

Voronoi-type porous materials obtained by nonlinear elasticity

Tuesday, June 22, 2021

Zahra Hooshmand-Ahoor¹, Gabriella Tarantino², Kostas Danas¹

¹ Laboratoire de Mécanique des Solides(LMS), Ecole Polytechnique, Palaiseau, France

² ICMMO/SP2M/Université Paris Saclay

Introduction- Random porous materials

2/10

Mechanically deformed Voronoi-type porous materials ----> M-Voronoi

Computer fabrication

2- Applying biaxial loading: $\varepsilon_{xx} = \varepsilon_{yy}$

For incompressible neo-Hookean material:

 $W(\boldsymbol{F}) = \frac{\mu}{2}(\boldsymbol{F}.\boldsymbol{F} - 3)$

Creation of Voronoi microstructures

Porosity Evolution of M-Voronoi materials

Highly porous materials

- High porosities up to 99% can be achieved with larger strains.
- Different initial porosities will lead to different final Voronoitype structure.
- M-Voronoi and E-Voronoi structures are almost similar at very high porosities.
- With RSA algorithm the maximum porosity would be 97% but not printable.

Remesh only geometry

Creation of M-Voronoi porous materials- Virtual fabrication

Max Principal logarithmic strain field

Gometry created from deformed orphan mesh

Remeshing

Deformed mesh

Creation of M-Voronoi porous materials- 3D printing

Max Principal logarithmic strain field

Gometry created from deformed orphan mesh

3D-printing

3D-printed Structure with TangoBlack LMS- Stratasys 3d printer

New mesh

Rescale

STL

Experimental results

• Compression tests

Experimental results

• Compression tests

Experimental results

• Compression tests

Thank you for your attention \odot