Stochastic Metamaterials for Additive Manufacturing

Seminar MePhys 22/6/2021

Jonàs Martínez

Mechanical Metamaterials

Mechanical metamaterials are artificial structures with mechanical properties defined by their structure.

Auxetic Metamaterials

Functionally Graded Metamaterials

Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson's ratio L. Mizzi et al. Materials and Design 2019

Inverse-designed spinodoid metamaterials Kumar et al. npj Computational Materials 2020

Mechanical Metamaterials

Mechanical metamaterials are artificial structures with mechanical properties defined by their structure.

Topology Optimization

Two-Scale Topology Optimization with Microstructures B. Zhu et al. ACM Transactions on Graphics 2017

Light and Stiff materials

Ultralight, Ultrastiff Mechanical Metamaterials Lee et al. Science 2014

Mechanical Metamaterials

Mechanical metamaterials are artificial structures with mechanical properties defined by their structure.

Soft robotics

Anisotropic Soft Robots Based on 3D Printed Meso-Structured Materials: Design, Modeling by Homogenization and Simulation Vanneste et al IEEE Robotics and Automation Letters 2020

Shape-morphing metamaterials

Combinatorial design of textured mechanical metamaterials Coulais et al. Nature 2016

Additive Manufacturing

Fused Filament Fabrication (FFF)

Utimaker

Stereolitography Apparatus (SLA)

Selective Laser Sintering (SLS)

Sinterit Lisa

Autodesk Ember

Periodic Metamaterials

Elastic Textures for Additive Fabrication Panetta et al. SIGGRAPH 2015

- Most widespread metamaterials
- Efficient simulation, compact storage.
- Grading can be challenging.

Microstructures to control elasticity in 3D printing Schumacher et al. SIGGRAPH 2015

Periodic Homogenization

Heterogeneous Microstructure

Homogenization

Representative Volume Element (**RVE**) Equivalent Homogeneous Material

Stochastic Metamaterials

- Less widespread metamaterials.
- Costly simulation.
- Implicit grading.

Inverse-designed spinodoid metamaterials Kumar et al. npj Computational Materials 2020

Stochastic Homogenization

• Cut-off techniques \rightarrow Periodic homogenization sample $[0, D]^N$, e.g. for N = 2:

Approximation asymptotically converges for $D ightarrow \infty$

Approximations of effective coefficients in stochastic homogenization A. Bourgeat and A. Piatnitski 2004

Procedural Stochastic Structures

Hypertexture Perlin and Hoffert SIGGRAPH 1989

A cellular texture basis function Worley SIGGRAPH 1996

Hypertexture - trabeculum Neyret 2015 Shadertoy

Procedural Pipeline for AM

Slice

Fill with microstructure

Procedural Foams

Procedural Foams

Procedural Foams

Isotropic metamaterial SLA/SLS

Procedural Voronoi Foams for Additive Manufacturing Martínez et al. SIGGRAPH 2016 Orthotropic metamaterial SLS

Orthotropic metamaterial FFF

Orthotropic k-nearest Foams for Additive Manufacturing Martínez et al. SIGGRAPH 2017 Polyhedral Voronoi Foams for Additive Manufacturing Martínez et al. SIGGRAPH 2018

Fabrication Constraints

• No local minima in printing direction.

• No enclosed voids (pockets).

Autodesk Ember

Definition

- Convex cells
 ✓ No local minima
- Open cells
 ✓ No enclosed voids

Procedural Computation

Numerical Homogenization: Verification

- Young's modulus correlated with volume [Roberts and Garboczi 2002]
- Stable Poisson's ratio [Gibson and Ashby 1997]

Results: Crusty Knight

Printed with Autodesk Ember

Results: Articulated Finger

Printed with Autodesk Ember

Results: Cute Octopus

Printed with B9 Creator

Procedural Foams

Procedural Foams

Isotropic metamaterial SLA/SLS

Procedural Voronoi Foams for Additive Manufacturing Martínez et al. SIGGRAPH 2016 Orthotropic metamaterial SLS

Orthotropic metamaterial FFF

Orthotropic k-nearest Foams for Additive Manufacturing Martínez et al. SIGGRAPH 2017 Polyhedral Voronoi Foams for Additive Manufacturing Martínez et al. SIGGRAPH 2018

Orthotropic Elasticity

• A subset of anisotropic elasticity.

• Elasticity varies independently along orthogonal axes.

• Better adaptation to uneven, directional loading scenarios.

Definition

Point distribution

1. Point density

4. Beam thickness

2. Metric angle
 3. Metric stretch h_u

• Wide range of Young's moduli

Material Space 3D

Projection x and y Young's modulus

Tensile Test 2D

Close agreement between experimental and simulated Young's modulus.

Compression Test 2D

Compression Test 3D

Close agreement between experimental and simulated Young's modulus.

Metamaterial Design

Design by Lilian Van Daal (100+ hours of modeling)

k-nearest foam

Metamaterial Design

Metamaterial Design

Increase resistance to pressure

Preserve longitudinal strength

Procedural Foams

Procedural Foams

Isotropic metamaterial SLA/SLS

Procedural Voronoi Foams for Additive Manufacturing Martínez et al. SIGGRAPH 2016 Orthotropic metamaterial SLS

Orthotropic metamaterial FFF

Orthotropic k-nearest Foams for Additive Manufacturing Martínez et al. SIGGRAPH 2017 Polyhedral Voronoi Foams for Additive Manufacturing Martínez et al. SIGGRAPH 2018

Fused Filament Fabrication (FFF)

Inexpensive and popular. Wide spectrum of materials.

Geometric Constraints FFF

• No-local-minimum constraint.

• Angle constraint.

Tipically $\theta^* > 45^{\circ}$

Continuity of Deposition for FFF

Closed-cell

• Open-cell

Closed-cell Infills for FFF

[Wu et al. 2016]

[Lee and Lee 2017]

[Lee et al. 2018]

Small range of elastic behaviors

Voronoi diagrams for FFF?

• Voronoi faces **may violate** angle constraint.

• Soluble support material required within the cells [Lu et al. 2016].

Polyhedral Voronoi Diagrams to the Rescue!

No-local-minimum.Angle constraint.

• Voronoi faces with arbiterary contientions.

Definition: Polygonal Distance

P Convex polygon Combinatorial size k

Two points p, q

Distance from p to q $d_P(p,q) = \min\{t > 0: q \in p + tP\}$

Polyhedral Bisectors

- Set of points equidistant to p and qunder the distance d_p .
- Piecewise linear and homeomorphic to a plane [Ma 2000].
- Each bisector facet is defined through the interaction between two facets of *P* [Ma 2000].

Polyhedral Bisectors

- Verifying FFF geometric constraints:
 - Angle constraint \rightarrow Enumerate all possible **bisector face angles**.
 - No-local-minimum constraint \rightarrow Enumerate in all possible **bisector** vertex configurations.

If all possible bisectors verify constraints \rightarrow Voronoi diagram verify constraints

3 angles v_1

3 vertex configurations

Effect of Parameter θ

Effect of Parameter μ

Effect of Parameter σ

Spatial Variations: Varying ho and μ

• Point Sites Density ho

• Varying μ

Spatial Variations: Varying Angle ζ

Controlling the Elastic Behavior

Angle $\boldsymbol{\zeta}$

Homogenization

• Periodic Homogenization of random variations (CraFT [Boittin et al. 2014]) with **same parameters**.

- An orthotropic material constitutes a plausible approximation.
 - Independent Young's moduli, Poisson's ratio and shear moduli for x,y,z.

Influence of Parameters

Experiment Settings

- Fixed k = 8 and $\theta = 45^{\circ}$.
- Young's moduli E_x , E_y , E_z shown
- **Varying** point sites density, μ and σ .

Influence of Parameters: Point Sites Density ho

ρ correlated with overall rigidity.

Influence of Parameters: μ

• ρ correlated with overall rigidity.

• μ strongly correlated with E_z .

Influence of Parameters: σ

ρ correlated with overall rigidity.

• μ strongly correlated with E_z .

• σ influences anisotropy in E_{χ} .

Experimental Verification

 Uniaxial compression tests (Young's modulus).

• Experimental results fairly **consistent** with numerical results.

However, some anisotropy in the printing direction.

Applications: Prosthetic Finger

Point density $oldsymbol{
ho}$

Anisotropy ${m \sigma}$

Applications: RC Car Wheel

Point density ${oldsymbol
ho}$

Applications: Orthopaedic Footwear

Angle **ζ**

Applications: Prostethic Hand

Point density $oldsymbol{ ho}$

Anisotropy ${m \sigma}$

Prostethic Hand with Skin

Point density $oldsymbol{
ho}$

Anisotropy ${m \sigma}$

Angle $\pmb{\zeta}$

Try it with **IceSL slicer**!

http://shapeforge.loria.fr/icesl/

Polyfoam infill

Application: Soft Robotics

Anisotropic Soft Robots Based on 3D Printed Meso-Structured Materials: Design, Modeling by Homogenization and Simulation Vanneste et al IEEE Robotics and Automation Letters 2020

Application: Soft Robotics

In this work, we show a new way to design and simulate soft robots. We use this soft robot called Tripod to present this new approach.

Thank you

Questions?

