Fiber-Bundle models in fracture

A tentative overview

Daniel Bonamy

Service de Physique de l’Etat condensé -- SPEC
CEA Saclay -- Orme des Merisiers

The Fiber Bundle Model
Modeling Failure in Materials
Complexity in fracture

Elastic response, elastic properties

\[E_{global} \cong \text{mean}(E_{local}) \]
Complexity in fracture

Failure, strength in materials

\[\sigma_{f\ global} \not\approx \text{mean}(\sigma_{f\ local}) \]
Complexity in fracture

causes: stress field distortion by defects and microcracks
Complexity in fracture

causes: stress field distortion by defects and microcracks

- Driven by rare & extreme defects, macroscale sensitivity to microscale inhomogeneities,
- Non-trivial statistics & size effects for strength
- Unpredictability at the macroscale

- Not really compatible with continuum engineering mechanics
Complexity in fracture: illustrations (1/2)

Extreme event statistics on strength [Here Duxbury-Leath law on ceramics components]

Van der Born et al. 91

Non-trivial size dependency on strength [Here on concrete]

C.C. Vu et al. 2018
Complexity in fracture: illustrations (2/2)

X-ray tomography imaging of damage in rocks
Renard et al. 2018

Acoustic emission in compressed wood
Makinen et al. 2015

Highly intermittent dynamics
Damage localization in space

Sismicity in California, 2012
Bares. 2013
Complexity in fracture: illustrations (2/2)

X-ray tomography imaging of damage in rocks \textit{Renard et al. 2018}

Acoustic emission in compressed wood

Highly intermittent dynamics
Damage localization in space
Scale-free avalanches of damage
Power-law distributed size/energy
Fiber Bundle Models (FBM): the approach

Material simplified to:

- N parallel brittle fibers
- Same stiffness $\kappa = 1$
- Random failure threshold
- Prescribed rules for load redistribution

F.T. Pierce, 1926
H.E. Daniels, 1945
Fiber Bundle Models (FBM): the approach

Material simplified to:

- N parallel brittle fibers
- Same stiffness $\kappa = 1$
- Random failure threshold
- Prescribed rules for load redistribution

Equal load Sharing (ELS)
all intact fibers share same fraction
Fiber Bundle Models (FBM): the approach

Material simplified to:

- N parallel brittle fibers
- Same stiffness $\kappa = 1$
- Random failure threshold
- Prescribed rules for load redistribution

Equal load Sharing (ELS)

all intact fibers share same fraction

Local load Sharing (LLS)

Load of failed fiber redistributed to intact nearest-neighbors only
Fiber Bundle Models (FBM): the approach

Material simplified to:

- N parallel brittle fibers
- Same stiffness $\kappa = 1$
- Random failure threshold

Prescribed rules for load redistribution

Equal load Sharing (ELS)
all intact fibers share same fraction

Local load Sharing (LLS)
Load of failed fiber redistributed to intact nearest-neighbors only

Intermediate load Sharing (ILS)
Load transfer decreases with distance from failed fiber

F.T. Pierce, 1926
H.E. Daniels, 1945
ELS -- FBM: continuum (average) behavior

- $N \to \infty$ parallel brittle fibers
- Overall stretching force F, \Rightarrow stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension: x
- Random critical loads x_i with distribution $p(x)$

[cumulative $P(x)$]

Fully tractable analytically
ELS -- FBM: continuum (average) behavior

- \(N \to \infty \) parallel brittle fibers
- Overall stretching force \(F, \Rightarrow \text{stress} \ \sigma = F / N \)
- Same stiffness \(\kappa = 1 \)
- Same fiber extension: \(x \)
- Random critical loads \(x_i \) with distribution \(p(x) \) [cumulative \(P(x) \)]

Fully tractable analytically
Displacement-driven “experiment”, at displacement \(x \):

Number of intact fibers: \(n(x) = N \left(1 - P(x)\right) \)

Density: \(\rho = n/N : \rho(x) = 1 - P(x) \)
ELS -- FBM: continuum (average) behavior

- $N \to \infty$ parallel brittle fibers
- Overall stretching force $F \Rightarrow$ stress $\sigma = F / N$
- Same stiffness $\kappa = 1$
- Same fiber extension: x
- Random critical loads x_i with distribution $p(x)$
 [cumulative $P(x)$]

Fully tractable analytically

Displacement-driven “experiment”, at displacement x:

Number of intact fibers: $n(x) = N\left(1 - P(x)\right)$

\Rightarrow Density: $\rho = n/N : \rho(x) = 1 - P(x)$

Stretching force $F(x) = xn(x)$

\Rightarrow Applied stress $\sigma(x) = x \left(1 - P(x)\right)$
ELS -- FBM: continuum (average) behavior

- \(N \rightarrow \infty \) parallel brittle fibers
- Overall stretching force \(F \), => stress \(\sigma = F / N \)
- Same stiffness \(\kappa = 1 \)
- Same fiber extension: \(x \)
- Random critical loads \(x_i \) with distribution \(p(x) \)

Fully tractable analytically

Displacement-driven “experiment”, at displacement \(x \):

Number of intact fibers: \(n(x) = N(1 - P(x)) \)

- Density: \(\rho = n/N : \rho(x) = 1 - P(x) \)

Stretching force \(F(x) = xn(x) \)

- Applied stress \(\sigma(x) = x (1 - P(x)) \)

Failure at the maximum point:

- Strength \(\sigma_c = \sigma(x_c) \), so that \(\sigma'(x_c) = 0 \)
- Critical damage: \(\rho_c = \rho(x_c) \)

Uniform distribution \(P(x) = x \)
ELS -- FBM: continuum (average) behavior

- \(N \to \infty \) parallel brittle fibers

Displacement-driven "experiment", at displacement \(x \):

Number of intact fibers: \(n(x) = N(1 - P(x)) \)

\(\Rightarrow \) Density: \(\rho = n/N : \rho(x) = 1 - P(x) \)

Stretching force \(F(x) = xn(x) \)

\(\Rightarrow \) Applied stress \(\sigma(x) = x (1 - P(x)) \)

Failure at the maximum point:

\(\Rightarrow \) Strength \(\sigma_c = \sigma(x_c) \), so that \(\sigma'(x_c) = 0 \)

\(\Rightarrow \) Critical damage: \(\rho_c = \rho(x_c) \)

\[\begin{align*}
\text{Control parameter} & : \sigma \\
\text{Order parameter} & : \rho - \rho_c \\
\rho - \rho_c & \sim (\sigma_c - \sigma)^{1/2} \\
\frac{d\rho}{d\sigma} & \sim (\sigma_c - \sigma)^{-1/2} \\
\text{Universal, independent of } P(x) \\
\end{align*} \]
ELS -- FBM: size effect and fluctuations

- Finite N parallel brittle fibers
- Overall stretching force F, \Rightarrow stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension: x
- Random critical loads x_i with distribution $p(x)$

Uniform distribution $P(x) = x, N = 20$

$pdf(\sigma|x, N)$ known analytically (roughly Gaussian)

$Daniels, Prc. R. Soc. London A, 1945$

- $\langle \sigma_N \rangle(x) = x\left(1 - P(x)\right)$
- $\langle (\sigma_N - \langle \sigma_N \rangle)^2 \rangle(x) = x^2 P(x)\left(1 - P(x)\right)/N$
ELS -- FBM: size effect and fluctuations

Finite N parallel brittle fibers
Overall stretching force F, \Rightarrow stress $\sigma = F / N$
Same stiffness $\kappa = 1$
Same fiber extension : x
Random critical loads x_i with distribution $p(x)$

$pdf(\sigma | x, N)$ known analytically (roughly Gaussian)

Daniels, Prc. R. Soc. London A, 1945

$\langle \sigma_N \rangle(x) = x(1 - P(x))$
$\langle (\sigma_N - \langle \sigma_N \rangle)^2 \rangle(x) = x^2 P(x)(1 - P(x))/N$

(Tiny) size effect on strength

$\langle \sigma_{max} | N \rangle = \sigma_c + K/N^{2/3}$
ELS -- FBM: avalanches precursors

- N parallel brittle fibers
- Overall stretching force F, \Rightarrow stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension: x
- Random critical loads x_i with distribution $p(x)$
 [cumulative $P(x)$]

Displacement imposed experiment \Rightarrow monotonic $\sigma(x)$

Uniform distribution $P(x) = x, N = 100$
ELS -- FBM: avalanches precursors

- N parallel brittle fibers
- Overall stretching force F, \Rightarrow stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension: x
- Random critical loads x_i with distribution $p(x)$
 [cumulative $P(x)$]

Displacement imposed experiment \Rightarrow monotonic $\sigma(x)$

Avalanche size $S = \text{number of fibers involved in microfailure}$
ELS -- FBM: avalanches precursors

- N parallel brittle fibers
- Overall stretching force F, \Rightarrow stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension: x
- Random critical loads x_i with distribution $p(x)$

Displacement imposed experiment \Rightarrow monotonic $\sigma(x)$

Avalanche size $S =$ number of fibers involved in microfailure

Size distribution fully computable analytically

Hansen & Hemmer 1992, 1994

at failure: $P(S|\sigma_c) \sim S^{-3/2}$
before failure: $P(S|\sigma) \sim S^{-3/2} \exp(-S(\sigma - \sigma_c))$

integrated $P_{int}(S) \sim S^{-5/2}$

Interpretable via random walk
ELS -- FBM: avalanches precursors

Uniform distribution $P(x) = x$, $N = 100$

Avalanche size $S = \text{number of fibers involved in microfailure}$

Size distribution fully computable analytically

Hansen & Hemmer 1992, 1994

at failure: $P(S|\sigma_c) \sim S^{-3/2}$
before failure: $P(S|\sigma) \sim S^{-3/2}\exp(-S(\sigma - \sigma_c))$

integrated $P_{int}(S) \sim S^{-5/2}$

Interpretable via random walk
ELS -- FBM: avalanches precursors

Qualitatively compatible with experiments

Energy distribution of Earthquakes

Acoustic emission in compressed wood

Makinen et al, 2015

Energy (A.U.)

Size distribution fully computable analytically

Hansen & Hemmer 1992, 1994

at failure: $P(S|\sigma_c) \sim S^{-3/2}$

before failure: $P(S|\sigma) \sim S^{-3/2} \exp(-S(\sigma - \sigma_c))$

integrated $P_{int}(S) \sim S^{-5/2}$

Interpretable via random walk
ELS -- FBM: more on avalanches precursors

Experimental observable, energy release by avalanche

\[E = \frac{1}{2} S x^2 \]

Energy distribution fully determined analytically

Pradhan et al, Rev. Mod. Phys. 2010

High \(E \): universal

\[P_{int}(E) \sim E^{-5/2} \]

20000 sample, \(N=10^6 \), from Pradhan et al. 2010
ELS -- FBM: more on avalanches precursors

Experimental observable, energy release by avalanche

$$E = \frac{1}{2} S x^2$$

Energy distribution fully determined analytically

Pradhan et al, Rev. Mod. Phys. 2010

High E: universal

$$P_{int}(E) \sim E^{-5/2}$$

Low E: non-universal

$$P_{int}(E) \approx \frac{Np(\sqrt{2E})}{\sqrt{2E}}$$

(a) Uniform $P(x)$

(b) Weibull $P(x)$, $k=5$
• N parallel brittle fibers
• Overall constant stress $\sigma_0 = F_0/N < \sigma_c$
• Same stiffness $\kappa = 1$
• Same fiber extension x
• Random critical loads x_i, pdf Gaussian pdf, variance T_d
• Thermal fluctuations via a new noise term $\eta(t)$, variance T
ELS -- FBM: thermal noise & creep

- N parallel brittle fibers
- Overall constant stress $\sigma_0 = F_0/N < \sigma_c$
- Same stiffness $\kappa = 1$
- Same fiber extension: x
- Random critical loads x_i, pdf Gaussian pdf, variance T_d
- Thermal fluctuations via a new noise term $\eta(t)$, variance T

Analytical determination of failure rate during creep due the constant stress loading

Omori law

$$\frac{dn}{dt} \approx \frac{A\sqrt{T/T_d}}{t^p}$$

... with temperature/stress dependent Omori exponent

$$p \approx 1 + \frac{T}{T_d} - K(\sigma_c - \sigma_0) \frac{\sqrt{T}}{2T_d}$$
ELS -- FBM: thermal noise & creep

\[N \text{ parallel brittle fibers} \]
\[\text{Overall constant stress } \sigma_0 = \frac{F_0}{N} < \sigma_c \]
\[\text{Same stiffness } \kappa = 1 \]
\[\text{Same fiber extension: } x \]
\[\text{Random critical loads } x_i, \text{ pdf Gaussian } pdf, \text{ variance } T_d \]
\[\text{Thermal fluctuations via a new noise term } \eta(t), \text{ variance } T \]

 פעולה זו מיקнской את התוצאות הממורכבות של התא קרישה ב- e-glass bundle instrumented in acoustic

Omori law
\[\frac{dn}{dt} \approx \frac{A \sqrt{T/T_d}}{t^p} \]

... with temperature/stress dependent Omori exponent
\[p \approx 1 + \frac{T}{T_d} - K(\sigma_c - \sigma_0) \frac{\sqrt{T}}{2T_d} \]
Fiber Bundle Models (FBM): the approach

Material simplified to:

- N parallel brittle fibers
- Same stiffness $\kappa = 1$
- Random failure threshold

Prescribed rules for load redistribution

Equal load Sharing (ELS)
all intact fibers share same fraction

Local load Sharing (LLS)
Load of failed fiber redistributed to intact nearest-neighbors only

Intermediate load Sharing (ILS)
Load transfer decreases distance from failed fiber
Fiber Bundle Models (FBM): the approach

Material simplified to:

- N parallel brittle fibers
- Same stiffness $\kappa = 1$
- Random failure threshold

Prescribed rules for load redistribution

Equal load Sharing (ELS)
all intact fibers share same fraction

Local load Sharing (LLS)
Load of failed fiber redistributed to intact nearest-neighbors only

Intermediate load Sharing (ILS)
Load transfer decreases distance from failed fiber
LLS -- FBM: 1D models

- N parallel brittle fibers
- Overall stretching force F, \Rightarrow stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c, pdf $p(x^c)$, cumulative $P(x^c)$
- Fiber extension: $x_i = \sigma(1 + k_i/2)$

 k_i = nb. of failed nearest-neighbor fibers

Full analytical solutions not available anymore
LLS -- FBM: 1D models

- N parallel brittle fibers
- Overall stretching force F, \Rightarrow stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c, pdf $p(x^c)$, cumulative $P(x^c)$
- Fiber extension: $x_i = \sigma(1 + k_i/2)$

 $k_i =$ nb. of failed nearest-neighbor fibers

👉 Full analytical solutions not available anymore

Pdf of hole size after k breaking

Uniform: $P(x) = x \ N = 1000, k = 200$

Hansen et al. (Wiley & son, 2015)

😊 Localization captured
LLS -- FBM: 1D models

- N parallel brittle fibers
- Overall stretching force F, \Rightarrow stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c, pdf $p(x^c)$, cumulative $P(x^c)$
- Fiber extension: $x_i = \sigma (1 + k_i/2)$
 $k_i=$ nb. of failed nearest-neighbor fibers

Full analytical solutions not available anymore

Pdf of hole size after k breaking

Uniform: $P(x) = x$ $N = 1000, k = 200$

Hansen et al. (Wiley & son, 2015)

Localization captured

highly dependent of $P(x)$…
... importance: x_{min}^c and $P(x \approx x_{min}^c)$

- $x_{min}^c = 0, P(x) = x^\beta, \beta \rightarrow \infty$
 infinite disorder, no localization, ELS
- $x_{min}^c = 2/3$, uniform above,
 fully localized, single crack growth
LLS -- FBM: 1D models, size effect on strength

- \(N \) parallel brittle fibers
- Overall stretching force \(F \), \(\Rightarrow \) stress \(\sigma = F/N \)
- Same stiffness \(\kappa = 1 \)
- Fiber extension: \(x_i = \sigma(1 + k_i/2) \)
 - \(k_i \)=nb. of failed nearest-neighbor fibers
- Random critical loads \(x_i^c \) with distribution \(p(x^c) \)
 - [cumulative \(P(x^c) \)]

Size effect can be reproduced
But depend of \(P(x) \), \(x_{\text{min}}^c \) and \(P(x \approx x_{\text{min}}^c) \)

Case of uniform distribution, \(P(x) = x \)

Numerics, simple estimates: \(\sigma_c \approx 1/\log(N) \)

More refined: \(\sigma_c \approx \log(\log(N^2))/\log(N^2) \)

\[\text{Hansen et al. (Wiley & son, 2015)} \]
LLS -- FBM: 1D models, avalanche distribution

- N parallel brittle fibers
- Overall stretching force F, \Rightarrow stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Fiber extension: $x_i = \sigma(1 + k_i/2)$
 - k_i=nb. of failed nearest-neighbor fibers
- Random critical loads x_i^c with distribution $p(x^c)$
 [cumulative $P(x^c)$]

Non-universal size-distributions, Depend on critical load distribution, $P(x)$

\[P(x) = x^\beta, \ 0 \leq x \leq 1 \]

\[P(x) = 1 - \exp(-x^k), \ 0 \leq x < \infty \]

Hansen et al. (Wiley & son, 2015)
LLS – FBM in higher dimensions

Localization less important in 2d

⇒ finite x_{min}^c now required to activate localization
LLS – FBM in higher dimensions

Localization less important in 2d

➤ finite x_{min}^c now required to activate localization

Stress-strain curve in LLS for uniform distribution, $P(x^c) = x^c$, over $[0,1]$

From Hansen et al. (Wiley & son, 2015)

When dimensionality increases, LLS-FBM looks more and more to ELS-FBM!
Fiber Bundle Models (FBM): the approach

Material simplified to:

N parallel brittle fibers
Same stiffness $\kappa = 1$

Random failure threshold

Prescribed rules for load redistribution

Equal load Sharing (ELS)
all intact fibers share same fraction

Local load Sharing (LLS)
Load of failed fiber redistributed to intact nearest-neighbors only

Intermediate load Sharing (ILS)
Load transfer decreases distance from failed fiber
An example of FLS -- FBM: Soft-clamp model

Stormo, Gjerden, Hansen PRE, 2012

- N parallel brittle fibers, Overall force F, \Rightarrow stress $\sigma = F / N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c, pdf $p(x^c)$, cumulative $P(x^c)$
- Forces between fibers redistributed via the elastic clamp

\[
\sigma_i = \kappa (x_i - x), \quad x_i = \sum_j G_{ij} \sigma_j, \\
G_{ij} = \text{green function for 2D elastic infinite half space}
\]
An example of FLS -- FBM: Soft-clamp model

Stormo, Gjerden, Hansen PRE, 2012

- N parallel brittle fibers, Overall force F, \Rightarrow stress $\sigma = F / N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c, pdf $p(x^c)$, cumulative $P(x^c)$
- Forces between fibers redistributed via the elastic clamp

$$\sigma_i = \kappa (x_i - x), x_i = \sum_j G_{ij}\sigma_j, \quad G_{ij} = \text{green function for 2D elastic infinite half space}$$

Control parameter for interaction: $e = E / N$

\Rightarrow Increasing size \equiv softer clamp

Transition from LLS (small e) to ELS (large e)

$e_{\text{stiff}} = 2^6$ $e_{\text{soft}} = 2^{-17}$

From Hansen et al. (Wiley & son, 2015)
An example of FLS -- FBM: Soft-clamp model

Stormo, Gjerden, Hansen PRE, 2012

- N parallel brittle fibers, Overall force F, \Rightarrow stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c, pdf $p(x^c)$, cumulative $P(x^c)$
- Forces between fibers redistributed via the elastic clamp

\[\sigma_i = \kappa(x_i - x), \quad x_i = \sum_j G_{ij}\sigma_j, \]
\[G_{ij} = \text{green function for 2D elastic infinite half space} \]

Control parameter for interaction: $e = E/N$
- Increasing size \equiv softer clamp

Transition from LLS (small e) to ELS (large e)

Size effect on strength at small e, absence of size effect at large e

From Stormo et al. PRE, 2012
FBM: Soft-clamp model & experiments

Gjerden, Stormo, Hansen PRL, 2013

Interfacial cracks

Maloy et al. PRL 2006
FBM: Soft-clamp model & experiments

Gjerden, Stormo, Hansen PRL, 2013

Interfacial cracks
Maloy et al. PRL 2006

Small scale, multi-affine, $\zeta \sim 0.6$

Large scale, self affine, $\zeta \sim 0.35$
FBM: Soft-clamp model & experiments

Gjerden, Stormo, Hansen PRL, 2013

Interfacial cracks
Maloy et al. PRL 2006

Large N (soft e)
Self-affine (single) growing front

Small N (stiff e)
Fractal percolated clusters

→ In (experimental) fracture: ELS/percolation at small scales, LLS/single crack growth at large scales
FBM: few take-home messages

- FBMs address fracture problems via models of increasing complexity/description ability depending on the redistribution rules

- **Simplest one: Equal-load-Sharing FBM:**
 - Fully tractable analytically, fracture \leftrightarrow critical phenomena
 - Capture qualitatively gradual damaging before failure, scale-free precursor avalanches, response in creep,
 - Ail capturing localization and size effects

- **Local-load-Sharing FBM**
 - Not tractable numerically anymore
 - Capture localization and size effects
 - No universality, very dependent on threshold distribution (and its minimum)
 - As dimension increases, looks more and more to ELS

- **Soft-clamp FBM**
 - LLS at large scales, ELS at small scales
 - Explain 2 scaling regimes in fracture depending on length-scales
The Fiber Bundle Model

Modeling Failure in Materials

To know more

Thank you for your attention