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I - Introduction and geometric optimization

Shape optimization : minimize an objective function over a set
of admissibles shapes Ω (including possible constraints)

inf
Ω∈Uad

J(Ω)

The objective function is evaluated through the solution of a state
equation

J(Ω) =

∫
Ω
j(uΩ) dx

where uΩ is the solution of a partial differential equation

PDE (uΩ) = 0 in Ω
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The model of linear elasticity

A shape is a smoothdomain Ω ⊂ Rd with boundary
∂Ω = Γ ∪ ΓN ∪ ΓD .

For a given applied load g : ΓN → Rd , the displacement
u : Ω→ Rd is the solution of

−div (A e(u)) = 0 in Ω
u = 0 on ΓD(
A e(u)

)
n = g on ΓN(

A e(u)
)
n = 0 on Γ

with the strain tensor e(u) = 1
2 (∇u +∇tu), the stress tensor

σ = Ae(u), and A = 2µI4 + λI2 ⊗ I2 an homogeneous isotropic
elasticity tensor with λ, µ > 0.
Typical objective function: the compliance

J(Ω) =

∫
ΓN

g · u dx ,
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Admissible shapes

The shape optimization problem is inf
Ω∈Uad

J(Ω), where the set of

admissible shapes is typically

Uad =

{
Ω ⊂ D open set such that ΓD

⋃
ΓN ⊂ ∂Ω and

∫
Ω
dx = V0

}
,

where D ⊂ Rd is given and V0 is a prescribed volume.

Remark. The boundary subsets ΓD and ΓN are fixed. Only Γ is
optimized (free boundary).
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Classical geometrical optimization

N

Ω

Γ

Γ

D

The boundary is parametrized by control nodes which are moved in
the direction of the shape gradient (steepest descent algorithm).
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Shape gradient: Hadamard method

Let Ω0 be a reference domain. Consider its variations

Ω =
(
Id + θ

)
Ω0 with θ ∈ C 1(Rd ;Rd).

x

Ω

x+  (x)θ

0
  d 0(Ι  +θ)Ω

Definition: the shape derivative of J(Ω) at Ω0 is the differential of
θ → J

(
( Id + θ)Ω0

)
at 0.

Huge literature on how to compute shape gradients !
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Classical geometrical optimization

Numerical example for the cantilever:
initial shape (left), “optimal” shape (right)

Convergence in 20 iterations.

Global or local minimum ?

No topology changes.
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Classical geometrical optimization

Numerical example for the cantilever:
initial shape (left), “optimal” shape (right)

No convergence ! Rather, problem with a thin bar...

One more local minimum !
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Topology optimization

It is crucial to optimize, not only the geometry, but also the
topology of shapes.

In 2-d topology is the number of holes. A bit more
complicated in 3-d...

There are different approaches for topology optimization.

We describe the two most popular ones:
1 the homogenization method (and its simplified version, SIMP),
2 the level set method.
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II - Topology optimization: homogenization method

Fact: many small holes are better than just a few large holes.
When they are so many tiny holes, the structure looks like a
porous material.

Key idea: porous material, or composite material, are more
optimal than classical shapes.

Pionneer works in the 80’s: Murat-Tartar, Lurie-Cherkaev,
Kohn-Strang.

First application to structural mechanics: Bendsoe-Kikuchi
(1988).

Reference books: Allaire (2001), Bendsoe-Sigmund (2003),
Cherkaev (2000), Tartar (2000).
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Homogenization method

Main idea: introduce generalized admissible shapes which are
composite materials.

At each point there is an underlying porous microstructure.

New design parameters: density 0 ≤ θ ≤ 1, and
homogenized Hooke’ law A∗ (depending on the
microstructure).

Generalized or “composite” shapes include “classical” shapes
(θ = 0 or 1).

Topology changes will be allowed.
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Composite materials

Defined rigorously by homogenization as the ”limits” of phase
mixtures.

Large body of work on the optimization of their properties.

A class of (multi-scale) composites with explicit formulas:
sequential laminates.

Optimal composites can be found in this class.

e
2

Β =

e
Α =

1
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Algorithm for compliance minimization

First step: compute an optimal homogenized or composite design.

1 Designe variables: density θ, microstructure A∗.

2 Optimal composite: rank-d sequential laminate in dimension
d , with directions aligned with the stress.

Second step: penalization to recover true shapes. After
convergence of the first step; the material density θ is progressively
forced to 0 or 1.
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Short cantilever
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Long cantilever
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Long cantilever with a ”politically correct” initialization
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3-d chair
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SIMP (Solid Isotropic Material with Penalization)

Idea. Homogenization introduces composites which are discarded
at the end by penalization. Can we simplify the approach by
introducing merely a density θ ?

Bendsoe: replace the composite homogenized tensor A∗ by
θpA for some exponent p > 1 (for p = 1 this is
convexification).

It works very well in practice (the difficult part is the
penalization: use some kind of continuation).

Almost all softwares are base on SIMP.

The homogenization method was ”killed” by SIMP !

One big default: no anisotropy (see later)...
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Homogenization is killed by SIMP !
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A miracle: resurrection of homogenization !

G. Allaire, et al. A brief review of structural optimization



Resurrection of homogenization: lattice material

And suddenly... a miracle happens, leading to the resurrection of
the homogenization method !

The miracle is additive manufucturing (3-d printing) and its
possibility of building composite materials, or more precisely
achitectured materials, called lattice materials.
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III - Topology optimization: the level set method

The concept of level set front propagation was introduced by
Osher and Sethian.

A shape Ω ⊂ D is parametrized by a level set function

ψ(x) < 0⇔ x ∈ Ω, ψ(x) > 0⇔ x ∈ (D \ Ω)

Assume that the shape Ω(t) evolves in time t with a normal
velocity V (t, x). Then its motion is governed by the following
Hamilton Jacobi equation

∂ψ

∂t
+ V |∇xψ| = 0 in D.
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Advection velocity = shape gradient

The velocity V is deduced from the shape gradient of the objective
function.

x

Ω

x+  (x)θ

0
  d 0(Ι  +θ)Ω

Hadamard structure theorem: the shape derivative of J(Ω) can
always be written

J ′(Ω0)(θ) =

∫
∂Ω0

θ(x) · n(x) j(x) ds

The normal velocity V = θ · n is chosen so that J ′(Ω0)(θ) ≤ 0.
Simplest choice: V = θ · n = −j (but other ones are possible).

G. Allaire, et al. A brief review of structural optimization



Numerical algorithm

1 Initialization of the level set function ψ0 (including holes).
2 Iteration until convergence for k ≥ 1:

1 Compute the elastic displacement uk for the shape ψk .
Deduce the shape gradient = normal velocity = Vk

2 Advect the shape with Vk (solving the Hamilton Jacobi
equation) to obtain a new shape ψk+1.

————————————————————————–

Optimization algorithms:

1 Lagrangian (possibly augmented) algorithm,

2 SLP (sequential linear programming).
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Complex optimal topologies

Compliance minimization with a weight constraint

dome L-beam motor-support
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Comparison between homogenization and level set methods

Homogenization (or SIMP) method:

1 almost insensitive to the initialization,

2 the penalization step may be tricky.

Level set method:

1 many local minima, depending on the initialization,

2 no penalization is required because the boundary is well
captured.
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IV - New: topology optimization of lattice materials

Lattice materials are periodic structures, with macroscopically
varying parameters of the type

A
(
x ,

x

ε

)
where y → A(x , y) is periodic and x → A(x , y)describes the
macroscopic variations. Homogenization theory applies to this type
of oscillating coefficients in pde’s.
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Lattice materials

Materials with graded (varying) microstructure can be built by
additive manufacturing techniques.
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Example: rectangular hole in a square cell
(Bendsoe-Kikuchi)

6

?
m2

-�
m1

Γint

- y1
6
y2

Cell parameters: m1,m2 and angle α (applied to the cell).
Homogenized properties: A∗(m1,m2, α).
Good choice because it is close to the optimal rank-2 laminate.

Remark: the same ideas apply to other geometries.
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A three-step approach for optimization

1 Pre-compute (off-line). the homogenized properties
A∗(m1,m2, α) for all values of the parameters.

2 Apply a simple parametric optimization process to the
homogenized problem with design variables m1,m2, α, varying
in space.

3 Choose a lengthscale ε and reconstruct a periodic domain
A
(
x , xε

)
approximating the optimal A∗.

(This is the delicate step of the approach !)
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Orientation/reconstruction issue

The most delicate point is the combined problem of orientation of
the microstructure and reconstruction of a macroscopically varying
periodic lattice: the entire cell is rotated by an angle α.
It implies that the periodic grid must be deformed accordingly.

Regular grid (left), orientation field (middle), distorted grid (right).
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1st step: pre-computing the homogenized properties

Compute the homogenized properties A∗(m1,m2) for a discrete
sampling of 0 ≤ m1,m2 ≤ 1 (with fixed 0 orientation).

Rotate the cell by an angle α (in 2− d). Analytic computation.
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Isolines of the entries of the homogenized tensor A∗ and their
gradient (small arrows) depending on m1 (x-axis) and m2 (y -axis).
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2nd step: parametric optimization of the homogenized
problem

The homogenized equation in a box D (containing the lattice
shape) is 

div σ = 0 in D,
σ = A∗e(u) in D,
u = 0 on ΓD ,
σ · n = g on ΓN ,
σ · n = 0 on Γ = ∂D \ (ΓD ∪ ΓN).

We consider compliance minimization

min
m1,m2,α

J(A∗) =

∫
ΓN

g · u ds .
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Bridge test case

D

ΓNΓD ΓD
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Results for the bridge

Density Cell orientation

m1 m2
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Regularity issues for the optimal orientation

Remember: α or α + π are the same orientation. Singularities
appear near the corners and at the bottom middle...
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3rd step: reconstruction of an optimal periodic structure

We computed an optimal homogenized design (with an
underlying modulated periodic structure).

Let us project it to obtain a lattice material !

This is a post-processing step.

We have to choose a lengthscale ε for this projection step.
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Projection with orientation α

Main idea (Pantz and Trabelsi): find a map ϕ = (ϕ1, ϕ2) from
D into R2 which distorts a regular square grid in order to orientate
each square at the optimal angle α.
Geometrically (in 2-d), the gradient matrix ∇ϕ should be
proportional to the rotation matrix defined by

Q(α) =

(
cosα − sinα
sinα cosα

)
.

In other words, there should be a (scalar) dilation field r such that

∇ϕ = erQ(α) in D.

This equation can be satisfied only if α is smooth and satisfies a
conformality condition ∆α = 0.
This requires a regularization process for the angle α.
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Regularized orientation α for the bridge case

G. Allaire, et al. A brief review of structural optimization



Projection of a regular grid through the map ϕ for the
bridge case
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Reconstruction for several ε in the case of the bridge

ε = 0.4 ε = 0.2

ε = 0.1 ε = 0.05
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A final post-processing/cleaning of the lattice
reconstruction

There are disconnected components of the lattice structure to
be removed.

There are too thin members.

A final post-processing is made to cure these defects.
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Post-processed structures for several ε

ε = 0.4 ε = 0.2

ε = 0.1 ε = 0.05

G. Allaire, et al. A brief review of structural optimization



Cantilever case
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3-d generalization

m3

m1

m2

e1

e2
e3

Cell orientation by a direct rotation matrix (ω1, ω2, ω3).

No more conformality property (Liouville theorem).

The map ϕ is computed direction by direction with 3 dilation
fields:

∀i ∈ {1, 2, 3} ∇ϕi = eriωi

Cubes are transformed in rectangles...
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3-d projection: construction of the cell from Yi(mi)

e1

e2

e3

Y0(m) = ∪1≤i<j≤3 (Yi (m) ∩ Yj(m))

G. Allaire, et al. A brief review of structural optimization



3-d cantilever Yi(mi)
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3-d cantilever
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3-d bridge and mast
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