Topology optimization for designing structures with optimal load-bearing capacity

Jérémy Bleyer coll. Leyla Mourad, Romain Mesnil, Karam Sab

Workshop GDR MePhy : From Computational Fabrication to Material Design

June, 22nd 2021

Outline

2) Formulation and resolution using conic programming

3 Topology optimization

Limit analysis-based design methods

Ultimate Limit State design methods (Eurocodes)

slip/yield lines, strut and ties: hand-based limit analysis methods for ULS

Automated limit analysis in civil engineering finite element computations in CE: global models are elastic, very few nonlinear computations (cost, lack of robustness, time and expertise)

Avantages of limit analysis

- situations outside the scope of design norms
- improve verification: critical yield mechanisms, bracketing the limit load
- simple input parameters: geometry, loading, strength properties
- robustness of numerical computations

Fondation Louis Vuitton

Optimal load-bearing capacity

Automated limit analysis in civil engineering

finite element computations in CE: global models are elastic, very few nonlinear computations (cost, lack of robustness, time and expertise)

Avantages of limit analysis

- situations outside the scope of design norms
- improve verification: critical yield mechanisms, bracketing the limit load
- simple input parameters: geometry, loading, strength properties
- robustness of numerical computations

Th. Chadi EL BOUSTANI

Outline

Limit analysis

2 Formulation and resolution using conic programming

3 Topology optimization

Lower bound static approach

$$egin{aligned} \lambda^+ &\geq \lambda_s = \max_{\lambda, \sigma \in \mathcal{W}_h} & \lambda \ & \mathbf{\sigma} ext{ in equilibrium with } \lambda oldsymbol{F} \ & \mathbf{s.t.} & \mathbf{\sigma}(\mathbf{x}) \in G(\mathbf{x}) & orall \mathbf{x} \in \Omega \end{aligned}$$

G: strength criterion (convex set)

Lower bound static approach

$$\lambda^{+} \geq \lambda_{s} = \max_{\lambda, \sigma \in \mathcal{W}_{h}} \quad \lambda$$

s.t. σ in equilibrium with λF
 $\sigma(x) \in G(x) \quad \forall x \in \Omega$

G: strength criterion (convex set)

Dual approach with virtual work principle: for $\sigma \in G$ and in equilibrium

$$W_{ext}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}[\boldsymbol{u}] \, dx \leq \int_{\Omega} \sup_{\boldsymbol{\sigma} \in G} \{ \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}[\boldsymbol{u}] \} \, dx = W_{mr}(\boldsymbol{u})$$

Lower bound static approach

$$\lambda^{+} \geq \lambda_{s} = \max_{\lambda, \sigma \in \mathcal{W}_{h}} \quad \lambda$$

s.t. σ in equilibrium with λF
 $\sigma(x) \in G(x) \quad \forall x \in \Omega$

G: strength criterion (convex set)

Dual approach with virtual work principle: for $\sigma \in G$ and in equilibrium

$$W_{ext}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}[\boldsymbol{u}] \, dx \leq \int_{\Omega} \sup_{\boldsymbol{\sigma} \in G} \{ \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}[\boldsymbol{u}] \} \, dx = W_{mr}(\boldsymbol{u})$$

Upper bound kinematic approach

$$\lambda^+ \leq \lambda_k = \min_{\boldsymbol{u} \in \mathcal{V}_h} \quad W_{mr}(\boldsymbol{u}) = \int_{\Omega} \pi(\boldsymbol{\varepsilon}[\boldsymbol{u}]) \, \mathrm{dx} \quad (\text{maximum resisting work})$$

s.t. $W_{ext}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{u} \, \mathrm{dx} = 1$

Lower bound static approach

$$\lambda^{+} \geq \lambda_{s} = \max_{\lambda, \sigma \in \mathcal{W}_{h}} \quad \lambda$$

s.t. σ in equilibrium with λF
 $\sigma(x) \in G(x) \quad \forall x \in \Omega$

G: strength criterion (convex set)

Dual approach with virtual work principle: for $\sigma \in G$ and in equilibrium

$$W_{ext}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}[\boldsymbol{u}] \, dx \leq \int_{\Omega} \sup_{\boldsymbol{\sigma} \in G} \{ \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}[\boldsymbol{u}] \} \, dx = W_{mr}(\boldsymbol{u})$$

Upper bound kinematic approach

$$\lambda^+ \leq \lambda_k = \min_{\boldsymbol{u} \in \mathcal{V}_h} \quad W_{mr}(\boldsymbol{u}) = \int_{\Omega} \pi(\boldsymbol{\varepsilon}[\boldsymbol{u}]) \, \mathrm{dx} \quad (\text{maximum resisting work})$$

s.t. $W_{ext}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{u} \, \mathrm{dx} = 1$

convex optimization problems

Numerical aspects of limit analysis problems

Variational approach: minimizing a convex, non-smooth, large-scale functional **Challenge** : **numerical optimization** solver efficiency

fenics_optim package: Bleyer, TOMS, 2020; Bleyer and Hassen, Comp & Struct, 2021

Numerical aspects of limit analysis problems

Variational approach: minimizing a convex, non-smooth, large-scale functional **Challenge** : numerical optimization solver efficiency

Numerical tools

• conic programming solvers

тозек

http://www.mosek.com

- non traditional FE (stress-based, discontinuous interpolations)
- automated formulation using FEniCS

htttp://fenicsproject.org

$$\begin{array}{ll} \max \quad \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} \\ \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \in \mathcal{K}^1 \times \ldots \times \mathcal{K}^p \end{array}$$

where \mathcal{K}^{j} are **cones** e.g. :

- positive orthant : $x_i \ge 0 \Rightarrow LP$
- Lorentz second-order ("ice-cream") cone : $\|\bar{\boldsymbol{x}}\| \leq x_0 \Rightarrow \mathsf{SOCP}$
- cone of positive semi-definite matrix $\boldsymbol{X} \succeq 0 \Rightarrow \mathsf{SDP}$

ł

fenics_optim package: Bleyer, TOMS, 2020; Bleyer and Hassen, Comp & Struct, 2021

3D strength criterion for concrete and SDP

concrete = **Rankine** 3D criterion :

$$-f_{\mathsf{c}} \leq \sigma_{I,II,III} \leq f_{t} \Leftrightarrow \begin{cases} \boldsymbol{\Sigma} \leq f_{t} \\ -f_{\mathsf{c}} \\ \mathsf{l} \leq \boldsymbol{\Sigma} \end{cases}$$

semi-definite positive constraints

Vincent, Arquier, Bleyer, de Buhan, Int. J. Num. Anal. Meth. Geomech., 2018

Jérémy Bleyer (Laboratoire Navier)

Outline

Limit analysis

2 Formulation and resolution using conic programming

3 Topology optimization

Topology optimization in limit analysis

Load-bearing capacity maximization

$$\begin{split} \lambda^{+}(\eta) &= \max_{\lambda, \sigma, \rho} \quad \lambda \\ & \sigma \text{ in eq. with } \lambda \boldsymbol{F} \\ \text{s.t.} & \begin{array}{c} \sigma \in \rho \boldsymbol{G} \\ \int_{\mathcal{D}} \rho \, \mathrm{dx} \leq \eta |\mathcal{D}| \\ 0 \leq \rho \leq 1 \end{split}$$

Mourad et al., Topology optimization of load-bearing capacity, Struct Multidisc Optim, 2021

Topology optimization in limit analysis

Load-bearing capacity maximization	Volume minimization
$\begin{split} \lambda^{+}(\eta) &= \max_{\lambda, \sigma, \rho} \lambda \\ \text{s.t.} & \sigma \text{ in eq. with } \lambda \boldsymbol{F} \\ \text{s.t.} & \sigma \in \rho G \\ \int_{\mathcal{D}} \rho \mathrm{dx} \leq \eta \mathcal{D} \\ 0 \leq \rho \leq 1 \end{split}$	$\eta^{-}(\lambda) = \min_{\boldsymbol{\sigma},\rho} \frac{1}{ \mathcal{D} } \int_{\mathcal{D}} \rho \mathrm{dx}$ $\boldsymbol{\sigma} \text{ in eq. with } \lambda \boldsymbol{F}$ s.t. $\boldsymbol{\sigma} \in \rho \mathcal{G}$ $0 \le \rho \le 1$

Mourad et al., Topology optimization of load-bearing capacity, Struct Multidisc Optim, 2021

Topology optimization in limit analysis

Load-bearing capacity maximization	Volume minimization
$\begin{split} \lambda^{+}(\eta) &= \max_{\lambda, \sigma, \rho} \lambda \\ \text{s.t.} & \begin{array}{c} \boldsymbol{\sigma} \text{ in eq. with } \lambda \boldsymbol{F} \\ \boldsymbol{\sigma} \in \rho \boldsymbol{G} \\ \int_{\mathcal{D}} \rho \mathrm{dx} \leq \eta \mathcal{D} \\ \boldsymbol{0} \leq \rho \leq 1 \end{split}$	$\eta^{-}(\lambda) = \min_{\boldsymbol{\sigma},\rho} \frac{1}{ \mathcal{D} } \int_{\mathcal{D}} \rho \mathrm{dx}$ $\boldsymbol{\sigma} \text{ in eq. with } \lambda \boldsymbol{F}$ s.t. $\boldsymbol{\sigma} \in \rho \mathcal{G}$ $0 \le \rho \le 1$

Results

- both problems are convex and equivalent
- link with optimal truss theory [Michell, 1904]

Numerical resolution

- same tools (conic programming)
- can adapt some strategies e.g. SIMP, filtering

Mourad et al., Topology optimization of load-bearing capacity, Struct Multidisc Optim, 2021

Strength criterion choice

steel: von Mises, concrete: Rankine/Mohr-Coulomb

(a) symmetric strengths $f_t = f_c = 1$

(b) asymmetric strengths $f_c = 5$, $f_t = 1$

In fact...

want to favor unixial stress states ("trusses") \Rightarrow L1-Rankine

$$\sum_{J=I,II} \max\left\{-\frac{\sigma_J}{f_c}; \frac{\sigma_J}{f_t}\right\} \le 1$$

Simply supported beam

 Λ^+ = classical load-bearing capacity

• VOL-MIN = LOAD-MAX

• can save up to 50% of the volume

Solutions after penalization

(a) L1-Rankine

(b) Rankine

penalized VOL-MIN

Bridge : asymmetric strengths

(a)
$$f_c/f_t = 10$$
 (b) $f_c/f_t = 0.1$

different topologies for different strength ratios

Material without tensile strength

Material without tensile strength

(a) Initial unpenalized solution

(b) Final penalized solution

Jérémy Bleyer (Laboratoire Navier)

Extension to a bi-material (e.g. reinforced concrete)

Jérémy Bleyer (Laboratoire Navier)

Optimal load-bearing capacity

Topology optimization

Extension to a bi-material (e.g. reinforced concrete)

Jérémy Bleyer (Laboratoire Navier)

Optimal load-bearing capacity

Extension to a bi-material (e.g. reinforced concrete)

Generalization to a weighted cost function

$$\min_{\rho_c, \rho_s, \sigma_c, \sigma_s} \int_{\Omega} (1 - w_s) \rho_c + w_s \rho_s) \, \mathrm{dx}$$

$$\sigma = \sigma_c + \sigma_s \text{ in equilibrium}$$

$$-\rho_c f_c \leq \sigma_c \leq 0$$

$$0 \leq \sigma_s \leq \rho_s f_y$$

Orthogonal steel layout

Further imposing zero shear for steel:

$$\min_{\rho_c, \rho_s, \sigma_c, \sigma_s} \quad \int_{\Omega} (1 - w_s) \rho_c + w_s \rho_s) \, \mathrm{dx} \\ \sigma = \sigma_c + \sigma_s \text{ in equilibrium} \\ \sigma_{s, xy} = 0 \\ -\rho_c f_c \leq \sigma_c \leq 0 \\ 0 \leq \sigma_s \leq \rho_s f_y$$

Conclusions & Perspectives

Conclusions

- extension of limit analysis concepts to topology optimization
- efficient numerical procedure
- liberty in strength criterion choice
- extension to bi-materials, automated strut-and-tie models

Perspectives

- quantitative assessment
- specimen realization and testing
- 3D computations
- robust optimization wrt loading uncertainty

Conclusions & Perspectives

Conclusions

- extension of limit analysis concepts to topology optimization
- efficient numerical procedure
- liberty in strength criterion choice
- extension to bi-materials, automated strut-and-tie models

Perspectives

- quantitative assessment
- specimen realization and testing
- 3D computations
- robust optimization wrt loading uncertainty

Thank you for your attention !