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Eigenvectors in heterogeneous media

Continuous formulation
We consider the following eigenvalue problem : find (En, ψn(x)) such that

−∇ · (κ(x)∇ψn(x)) = ρ(x)Enψn(x), ∀x ∈ Ω,

with appropriate boundary conditions (in most of this talk : ψn(x) = 0, ∀x ∈ ∂Ω), and
normalization condition : ∫

Ω
ρ(x)ψn(x)ψn(x)dx = 1

(a) Map of κ(x) (or ρ(x)) (b) 1st modeψ1(x) (c) 20th modeψ20(x)
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Eigenvectors in heterogeneous media

Discrete formulation
The corresponding discretized formulation (FEM for instance) is

Kψn = EnMψn,

with normalization condition, ∀n ≥ 0

ψT
n Mψn = 1.
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The Rayleigh-Ritz algorithm to estimate eigenvectors

Description of the algorithm

Starting from initial estimates (E0
n , ψ

0
n), the sequence of updates

ψk+1
n =

(
K− Ek

n M
)−1

Mψk
n ,

Ek+1
n =

(ψk+1
n )T Kψk+1

n

(ψk+1
n )T Mψk+1

n
.

converges to (E0, φ0), where E0 is the smallest eigenvalue for which ψT
0 Mψ0

n 6= 0.

Remarks :

Typical initialization : (0, r), where r is a random vector with independent entries
distributed uniformly in [0, 1].

For other eigenvalues : deflation or solving in a subspace orthogonal to previous
eigenvectors.
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The localization landscape

Generic eigenvalue problems
We consider the following eigenvalue problem : find (En, ψn(x)) such that

L (ψn(x)) = Enψn(x), ∀x ∈ Ω,

with appropriate boundary conditions, and normalization condition.

Examples :

Schrödinger equation : L (ψn(x)) = −∆ψn(x) + V (x)ψn(x)

Classical (acoustic) wave equation : L (ψn(x)) = −ρ−1(x)∇ · (κ(x)∇ψn(x))

The localization landscape 1

The localization landscape is defined as the solution u(x) of

L (u(x)) = 1, ∀x ∈ Ω,

with the same boundary conditions. The landscape is independent of n.

1. M. FILOCHE et S. MAYBORODA. “Universal mechanism for Anderson and weak localization”. In : Proc. Nat. Acad. Sci.
USA 109.37 (2012), p. 14761-14766. DOI : 10.1073/pnas.1120432109
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Properties of the localization landscape

The localization landscape
The localization landscape u(x) is "cheap" to compute (compared to eigenvalue
problem or Rayleigh-Ritz)

One function contains information on "all" modes

Property 1 1

Rψn =
ψn(x)

En‖ψn‖∞
≤ u(x)

Property 2 2

A mode ψn(x) is "mostly" supported on

Sn = {x ∈ Ω, 1/En ≤ u(x)}
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1. M. FILOCHE et S. MAYBORODA. “Universal mechanism for Anderson and weak localization”. In : Proc. Nat. Acad. Sci.
USA 109.37 (2012), p. 14761-14766. DOI : 10.1073/pnas.1120432109
2. D. N. ARNOLD et al. “Computing spectra without solving eigenvalue problems”. In : SIAM J. Sci. Comp. 41.1 (2019),

B69-B92. DOI : 10.1137/17M1156721
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Sketch of how property 1 works

Introducing the Green’s function Gy(x) of the adjoint operator

L (Gy(x)) = δy(x), ∀x, y ∈ Ω,

Observe that (with (f , g) =
∫

Ω f (x)g(x)dx) and assuming L is self-adjoint :

u(y) = (u, δy) = (u,L (Gy)) = (L (u) ,Gy) = (1,Gy)

and
ψn(y) = (ψn, δy) = (ψn,L (Gy)) = (L (ψn) ,Gy) = En (ψn,Gy) .

Since Gy(x) ≥ 0, the modes verify

|ψn(y)| ≤ En‖ψn‖∞ (1,Gy) = En‖ψn‖∞u(y)
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Example (1D) for Schrödinger equation 1
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Localization landscape u(x) identifies the (low-frequency) localized modes

The bound is correct but uninformative at higher frequencies

1. D. COLAS et al. “Crossover between quantum and classical waves in high frequency localization landscapes”. In :
Phys. Rev. B (2022). Submitted for publication

11/19 R. Cottereau - Journée Ondes – MePhy, Paris, June ’22 - Landscape method for high-frequency localized modes



Introduction Localization Landscape with lower localized modes Localization Landscape with lower delocalized modes Conclusions

Example (1D) for the classical wave equation (ρ(x) = κ(x))
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Localization landscape u(x) is uninformative at all frequencies

The lowest (delocalized) eigenmode hides all other modes
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The localization landscape for higher-order modes

Symmetrization for classical waves
The original eigenvalue problem : find (En, ψn(x)) such that

−
1
ρ(x)
∇ · (κ(x)∇ψn(x)) = Enψn(x), ∀x ∈ Ω,

is transformed, through φn(x) =
√
ρ(x)ψn(x), into : find (En, ψn(x)) such that

−
1√
ρ(x)
∇ ·
(
κ(x)∇

φn(x)√
ρ(x)

)
= Enφn(x), ∀x ∈ Ω,

which corresponds to a symmetric operator.

A mode φn(x) (or ψn(x)) is "mostly" supported on

Sn =

{
x ∈ Ω,

1
En
≤
√
ρ(x)u(x)

}
where u(x) is the solution of

−∇ · (κ(x)∇u(x)) =
√
ρ(x)
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The localization landscape for higher-order modes

Shifting of the eigenvalue problem
For any Es , the solutions of : find (En, χn(x)) such that

−
1√
ρ(x)
∇ ·
(
κ(x)∇

χn(x)√
ρ(x)

)
+ Esχn(x) = Enχn(x), ∀x ∈ Ω,

are (En + Es, ψn(x)).

A mode ψn(x) is "mostly" supported (for any Es) on

Ss
n =

{
x ∈ Ω,

1
En + Es

≤
√
ρ(x)us(x)

}
=

x ∈ Ω,
1

En
≤
(

1√
ρ(x)us(x)

− Es

)−1


The localization landscape for higher-order modes

Defining (for several Es) the landscape u∗(x) = mins(1/(
√
ρ(x)us(x))− Es)−1, a mode

ψn(x) is mostly supported on

Sn =

{
x ∈ Ω,

1
En
≤ u∗(x)

}
.

15/19 R. Cottereau - Journée Ondes – MePhy, Paris, June ’22 - Landscape method for high-frequency localized modes



Introduction Localization Landscape with lower localized modes Localization Landscape with lower delocalized modes Conclusions

The localization landscape for higher-order modes

Shifting of the eigenvalue problem
For any Es , the solutions of : find (En, χn(x)) such that

−
1√
ρ(x)
∇ ·
(
κ(x)∇

χn(x)√
ρ(x)

)
+ Esχn(x) = Enχn(x), ∀x ∈ Ω,

are (En + Es, ψn(x)).

A mode ψn(x) is "mostly" supported (for any Es) on

Ss
n =

{
x ∈ Ω,

1
En + Es

≤
√
ρ(x)us(x)

}
=

x ∈ Ω,
1

En
≤
(

1√
ρ(x)us(x)

− Es

)−1


The localization landscape for higher-order modes

Defining (for several Es) the landscape u∗(x) = mins(1/(
√
ρ(x)us(x))− Es)−1, a mode

ψn(x) is mostly supported on

Sn =

{
x ∈ Ω,

1
En
≤ u∗(x)

}
.

15/19 R. Cottereau - Journée Ondes – MePhy, Paris, June ’22 - Landscape method for high-frequency localized modes



Introduction Localization Landscape with lower localized modes Localization Landscape with lower delocalized modes Conclusions

Example (1D) for classical waves
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(d) The "low-frequency" (classical) landscape
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Conclusions

The localization landscape method
The localization landscape method can be adapted when lower modes are
delocalized 1

The (classical) Localization landscape is just one Rayleigh-Ritz iteration initialized with
(0, 1). Potential gains from using different loading functions or initial shift ?

An interesting visualization tool to identify localized modes

1. D. COLAS et al. “Crossover between quantum and classical waves in high frequency localization landscapes”. In :
Phys. Rev. B (2022). Submitted for publication
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