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2Laboratoire de mécanique et d’acoustique, Aix-Marseille Université, CNRS, Centrale Marseille
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Dispersion, interfaces and source points
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Two-scale asymptotic homogenization in a 1D periodic medium
[Sanchez-Palencia, 1974, Bensoussan et al., 1978, Cioranescu and Donato, 1999] ...

ℓ

E1

ρ1
E2

ρ2

λ

Wave equation in a `-periodic medium

ρ
(x
`

) ∂2u`
∂t2

−
∂

∂x

[
E
(x
`

) ∂u`
∂x

]
= 0

Reference wavelength λ > `

Separated variable solution featuring a mean field U(x, t) and cell functions Pj(x/`):

u`(x, t) = U(x, t) + `U,x(x, t)P1

(x
`

)
+ `2U,xx(x, t)P2

(x
`

)
+ o(`2),

Effective wave equations for the mean field, from [Wautier and Guzina, 2015]

1

c20
U,tt − U,xx − `2

(
βxU,xxxx −

βm

c20
U,xxtt −

βt

c40
U,tttt

)
= 0, βx − βm − βt = β

... featuring effective coefficients computed from the cell functions:

c20 =
E0
%0

and β =

[
E2
E0
−
%2

%0

]
with

{
ρj = 〈ρPj〉,
Ej = 〈E(Pj + Pj+1,y)〉

... and two degrees of freedom to choose (βx, βm, βt).
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Cell functions

(P1, P2, P3): solutions of static equilibrium problems posed in the unit cell Y = [0, 1]

∂y [E∂yPj ] = F(E, ρ, Pj−1, Pj−2), Pj is 1-periodic, 〈Pj〉 = 0
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Choosing a (mt) model by fitting dispersion curves
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Material contrasts:
E2

E1
= 6,

ρ2

ρ1
= 1.5

Phase ratio:
`2

`1
= 3

(≈ maximal dispersion [Santosa and Symes, 1991])
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Bloch wave: u(x, y; t) = φ(y)ei(κx−ωt)

=⇒ Dispersion relation κ = f(ω)

0th-order: U,tt − c20U,xx = 0
=⇒ non-dispersive

2nd-order (m):
=⇒ O((κ`)2) approximation

Optimized (mt):
=⇒ O((κ`)4) approximation
[Pichugin et al., 2008,

Cornaggia and Guzina, 2020]
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Equivalent hyperbolic system for the (mt) model

Second-order homogenization, (mt) model:

1

c20

[
1 + `2βm∂xx + `2

βt

c20
∂tt

]
U,tt = U,xx, (βm, βt) obtained by fitting dispersion curve.

“Stress gradient” system by [Forest and Sab, 2017]:{
σ = E∂x(u+ φ)

r = Dφ

{
ρ∂ttu = ∂xσ

ρJ∂ttφ = ∂xσ − r

So that:
ρ

E

[
1−

E(1 + J)

D
∂xx +

ρJ

D
∂tt

]
u,tt = u,xx

⇒



∂tV −
a

%0
∂xS = −

a− 1

%0
r

∂tS − E0∂xV = 0

∂tϕ−
a− 1

%0
∂xS = −

a− 1

%0
r

∂tr =
E0
`2β

ϕ

Macroscopic fields V = ∂t(v + φ) and S = σ

Auxiliary fields ϕ = ∂tφ and r

Parameter a = −βm/βt to select a (mt) model.

Hyperbolicity and stability for:

βm < 0 and βt > 0
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First-order transmission conditions - regularization
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Fields of interest:{
(V, S) = (∂tU,E−∂xU) x < 0

(V, S, ϕ, r) x > 0

Transmission conditions from total fields continuity:{
V (0−) = V (0+) + `P1(0)V,x(0+)

S(0−) = S(0+) + `Σ1(0)S,x(0+)

=⇒ Assymetric conditions, sometimes unstable

Spring-mass conditions across a thin interface Id = [−d`, d`] (additional o(`) error):

−dℓ dℓ

{
JV KId = `A1∂t〈S〉Id A1 = −P1(0)E−1

0 + d(E−1
− + E−1

0 )

JSKId = `B1∂t〈V 〉Id B1 = −Σ1(0)%0 + d(ρ− + %0)

Stability of {Hyperbolic system + transmission conditions} for A1 ≥ 0 and B1 ≥ 0

⇒ Choice of d ≥ dmin := max

(
E−P1(0)

E− + E0
,
%0Σ1(0)

ρ− + %0
, 0

)
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Transmission conditions for ε = `/λc ≈ 0.04 (Numerics by B. Lombard)

E−ρ− = E0%0 =⇒ reflected wave is a 1st-order effect
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Transmission conditions, increasing central frequency, ε ≈ 0.09
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Transmission conditions, increasing central frequency, ε ≈ 0.13
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Transmission conditions, increasing central frequency, ε ≈ 0.17
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In 1D, source points ⇔ interfaces with stress jumps

∂tv` −
1

ρ`
∂xσ` = δsg(t) x ∈ R

∂tσ` − E` ∂xv` = 0 x ∈ R
⇐⇒


∂tv` −

1

ρ`
∂xσ` = 0 x < xs and x > xs,

∂tσ` − E` ∂xv` = 0 x < xs and x > xs,

Jv`Ks = 0 x = xs,

Jσ`Ks = −ρs g x = xs,

×
fs(x, t) = δ(x − xs)g(t)

xs

[|σ|]s = −ρ(xs)g(t)

[|V |]s = ?, [|S|]s = ?

⇐⇒
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First-order correction

Same tools (and no need for an enlarged interface):JV Ks = `P1(xs/`)
ρs

E0
∂tg,

JSKs = −ρs g,

I First-order corrector on V involving ∂tg and the local values ρs and P1(xs/`).
I Already given by [Capdeville et al., 2010] with another argument.

Equivalent system with Dirac notation:

∂tV −
a

%0
∂xS = −

a− 1

%0
r +

a

%0
ρs g δs,

∂tS − E0∂xV = −` ρsP1(xs/`) ∂tg δs,

∂tϕ−
a− 1

%0
∂xS = −

a− 1

%0
r +

a− 1

%0
ρs g δs,

∂tr =
E0
`2β

ϕ.
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Velocity fields in a slab with a source point

fc = 3 Hz, ε = 0.04

0 400 800 1200 1600

−6E−4 

−4E−4 

−2E−4 

0 

2E−4 

4E−4 

6E−4 

Position x(m)

v
 (

m
/s

)

v2

vh

t = 0.25

0 400 800 1200 1600

−6E−4 

−4E−4 

−2E−4 

0 

2E−4 

4E−4 

6E−4 

Position x(m)

v
 (

m
/s

)

v2

vh

t = 0.6
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Velocity fields in a slab with a source point

fc = 12 Hz, ε = 0.29
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Key ideas

The second-order asymptotic homogenization accounts for dispersive effects.

Boundary and transmission conditions can be designed to complement the inner expansion.
(including in 2-3D [Vinoles, 2016, Maurel and Marigo, 2018, Cakoni et al., 2019, Beneteau, 2021] ...)

For transient waves, stability can be adressed using (i) hyperbolic formalism and (ii) enlarged
interfaces (in 1D for now).

Source points can be addressed using the same tools (specific to 1D).

Perspectives

Pursue the transient case up to full second-order model
(as done in the stationary case [Cornaggia and Guzina, 2020])

Apply the built framework to other 1D configurations:
I High-frequency homogenization [Craster et al., 2010, Guzina et al., 2019]
I Solids with inner imperfect interfaces
I Non-linearities

=⇒ See Cédric Bellis’ talk before lunch.

Hyperbolic formalism for higher dimensions and other models ? (2D acoustics, elasticity ...)
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Thanks for your attention !

Second-order homogenization of boundary and transmission conditions
for one-dimensional waves in periodic media
Rémi Cornaggia, Bojan B. Guzina
International Journal of Solids and Structures, 2020

An homogenized model accounting for dispersion, interfaces and source points
for transient waves in 1D periodic media
Rémi Cornaggia, Bruno Lombard
submitted, preprint available on HAL: https://hal.archives-ouvertes.fr/hal-03652455
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Near boundaries ? From statics ... [Dumontet, 1986]
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... to time-harmonic dynamics [Beneteau, 2021] with S. Fliss, X. Claeys
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Choosing a (mt) model from dispersion relations in layered media
ℓ

E1

ρ1
E2

ρ2

λ

Bloch wave u`(X, t) = ũ(x)ei(κx−ωt) =⇒ dispersion relation ω = f(κ).
About (ω, κ) = (0, 0) (on the acoustic branch):

ω

c0
= κ

1−
β

2
(κ`)2 +

β
(

2− 27β − 8β
)

40
(κ`)4 +O(`6)

 ,
(β known for layered media)

Plane wave U(x, t) = Ũei(κx−ωt) in the second-order (mt) homogenized model:

ω

c0
= κ

[
1 +

βm + βt

2
(κ`)2 +

(βm + βt)(3βm + 7βt)

8
(κ`)4 +O(`6)

]
.

Second-order approximation of ω/c0 obtained for any (βm, βt) satisfying −βm − βt = β.
Also true in 2-3D [Allaire et al., 2016].

Fourth-order approximation for βm =
−1− 4β + 4β

10
and βt =

1− 6β − 4β

10
Similar approximation for spring-mass lattice in [Pichugin et al., 2008]
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Model problem and leading-order approximation

Time-harmonic model problem:∣∣∣∣∣∣∣∣
[
E(x/`)u,x

]
,x

+ ρ(x/`)ω2u = 0 x ∈ YL :=]0, L[

u = 0 x = 0

σ = E(x)u,x = σL x = L

Leading-order homogenization: (u, σ)→ (U, E0U,x)∣∣∣∣∣∣∣
U,xx + k20 U = 0 x ∈ YL, k0 := ω/c0

U = 0 x = 0

U,x = σL/E0 x = L
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Using full-field approximations [Cornaggia and Guzina, 2020]

First-order approximations of displacement and stress (u, σ):
ũ(1)(x) = U(x) + `P1

(x
`

)
U,x(x)

σ̃(1)(x) = E0
[
U,x(x) + `Σ1

(x
`

)
U,xx(x)

]
Using cell stress functions: Σj := (E/E0) [Pj + Pj+1,y ]

Boundary-value problem for the mean field U :∣∣∣∣∣∣∣∣
U,xx + k20 U = 0 x ∈ YL
ũ(1) = 0 x = 0

σ̃(1) = σL x = L∣∣∣∣∣∣∣
U,xx + k20 U = 0 x ∈ YL
U + `P1(0)U,x = 0 x = 0

U,x + `Σ1(0)U,xx = σL/E0 x = L∣∣∣∣∣∣∣
U,xx + k20 U = 0 x ∈ YL
U + `P1(0)U,x = 0 x = 0

U,x − `Σ1(0)k20 U = σL/E0 x = L

Second-order approximation: similar analysis, with
ũ(2)(x) = U(x) + `P1

(x
`

)
U,x(x) + `2P2

(x
`

)
U,xx(x)

σ̃(2)(x) = E0
[
U,x(x) + `Σ1

(x
`

)
U,xx(x) + `2Σ2

(x
`

)
U,xxx(x)

]
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Example for a layered material - mean fields U

ε = `/λ0 ≈ 0.3
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Example for a layered material - total displacement u

ε = `/λ0 ≈ 0.3
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Rémi Cornaggia Waves in periodic 1D media June 15, 2022 17 / 17



Example for a layered material - axial stress σ

ε = `/λ0 ≈ 0.3
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