with the ray aC0 (Fig. 3 and see the note in [19]).
We get

x0 ¼ x −
h
Lc

x; y0 ¼ y −
h
Lc

y; ð2:9Þ

with h ¼ hðx0; y0Þ.
In the following, we inspect the case of the usual

configurations of parallel- and crossed-optical-axes
geometry. Also, we consider now L ¼ Lc ¼ Lp (Fig. 4).

A. Parallel-Optical-Axes Geometry

This case Fig. 4(a) is deduced from the preceding
relations in Eq. (2.8) with L ¼ Lc ¼ Lp and θ ¼ 0,
leading to

Fig. 3. In general, the rays Cb and bC0 are not in a vertical plane.
We define b0ð0; y0;hÞ as the projection of bðx0; y0;hÞ in the plane x ¼
0 (which contains O, C, and C0). In this vertical plane x ¼ 0, the
angles α and β, respectively, measure ð dOCb0Þ and ð dOC0b0Þ. These
angles measure also the positions of B and A0 on the projector and
on the camera grating. The angle θ ¼ ðdcCOÞ measures the inclina-
tion of the projector’s axis with respect to the camera’s axis.

Fig. 4. Optical setup for the projector and the camera at the same distance L from the reference plane R, (a) in the parallel- and (b) in the
crossed-optical-axes geometries.
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φðx; yÞ ¼ −ωy − ωD L
L − hðx0; y0Þ ;

φ0ðx; yÞ ¼ −ωy − ωD:

ð2:10Þ

Thus,

Δφðx; yÞ ¼ −ωD hðx0; y0Þ
L − hðx0; y0Þ : ð2:11Þ

This relation is in agreement with the relation de-
rived by Takeda (Eq. (1.1) with ω0 ¼ ω here). How-
ever, the h value is measured at the ðx0; y0Þ
position, not at the ðx; yÞ position, as assumed by
Takeda. This shift in the position is (δx ¼ x0 − x ¼
−h=Lx; δy ¼ y0 − y ¼ −h=Ly). Experimental evidence
of this discrepancy is presented in Subsection 3.C.
As expected in that configuration, φ0ðx; yÞ is p

periodic along y ðp ¼ 2π=ωÞ since the image plane
of the projector I and the object plane of the camera
R coincide.

B. Crossed-Optical-Axes Geometry

In that case [Fig. 4(b)], the relations in Eq. (2.8) are
used owing to L ¼ Lc ¼ Lp and tan θ ¼ D=L. We get

φðx; yÞ ¼ −ω cos θ

×
yþ hðx0; y0Þ=LðD − yÞ

1þ sin2θy=D − hðx0; y0Þ=L½1 − sin2θð1 − y=DÞ� ;

φ0ðx; yÞ ¼ −ω cos θ y

1þ sin2θy=D : ð2:12Þ

As expected, φ0ðx; yÞ is not periodic along y since the
image plane of the projector I and the object plane of
the camera R do not coincide. Note that the expres-
sion of φ0ðx; yÞ in Eq. (2.12) differs from the usually
cited relation for the varying frequency f ðyÞ≡
φ0ðx; yÞ=ð2πyÞ when fringe pattern is projected on
the reference plane [12,13,20]:

φ0Sðx; yÞ ¼ −ω cos θ½1 − 2 sin θ cos θy=L�: ð2:13Þ

This error has been analyzed in [17] and it can be
seen here that the expression is not valid, even in the
approximation y=L ≪ 1, as used in [20]. Experimen-
tal evidence of this error is shown in the forthcoming
Fig. 8, Section 3. We get

Δφðx; yÞ ¼ −ω0
Dhðx0; y0Þ

ð1þ sin2θy=DÞ½1þ sin2θy=D − hðx0; y0Þ=Lð1 − sin2θð1 − y=DÞÞ� ; ð2:14Þ

where we have defined, following Takeda’s notation,
ω0 ≡ ω cos θ (p0 ¼ 2π=ω0 is the periodicity of the
fringes when projected in the image plane I of the
projector).

The relation between the measured unwrapped
phase distribution Δφ to the object height h in
Eq. (2.14) clearly differs from Takeda’s relation

ΔφTðx; yÞ ¼ −ω0
Dhðx; yÞ
L − hðx; yÞ : ð2:15Þ

The source of the error in Takeda’s derivation is
discussed in Section 4 and exemplified in Subsection
3.C. However, many studies using Takeda’s law have
obtained good results [5,6,12,13], suggesting that the
error might be negligible. It is easy to see that

Δφ ¼ ΔφTCðθ;h=L; y=DÞ; ð2:16Þ
where

Cðθ;h=L; y=DÞ ¼
�
1þ sin2θ

�
y
D
−

h
L − h

��
−1

×
�
1þ sin2θ y

D

�
−1
: ð2:17Þ

The function C ∼ 1 for (i) the angle θ ≪ 1 and (ii)
h=L ≪ 1, y=D ≪ 1. These conditions are often
fulfilled in the referenced studies: for instance,
θ ∼ 0:19 rad, h=L∼ 0:07, and y=D∼ 0:3 in [14], or
θ ∼ 0:3 rad., h=L∼ 0:0045, and y=D∼ 0:2 in [6]. This
explains the agreement with Takeda’s law presented
in the literature. To summarize, the error in Takeda’s
law is

Δφ ¼ ΔφT ½1þOðθ2h=L; θ2y=DÞ�: ð2:18Þ
However, it is now evident that this error proves to

be very important in the case of short-range profilo-
metry, where h=L∼ 1, and in large-field profilometry,
in which the object’s size is comparable to the
camera–projector distance.

3. Experimental Results

In this section, we inspect experimentally the recon-
struction of h on the basis of Eqs. (2.11) and (2.14)
together with Eq. (2.9). To do that, we carried out
the following experiment. The measured object is a
triangular prism with base line 6 cm and height
3 cm. The prism is placed on the reference plane R
(Fig. 5) at a distance y0 of the camera axis (the trian-
gle is symmetric with respect to the y ¼ y0 axis).
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Thus, the surfaceΣ differs from the reference planeR
only in a region −3 cm < y − y0 < 3 cm, hereafter re-
ferred to as the T region. The height hðx; yÞ is invar-
iant along the x direction, perpendicular to the plane
of Fig. 5. Otherwise, L ¼ 105:2 cm, θ can vary, and,
for θ ¼ 0 (parallel-optical-axes configuration), we
have D ¼ 18 cm.
A sinusoidal fringe pattern is projected onto the ob-

ject and a CCD camera is used to record the deformed
fringe of the object. Details on the optical devices are
given below; afterward, the results are presented and
analyzed.

A. Optical Devices

Fringe-pattern projection is achieved by means of a
computer-controlled digital videoprojector with a
high resolution of 1920pixels × 1080pixels and
12 bit depth per color. An important improvement
arising from the use of a digital video projector is that
we are able to project sinusoidal fringe patterns with
a controlled wavelength. Usually, the projected pat-
tern is a square profile (Ronchi grating), extremely
unadapted for Fourier analysis. Indeed, the use of
a sinusoidal grating strongly increases the quality
of the filtering process as well as the phase recover-
ing. Another important improvement with a video
projector compared to a slide-projector usually em-
ployed is that a video projector can project an image
on a surface shifted with respect to its axis and,
hence, more centered to the camera axis. The video
projector allows a correction of the projected image so
that the image is not distorted and keeps the fringes’
wavelength constant all over the image and main-
tains the original sharpness. However, due to the fact
that the projected pattern varies discretely in space
and is digitized in intensity, the video projector’s
resolution is lower than that of a slide projector.

For a given projection distance, the size of the pro-
jected optical field can be adjusted (by means of the
projector zoom optics) to cover either a small or a re-
latively large area of the surface. In particular,we em-
ployed aprojection distance ofL ¼ 1m,which allowed
us to work with projection windows of sizes ranging
from approximately 36 cm × 20 cm to 80 cm × 45 cm.

The fringe patterns projected onto the object were
recorded by a Fujifilm Finepix S2 Pro SRL-type digi-
tal still camera, with a 3024 pixel × 2016pixel CCD
and a color depth of 16 bits per color. To avoid any
artifact from the camera’s preprocessing algorithm
(such as those coming from quantization, compres-
sion, color depth reduction, etc.) we worked with
raw images that were later developed into portable
pixmap (PPM) format at full color depth.

The whole fringe-projection and image-capturing
system isheld over the channel, supportedbyamobile
structure that allows for precise alignment and repo-
sitioning of the optical devices. The whole setup has
been tested and validated in a previous study [21].

B. Intensity Variations Captured by the Camera

Figures 6 show the intensity variations Iðx; yÞ on the
surface Σ recorded by the camera (as previously said,
h and thus I are invariant along the x direction). The
cases of the parallel- and the crossed-optical-axes
geometries (with θ ¼ 33:9°, thus D ¼ 70:7 cm in that
case) are shown. Figure 7 shows the corresponding
curves IðyÞ, averaged over the x direction.

Several remarks can be made regarding these
figures. In the case of parallel optical axes, the T
region, where a change in height occurs, is well re-
solved on both sides. Outside of this region, the
fringes are regularly spaced (with period p≃

0:27 cm invariant from left to right). In the T region,
h linearly increases for −3 cm < y < 0 and then line-
arly decreases for 0 < y < 3 cm. From the expression
of φðx; yÞ in Eq. (2.10), it is easy to see that h ¼ ay
leads to an apparent frequency ωa ≃ ωð1þ aD=LÞ
and fringe spacing of pa ≃ p=ð1þ aD=LÞ. In our ex-
periments, a ¼ �1 and D=L ¼ 0:171 give pa ¼
0:24 cm and pa ¼ 0:34 cm as observed in Figs. 6(a)
and 7(a) (see also Appendix A.

In the crossed-optical-axes geometry (here, for
θ ¼ 33:9°), the T region is badly resolved for 0 < y <
3 cm because of the projected shadow. Outside of this
region, the fringes are not regularly spaced because
the image plane I of the projector does not coincide
with the reference plane. The fringe spacing varies
from roughly 0.35 to 0:4 cm from left to right. This
increase in the spacing pn (n ¼ 0 at the origin O)
is as expected: pn ¼ pI= cos θ½1 − n sin θp0=L�
−1½1 − ðn − 1Þ sin θpI=L�−1, where pI is the fringe spa-
cing observed on the image plane of the projector I
(see Appendix A). Here, pI can be deduced from p ow-
ing to the invariant pp=f p ¼ p=L ¼ pI cos θ=L; thus,
pI ≃ 0:325 cm. Finally, as in the parallel-optical-
axes geometry, a successive decrease and increase
in the fringe spacing in observed in the T region.
From Eq. (2.12), pa ≃ pI=½cos θð1þ a tan θÞ� gives

Fig. 5. Experimental configuration: Σ is at distance hðyÞ from the
reference plane R with hð0 < y − y0 ≤ −3 cmÞ ¼ y, hð0 < y − y0 ≤

3 cmÞ ¼ −y zero, otherwise. I is the image plane of the projector.
In the experiments, L ¼ 105:2 cm and θ can vary, and for θ ¼ 0°
(parallel-optical-axes geometry), D ¼ 18 cm.
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pa ¼ 0:23 cm and pa ¼ 1:19 cm. The agreement is
good (see the Appendix A). Finally, Fig. 8 shows
the unwrapped phase φ0ðyÞ (see [22]) deduced from
I0ðyÞ when projected onto the reference plane in
the absence of the triangle (I0ðyÞ corresponds to
the average of I0ðx; yÞ in the x direction). It can be
seen that our expression in Eq. (2.12) accurately fits
the experimental points while the expression given
in [12,13,20] [see Eq. (2.13)] significantly fails to
reproduce the data.

C. Phase-to-Height Inversion

In this section, from the experimental curves of I0ðyÞ
and IðyÞ, we deduced the unwrapped phase differ-
ence ΔφðyÞ. Then, we use the inversion of Eqs. (2.11)
and (2.14) together with Eq. (2.9) to get the height
hðyÞ. The comparison with Takeda’s law is presented.

1. Parallel-Optical-Axes Geometry

Figures 9 illustrate the phase-to-height inversion
(the additional dependence of ΔφðyÞ on x is omitted
because of the aforementioned invariance along x in

our experiments): from IðyÞ and I0ðyÞ [Fig. 9(a)], we
extract the phase difference ΔφðyÞ. This is done by
filtering the 2D Fourier transform of IðI0Þ around
the main frequency ω (in the present case, a simple
Gaussian filter of width ω=2 is used). The inverse
Fourier transform is a complex signal whose un-
wrapped phase is φðyÞ (correspondingly, φ0ðyÞ), and
then Δφ ¼ φ − φ0 [Fig. 9(b)]. In the parallel-optical-
axes geometry, the inversion of ΔφðyÞ gives, both
in our approach and in Takeda’s approach,

hðy0Þ ¼ LΔφðyÞ
ΔφðyÞ − ω0D

; ð3:1Þ

with y0 ¼ yþ δy and δy ¼ −yh=L. Figure 9(c) shows
the reconstructed height; here the shift in position
δy is visible: Δφ reaches its extremum at y∼
−25 cm while h reaches its maximum at
y ¼ y0 ¼ −24 cm. The agreement between the recon-
structed shape and the real shape is good, very
comparable to the results obtained in a similar
experiments [10].

Fig. 6. Experimental intensity variations Iðx; yÞ captured by the camera (a) in the parallel-optical-axes geometry with D ¼ 18 cm and
L ¼ 105:2 cm and (b) in the crossed-optical-axes geometry with D ¼ 70:7 cm (θ ¼ 33:9°), L ¼ 105:2 cm, and y0 ¼ 0.

Fig. 7. Intensity variations IðyÞ in (a) the parallel- and (b) the crossed-optical-axes geometries. The curves correspond to the averages over
the x direction of the 3D plot in Fig. 6.
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The error in Takeda’s approach consists of
neglecting the spatial shift of the sampling points
introduced by the object’s height profile.
Figure 10 presents a comparison between the

reconstructed heights h and hT , obtained using
Eq. (3.1), including or omitting, respectively, the shift
δy for various y0 values. As expected, the error in hT
increases when y0 increases. The maximum error in
the shift is δymax ¼ y0hmax=L (thus, a constant rela-
tive error δy=y0 ¼ hmax=L ¼ 2:85%), which leads to,
for y0 ¼ −8 cm, δymax ¼ 0:23 (0.2 experimentally
obtained); for y0 ¼ −16 cm, δymax ¼ 0:456 (0.4 experi-
mentally obtained); and, for y0 ¼ −24 cm, δymax ¼
0:684 (0.66 experimentally obtained).

2. Crossed-Optical-Axes Geometry

The same experiments have been performed in the
crossed-optical-axes geometry. In that case, the
inversion is, from Eq. (2.14),

hðy0Þ ¼ LΔφðyÞð1þ sin2θyÞ2
ΔφðyÞð1þ sin2θy=DÞ½1− sin2θð1− y=DÞ�−ω0D

:

ð3:2Þ
The position of the triangular prism y0 and the angle
between the optical axes θ have been varied. The pro-
cedure to derive ΔφðyÞ is the same as in the parallel-

optical-axes geometry, but a wider filter has been
used (of width around ω) to account for the change
in the frequency in the nonperiodic signal. The peak
in the Fourier transform corresponds in that case
to the mean fringe periodicity. Figure 11(a) shows
the results obtained varying y0 for θ ¼ 33:9° and
Fig. 11(b) shows the results obtained varying θ for
y0 ¼ −16 cm. Both figures exemplify the error due
to the use of Takeda’s result, while our present inver-
sion gives a good height reconstruction. Note that
Takeda’s expression of the height hT in Eq. (1.1) is
given as a function of h by

hTðyÞ ¼
hðy0Þ

A2 þ ðABþ hðy0ÞÞhðy0Þ=L ; ð3:3Þ

with A≡ 1þ sin2θy=D and B≡ cos2θ − sin2θy=D.

4. On Takeda’s Calculation

In [16], it is said that Takeda’s approach uses an un-
justified hypothesis of collimated projection. We will
show that this is not the case. Actually, the expres-
sions of the phases φ and φ0 are correct in [2] but
an erroneous subtraction of the two phases leads
to an error in the phase difference.

Let us recall the meaning of the phase difference φ:
it corresponds to the change in intensity at a given

Fig. 8. (a) Intensity variations I0ðyÞ for fringe projection onto the reference plane in the absence of the triangular prism and (b) the
corresponding unwrapped phase φ0ðyÞ (see [23]). Experiments correspond to θ ¼ 33:9° with L ¼ 105:2 cm. The points are the experimental
data (only one point of each 150 points is indicated for visibility), the solid curve corresponds to our Eq. (2.12) and the dashed curve
corresponds to Eq. 2.13 from [12,13,20].

Fig. 9. (a) Signals I0ðyÞ and IðyÞ for fringe projections on the reference planeR and on the Σ plane. (b) Unwrapped phase differenceΔφðyÞ
and (c) reconstructed height hðyÞ using Eqs. (2.9) and (2.11). The experiment is conducted in the parallel-optical-axes geometry with
L ¼ 105:2 cm, D ¼ 18 cm, and y0 ¼ −24 cm.
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pixel of the camera (A0 in Fig. 2) for a change in the
reflecting surface (say R and Σ). The intensity at this
pixel changes because the rays arriving at A0 come
from two different points of the projector grating
(A and B in Fig. 2).
Takeda’s geometrical representation [reproduced

in Fig. 12(a), for reference] is different from our Fig. 2.
Two rays coming from the same point B of the pro-
jector grating are considered: the ray BaA0 for a re-
flecting surface being R and the ray BbB0 for a
reflecting surface being Σ. Of course, these two rays
produce the same intensity, either on A0 or on B0 in
the camera. When R is the reflecting surface, the
ray BA0 is seen as coming from a on R, when Σ is
the reflecting surface, the ray BB0 is seen as coming
from ba on R [Fig. 12(b)]. Again, the two rays hold the
same intensity:

φ ¼ ωpYB: ð4:1Þ

Following Takeda, geometric considerations allow
expressing the phases φ0 and φ. First, from Figs. 12,
XB ¼ ðf p cos θ=LÞOb0, with b0 as the point intercept-
ing I along the ray Bb. Thus, we have φ ¼ ωOb0,
where ω ¼ ωp=Gp is the frequency of the fringes on
the plane I (the fringes are regularly spaced on that
plane). We can now define ω0 ¼ ω cos θ as in
Takeda’s paper and we get, introducing ba as the
point intercepting R along the ray bB0,

φ ¼ ωOb0 ¼ ω0Oba þ ω0

�
Ob0

cos θ −Oba

�
: ð4:2Þ

The point b0 is the point intercepting Rwith b0b0 par-
allel to the projector’s axis CO. It is sufficient to re-
mark that Ob0 ¼ Ob0= cos θ (since the triangle Ob0b0
is a rectangle at b0 by construction of the point b0). We
deduce, as Takeda,

φðyÞ ¼ ω0yþ ω0bab0; ð4:3Þ

where it has been implicitly defined that y ¼ Oba.
The following step in Takeda’s approach is to con-

sider the same ray coming fromBwhen the reflecting
surface is R (the Oy plane). In that case, the ray is
reflected on R at point a. The same geometric consid-
erations can be done: we have a0 ¼ b0 and a0 ¼ b0 be-
cause the ray Ba used to define a0 and a0 is the same
as the ray Bb, and we have aa ¼ a. We get

φ0ðy0Þ ¼ ω0y0 þ ω0ab0; ð4:4Þ

but here, y0 ¼ Oa.
Both expressions in Eqs. (4.3) and (4.4) are correct.

The error in Takeda’s approach is to buildΔφðyÞ from
the difference between both expressions, considering
y0 ¼ y: Takeda’s phase difference is ΔφTðyÞ ¼
φðy0 ¼ yÞ − φ0ðyÞ. This erroneous subtraction gives

Fig. 10. Height reconstruction hðyÞ for various y0 values. Solid
curves correspond to our phase-to-height relation and dashed
curves correspond to Takeda’s phase-to-height relation. The
experimental configuration is the same as in Fig. 9.

Fig. 11. Reconstructed height hðyÞ in the crossed-optical-axes geometry (a) for θ ¼ 33:9° and varying the y0 position of the triangle and
(b) for y0 ¼ −16 cm and varying θ ¼ 0, 18.1 and 41°. Solid curves correspond to our height reconstruction from Eq. (3.3) with Eq. (1.2).
Dashed curves are the height reconstructed using Takeda’s relation Eq. (1.1).
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ΔφTðyÞ ¼ ω0baa ¼ −ω0
hD
L − h

: ð4:5Þ

When considering the correct definitions of y and y0,
the terms ω0ðy0 − yÞ remain (with y ¼ Oba and
y0 ¼ Oa) and we get

Δφ ¼ ω0ðOba −OaÞ þ ω0ðbab0 − ab0Þ ¼ 0; ð4:6Þ

which is expected, since the two rays hold the same
intensity !
However, with φ0ðyÞ and φðy0Þ being correctly de-

rived, it is easy to correct the last erroneous opera-
tion. We keep the same expression for φðyÞ (the
ray is BbB0). To derive φ0, we consider the ray
AaB0, with a ¼ ba that is seen by the camera as com-
ing from ba, as illustrated on Fig. 13. We have
YA=f p ¼ Oa0 cos θ=L, but now, a0 differs from b0

(and a0 ≠ b0). We have now a unique definition of y ¼
Oba ¼ Oa and

φðyÞ ¼ ω0yþ ω0ab0; ð4:7Þ

φ0ðyÞ ¼ ω0yþ ω0aa0; ð4:8Þ

from which we deduce

ΔφðyÞ ¼ ω0a0b0: ð4:9Þ

This expression is correct and equivalent to our ex-
pression in Eq. (2.11) for θ ¼ 0 and to our expression
in Eq. (2.14) for D ¼ L tan θ (see the note in [23]).

5. Concluding Remarks

We have inspected the 3D phase-to-height relation-
ship used in fringe-projection profilometry in the
cases of collimated and noncollimated projection.
In the past ten years, the need for performing
accurate noncontact measurements has motivated
studies on signal processing, such as unwrapping
phase algorithms [5,14,15] or filtering techniques
[8–11]. The goal is to enhance the quality of the
height reconstruction in these methods. Thus, it is
important that the basic phase-to-height relation
is exact (at least in the geometric optics approxima-
tion). We have confirmed the relation first given by
Rajoub et al. [17] and we have given experimental
evidence of this analytical prediction. Also, the
error due to the usually cited phase-to-height
relation in Eq. (1.1) is explained and experimentally
exemplified.

Fig. 12. (a) Reproduction of Takeda’s representation and (b) the same representation including useful additional points: b0 is the point of
the ray Bb on the plane I, ba is the point of ray bB0 on the plane RðOyÞ, and b0 is the point on plane R with b0b0 parallel to the projector’s
optical axis CO. Similar construction is used to define aa, a0, and a0.

Fig. 13. Same representation as in Fig. 12(b) considering the ray
AaB0 instead of the ray BaA0. Now the ray AB0 is seen by the cam-
era as coming from point a ¼ ba. Otherwise, the same definitions
for the points a0; b0 and a0;b0 as in Fig. 12(b) are used.
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Appendix A: On the Fringe Spacing in Crossed-Optical-
Axes Geometry

The object of this appendix is to derive Eq. (A5),
which gives the change in the fringe spacing on
the reference plane R in the crossed-optical-axes
geometry.
We report in Fig. 14 the figure used in [17]. On the

projector grating, we consider the rays rn with 2nπ
phase difference with the ray CO. rn forms an angle
αn with CO. The two successive rays rn and rnþ1 have
2π phase difference.
The conjugate image of the projector’s grating is

formed on the plane I, with a regular spacing pI,
and we denote wn as the point of rn on I.
The fringe spacing on the reference plane R varies

along y and we denote pnþ1 ≡ ynþ1 − yn with yn as
the point of rn on R. The aim of this appendix is to
derive pn.
On I, we have

tan αn ¼ Own

L= cos θ ; Own ¼ npI; ðA1Þ

where the last relation is drawn from the fact that I
is the conjugate plane of the projector image plane.
On R, we have

tanðθ þ αnÞ ¼ C0yn
L : ðA2Þ

With C0yn ¼ L tan θ þ yn, we get

pnþ1 ¼ L½tanðθ þ αnþ1Þ − tanðθ þ αnÞ�; ðA3Þ

which simplifies in

pnþ1 ¼ L

cos2θ
tan αnþ1 − tan αn

ð1 − tan θ tan αnÞð1 − tan θ tan αnþ1Þ
:

ðA4Þ

With tan αn ¼ npI cos θ=L from Eq. (A1), we get

pnþ1 ¼ pI

cos θ
1

ð1 − n sin θpI=LÞ½1 − ðnþ 1Þ sin θpI=L�
:

ðA5Þ

The above formula is exact and can be easily
calculated in practice.

From our experimental configuration described in
Subsection 3.B, we can deduce the fringe spacing pI
on I from the fringe spacing p obtained in the paral-
lel-optical-axes configuration: pI ¼ p= cos θ. We have
p≃ 0:27 cm from Fig. 7(b) outside the T region; thus,
pI ≃ 0:325 cm. Then, pn is calculated from Eq. (A5).
Figure 15 shows the fringe spacing experimentally
deduced from Fig. 7, both in the parallel- and in
the crossed-optical-axes geometries. The apparent
frequency is given as well in the T region (for a linear
increase or decrease of the height hðyÞ with slopes
�1). In the parallel-optical-axes geometry, pa ≃

p=ð1�D=LÞ (in the referred experiments, D ¼
18 cm and L ¼ 105:2 cm) and, in the crossed-
optical-axes geometry, p0

a ≃ pI=½cos θð1� tan θÞ� (in
the referred experiments, θ ¼ 33:9°.). Note that a
reasonable fit of the experimental data are obtained
in the crossed-optical-axes geometry using pI∼

0:313 cm, suggesting an error of around 3% either
in the angle θ or in the position of the plane I.

Rajoub et al. [17] show that the derivation of pn in
[20] is inexact and propose the approximate expres-
sion (Eq. (20) in [17]). Unfortunately, their derivation
contains a mistake from his Eq. (15) to Eq. (16),
where they have used wn ¼ ywn

cos θ instead of using
wn ¼ ywn

= cos θ. Owing to this correction, we get a
modified version of his Eq. (20) (replacing simply
ywn

by ywn
=cos2θ):

pn ≃
p0

cos θ
1þ sin θ cos θynþ1=L

1 − tan θywn
=L

; ðA6Þ

Fig. 14. System geometry used to calculate the fringe spacing pn

in the crossed-optical-axes geometry.

Fig. 15. Open circles, experimental fringe spacing deduced from
Fig. 7 in the parallel- and the crossed-optical-axes geometries (the
crossed-axes geometry gives higher fringe spacing). The solid
curves correspond to our expression in Eq. (A5) and in the body
of the text.
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where it has been assumed that the linear dimension
of the illuminated area, Ownþ1, is small compared to
the projection distance L= cos θ, thus, αn is small.
Rajoub concludes, however, that the above expres-
sion contains two unknowns ynþ1 and ywn

. They
are actually known; owing to ynþ1 ¼ L½tanðθ þ
αnþ1Þ − tan θ� and ywn

¼ np0 cos θ (the triangle
Ownywn

is rectangle at ywn
), we get

pn ≃
p0

cos θ
1þ sin θ cos θ½tanðθ þ αnþ1Þ − tan θ�

1 − sin θ cos θnp0=L
; ðA7Þ

which simplifies exactly in the same expression as
our Eq. (A1) (suggesting that the assumption of small
αn angles is not necessary in [17]).

Appendix B: The Case of Collimated Projection

In this appendix, we derive the expression of the
phase difference Δφ for collimated projection (inci-
dentally, it will be seen that Takeda’s result does
not correspond to that case). The corresponding
configuration is in Fig. 16. For collimated projection,
the fringes are regularly spaced on any plane
because the beam coming from the projector is a
parallel beam.
We give here a 2D construction. The 3D construc-

tion is deduced from the 2D one owing to XB ¼
−Gpx, X ¼ −Gcx.
As previously, the calculation of the phase φðx; yÞ is

performed considering the surface Σ as reflecting
surface; afterward, φ0ðx; yÞ is deduced for the surface
R (h ¼ 0 in this case). The ray BbA0 is considered,
with

φðx; yÞ ¼ ωpYB; ðB1Þ

where YB ¼ OcB on the projector grating.

In the crossed-optical-axes geometry [Fig. 16(a)],
we define b0 as the point of the ray Bb intercepting
the plane R and b1 as the vertical projection of
b onto R. It is easy to see that Ob0 cos θ ¼ OcB
and b1b0 ¼ h tan θ (also, Ob1 ≡ y0). We deduce
that φðx; yÞ ¼ ωp cos θOb0 ¼ ωp cos θðy0 þ h tan θÞ, and
thus

φðx; yÞ ¼ ωp cos θyþ ωp sin θhð1 − cot θy=LÞ: ðB2Þ

It follows that

φ0ðx; yÞ ¼ ωp cos θy ðB3Þ

and the phase difference is

Δφðx; yÞ ¼ ω sin θhð1 − cot θy=LÞ; ðB4Þ

where ω ¼ ωp cos θ is the frequency of the regularly
spaced fringes on R. On a point A0 of the camera
grating, the intensity is given by the intensity of
the point A on the projector grating with
y=L ¼ −YA=f c. We still have h ¼ hðx0; y0Þ with x0 ¼ x −
xh=L and y0 ¼ y − yh=L.

Note that our expression of the phase φðx; yÞ in
Eq. (B2) agrees with that of Rajoub (Eq. (9) in
[16]) and with [24,25]. In these references, the phase
difference Δφ is not considered. Also, in [24,25], ad-
ditional hypothesis are considered (φðx; yÞ ≫ ωpy
and y=L ≪ 1). Finally, our Eq. (B4) agrees with [26].

In the case of parallel-optical-axes geometry
[Fig. 16(b)], the relation between YB and y0 is
YB ¼ Dþ y0ðYA ¼ Dþ yÞ; thus, the phases are

φ0ðx; yÞ ¼ ωpðDþ yÞ; φðx; yÞ ¼ ωpðDþ y0Þ; ðB5Þ

from which we deduce (with x0 ¼ x − xh=L and
y0 ¼ y − yh=L)

Fig. 16. Collimated projection in the (a) crossed- and (b) parallel-optical-axes geometries.
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Δφðx; yÞ ¼ −ωhðx0; y0Þ
L

y: ðB6Þ

Note that the case of parallel-optical-axes geometry
cannot be deduced from the calculations in [16].
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