

Fiber-Bundle models in fracture A tentative overview

Daniel Bonamy

Service de Physique de l'Etat condensé -- SPEC CEA Saclay -- Orme des Merisiers

WILEY-VCH

Alex Hansen, Per C. Hemmer, Srutarshi Pradhan

The Fiber Bundle Model

Modeling Failure in Materials

GDR MEPHY, Matériaux très aérés, 12 novembre 2018

Complexity in fracture

Elastic response, elastic properties

$$E_{global} \cong mean(E_{local})$$

Complexity in fracture

Failure, strength in materials

 σ^{f}_{global} mean(σ^{f}_{local})

causes: stress field distortion by defects and microcracks

- Driven by rare & extreme defects, macroscale sensitivity to microscale inhomogeneities,
- Non-trivial statistics & size effects for strength
- Unpredictability at the macroscale

Not really compatible with continuum engineering mechanics

Complexity in fracture : illustrations (1/2)

strength [Here on concrete]

Non-trivial size dependency on

Complexity in fracture : illustrations (2/2)

Makinen et al. 2015

X-ray tomography imaging of damage in rocks Renard et al. 2018

Sismicity in California, 2012

Bares. 2013

Acoustic emission in compressed wood

Highly intermittent dynamics Damage localization in space

Complexity in fracture : illustrations (2/2)

X-ray tomography imaging of damage in rocks Renard et al. 2018

Acoustic emission in compressed wood

Highly intermittent dynamics Damage localization in space

Scale-free avalanches of damage Power-law distributed size/energy

Material simplified to:

N parallel brittle fibers Same stiffness $\kappa = 1$

Random failure threshold

Prescribed rules for load redistribution

F.T. Pierce, 1926

H.E. Daniels, 1945

Material simplified to:

Equal load Sharing (ELS)

N parallel brittle fibers Same stiffness $\kappa = 1$

Random failure threshold

Prescribed rules for load redistribution

F.T. Pierce, 1926

H.E. Daniels, 1945

Material simplified to:

N parallel brittle fibers Same stiffness $\kappa = 1$

Random failure threshold

F.T. Pierce, 1926

H.E. Daniels, 1945

Prescribed rules for load redistribution

Equal load Sharing (ELS) all intact fibers share same fraction Local load Sharing (LLS) Load of failed fiber redistributed to intact nearest-neighors only

Material simplified to:

N parallel brittle fibers Same stiffness $\kappa = 1$

Random failure threshold

F.T. Pierce, 1926

H.E. Daniels, 1945

Prescribed rules for load redistribution

Equal load Sharing (ELS) all intact fibers share same fraction

Local load Sharing (LLS)

Load of failed fiber redistributed to intact nearest-neighors only

Intermediate load Sharing (ILS)

Load transfer decreases with distance from failed fiber

Fully tractable analytically

- $N \rightarrow \infty$ parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i with distribution p(x)[cumulative P(x)]

- $N \to \infty$ parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i with distribution p(x)[cumulative P(x)]

Fully tractable analytically

Displacement-driven "experiment", at displacement *x*:

Number of intact fibers: n(x) = N(1 - P(x))→ Density: $\rho = n/N : \rho(x) = 1 - P(x)$

- $N \rightarrow \infty$ parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i with distribution p(x)[cumulative P(x)]

Fully tractable analytically

Displacement-driven "experiment", at displacement *x*:

Number of intact fibers: n(x) = N(1 - P(x))→ Density: $\rho = n/N : \rho(x) = 1 - P(x)$

Stretching force F(x) = xn(x) \rightarrow Applied stress $\sigma(x) = x(1 - P(x))$

- $N \rightarrow \infty$ parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i with distribution p(x)[cumulative P(x)]

Fully tractable analytically

Displacement-driven "experiment", at displacement *x*:

Number of intact fibers: n(x) = N(1 - P(x))→ Density: $\rho = n/N : \rho(x) = 1 - P(x)$

Stretching force F(x) = xn(x) \rightarrow Applied stress $\sigma(x) = x(1 - P(x))$

Failure at the maximum point:

- → Strength $\sigma_c = \sigma(x_c)$, so that $\sigma'(x_c) = 0$
- → Critical damage: $\rho_c = \rho(x_c)$

06/18

ELS -- FBM: size effect and fluctuations

- Finite *N* parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i with distribution p(x)[cumulative P(x)]

 $pdf(\sigma|x, N)$ known analytically (roughly Gaussian) Daniels, Prc. R. Soc. London A, 1945

•
$$:\langle \sigma_N \rangle(x) = x(1 - P(x))$$

•
$$\langle (\sigma_N - \langle \sigma_N \rangle)^2 \rangle(x) = x^2 P(x) (1 - P(x)) / N$$

strain x

ELS -- FBM: size effect and fluctuations

• Finite *N* parallel brittle fibers

- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i with distribution p(x)[cumulative P(x)]

 $pdf(\sigma|x, N)$ known analytically (roughly Gaussian) Daniels, Prc. R. Soc. London A, 1945

•
$$:\langle \sigma_N \rangle(x) = x (1 - P(x))$$

•
$$\langle (\sigma_N - \langle \sigma_N \rangle)^2 \rangle(x) = x^2 P(x) (1 - P(x)) / N$$

(Tiny) size effect on strength $\langle \sigma_{\max | N} \rangle = \sigma_c + K/N^{2/3}$

ELS -- FBM: avalanches precursors

- *N* parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i with distribution p(x)[cumulative P(x)]

Displacement imposed experiment \rightarrow monotonic $\sigma(x)$

ELS -- FBM: avalanches precursors

- *N* parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i with distribution p(x)[cumulative P(x)]

Displacement imposed experiment \rightarrow monotonic $\sigma(x)$

Avalanche size *S* = number of fibers involved in microfailure

ELS -- FBM: avalanches precursors

- *N* parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i with distribution p(x)[cumulative P(x)]

Displacement imposed experiment \rightarrow monotonic $\sigma(x)$

Avalanche size *S* = number of fibers involved in microfailure

Size distribution fully computable analytically Hansen & Hemmer 1992, 1994

at failure: $P(S|\sigma_c) \sim S^{-3/2}$ before failure: $P(S|\sigma) \sim S^{-3/2} \exp(-S(\sigma - \sigma_c))$

integrated $P_{int}(S) \sim S^{-5/2}$

Interpretable via random walk

Uniform distribution P(x) = x. N = 100

08/18

Interpretable via random walk

Interpretable via random walk

ELS -- FBM: more on avalanches precursors

ELS -- FBM: more on avalanches precursors

ELS -- FBM: thermal noise & creep

N Mallick, PhD, ENS Lyon, 2010, M. Stojanova, PhD, ENS Lyon, 2015

- *N* parallel brittle fibers
- Overall constant stress $\sigma_0 = F_0/N < \sigma_c$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i , pdfGaussian pdf, variance T_d
- Thermal fluctuations via a new noise term $\eta(t)$, variance T

ELS -- FBM: thermal noise & creep

N Mallick, PhD, ENS Lyon, 2010, M. Stojanova, PhD, ENS Lyon, 2015

- *N* parallel brittle fibers
- Overall constant stress $\sigma_0 = F_0/N < \sigma_c$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i , pdfGaussian pdf, variance T_d
- Thermal fluctuations via a new noise term $\eta(t)$, variance T

➔ Analytical determination of failure rate during creep due the constant stress loading

Omori law

$$\frac{dn}{dt} \approx \frac{A\sqrt{T/T_c}}{t^p}$$

... with temperature/stress dependent Omori exponent

$$p \approx 1 + \frac{T}{T_d} - K(\sigma_c - \sigma_0) \frac{\sqrt{T}}{2T_d}$$

ELS -- FBM: thermal noise & creep

N Mallick, PhD, ENS Lyon, 2010, M. Stojanova, PhD, ENS Lyon, 2015

- *N* parallel brittle fibers
- Overall constant stress $\sigma_0 = F_0/N < \sigma_c$
- Same stiffness $\kappa = 1$
- Same fiber extension : *x*
- Random critical loads x_i , pdfGaussian pdf, variance T_d
- Thermal fluctuations via a new noise term $\eta(t)$, variance T

➔ Analytical determination of failure rate during creep due the constant stress loading

Omori law

$$\frac{dn}{dt} \approx \frac{A\sqrt{T/T_d}}{t^p}$$

... with temperature/stress dependent Omori exponent

$$p \approx 1 + \frac{T}{T_d} - K(\sigma_c - \sigma_0) \frac{\sqrt{T}}{2T_d}$$

Used to interpret creep experiments in eglass bundle instrumented in acoustic From M. Stojanova, PhD, 2015

Material simplified to:

N parallel brittle fibers Same stiffness $\kappa = 1$

Random failure threshold

F.T. Pierce, 1926

H.E. Daniels, 1945

Prescribed rules for load redistribution

Load transfer decreases distance from failed fiber

Material simplified to:

N parallel brittle fibers Same stiffness $\kappa = 1$

Random failure threshold

F.T. Pierce, 1926

H.E. Daniels, 1945

Prescribed rules for load redistribution

Load transfer decreases distance from failed fiber

LLS -- FBM: 1D models

- *N* parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c , pdf $p(x^c)$, cumulative $P(x^c)$
- Fiber extension : $x_i = \sigma(1 + k_i/2)$

 k_i =nb. of failed nearest-neighbor fibers

Full analytical solutions not available anymore

LLS -- FBM: 1D models

- *N* parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c , pdf $p(x^c)$, cumulative $P(x^c)$
 - Fiber extension : $x_i = \sigma(1 + k_i/2)$

 k_i =nb. of failed nearest-neighbor fibers

Full analytical solutions not available anymore

Pdf of hole size after k breaking

Uniform: P(x)=x N = 1000, k = 200Hansen et al. (Wiley & son, 2015)

Localization captured

LLS -- FBM: 1D models

- *N* parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c , pdf $p(x^c)$, cumulative $P(x^c)$
- Fiber extension : $x_i = \sigma(1 + k_i/2)$

 k_i =nb. of failed nearest-neighbor fibers

Full analytical solutions not available anymore

Pdf of hole size after k breaking

Uniform: P(x)=x N = 1000, k = 200Hansen et al. (Wiley & son, 2015)

Localization captured

highly dependent of P(x)... ... importance: x_{min}^c and $P(x \approx x_{min}^c)$

- $x_{min}^c = 0, P(x) = x^{\beta}, \beta \to \infty$ infinite disorder, no localization, ELS
- $x_{min}^c = 2/3$, uniform above, fully localized, single crack growth

LLS -- FBM: 1D models, size effect on strength

- *N* parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Fiber extension : $x_i = \sigma(1 + k_i/2)$ k_i =nb. of failed nearest-neighbor fibers
- Random critical loads x_i^c with distribution $p(x^c)$ [cumulative $P(x^c)$]

Size effect can be reproduced But depend of P(x), x_{min}^c and $P(x \approx x_{min}^c)$

Case of uniform distribution, P(x) = x

Numerics, simple estimates: $\sigma_c \approx 1/\log(N)$ Zhang & Ding, Phys. Lett. A 1994, PRB & 995

More refined: $\sigma_c \approx \log(\log(N^2))/\log(N^2)$ Hansen et al (Wiley & son, 2015)

LLS -- FBM: 1D models, avalanche distribution

- *N* parallel brittle fibers
- Overall stretching force F, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Fiber extension : $x_i = \sigma(1 + k_i/2)$ k_i =nb. of failed nearest-neighbor fibers
- Random critical loads x_i^c with distribution $p(x^c)$ [cumulative $P(x^c)$]

Non-universal size-distributions,

Depend on critical load distribution, P(x)

Zhang & Ding Phys. Lett. A 1994, Pradhan et al. RMP, 2010

LLS – FBM in higher dimensions

Localization less important in 2d

→ finite x_{min}^c now required to activate localization

LLS – FBM in higher dimensions

Localization less important in 2d

 \rightarrow finite x_{min}^c now required to activate localization

Nomber of failed fibers/*N*

Stress-strain curve in LLS for uniform distribution, $P(x^c) = x^c$, over [0,1]

From Hansen et al. (Wiley & son, 2015)

When dimensionality increases, LLS-FBM looks more and more to ELS-FBM !

Material simplified to:

N parallel brittle fibers Same stiffness $\kappa = 1$

Random failure threshold

F.T. Pierce, 1926

H.E. Daniels, 1945

05/18

Prescribed rules for load redistribution

Equal load Sharing (ELS) all intact fibers share same fraction Local load Sharing (LLS) Load of failed fiber redistributed to intact nearest-neighors only

Intermediate load Sharing (ILS)

Load transfer decreases distance from failed fiber

An example of FLS -- FBM: Soft-clamp model

Stormo, Gjerden, Hansen PRE, 2012

- *N* parallel brittle fibers, Overall force *F*, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c , pdf $p(x^c)$, cumulative $P(x^c)$]
- Forces between fibers redistributed via the elastic clamp

$$: \sigma_i = \kappa(x_i - x), x_i = \sum_j G_{ij}\sigma_j,$$

 G_{ij} = green function for 2D elastic infinite half space

An example of FLS -- FBM: Soft-clamp model

Stormo, Gjerden, Hansen PRE, 2012

- *N* parallel brittle fibers, Overall force *F*, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c , pdf $p(x^c)$, cumulative $P(x^c)$]
- Forces between fibers redistributed via the elastic clamp

$$: \sigma_i = \kappa(x_i - x), x_i = \sum_j G_{ij}\sigma_j,$$

 G_{ij} = green function for 2D elastic infinite half space

Control parameter for

interaction: e = E/N→ Increasing size \equiv softer clamp

Transition from LLS (small e) to ELS (large e)

From Hansen et al. (Wiley & son, 2015)

An example of FLS -- FBM: Soft-clamp model

Stormo, Gjerden, Hansen PRE, 2012

- *N* parallel brittle fibers, Overall force *F*, => stress $\sigma = F/N$
- Same stiffness $\kappa = 1$
- Random critical loads x_i^c , pdf $p(x^c)$, cumulative $P(x^c)$]
- Forces between fibers redistributed via the elastic clamp

$$: \sigma_i = \kappa(x_i - x), x_i = \sum_j G_{ij}\sigma_j,$$

 G_{ij} = green function for 2D elastic infinite half space

Control parameter for interaction: e = E/N

→ Increasing size \equiv softer clamp

Transition from LLS (small e) to ELS (large e)

Size effect on strength at small e, absence of size effect at large e

From Stormo et al. PRE, 2012

FBM: Soft-clamp model & experiments 🗻

Gjerden, Stormo, Hansen PRL, 2013

Interfacial cracks

Maloy et al. PRL 2006

FBM: Soft-clamp model & experiments 🗻

Gjerden, Stormo, Hansen PRL, 2013

FBM: Soft-clamp model & experiments 🚕

Gjerden, Stormo, Hansen PRL, 2013

In (experimental) fracture: ELS/percolation at small scales, LLS/single crack growth at large scales

FBM: few take-home messages

FBMs address fracture problems via models of increasing complexity/description ability depending of the redistribution rules

Simplest one: Equal-load-Sharing FBM :

- fully tractable analytically, fracture $\leftarrow \rightarrow$ critical phenomena
- capture qualitatively gradual damaging before failure, scale-free precursor avalanches, response in creep,
- o ail capturing localization and size effects

Local-load-Sharing FBM

- Not tractable numerically anymore
- Capture localization and size effects
- No universality, very dependent on threshold distribution (and its minimum)
- As dimension increases, looks more and more to ELS

Soft-clamp FBM

- LLS at large scales, ELS at small scales
- Explain 2 scaling regimes in fracture depending on length-scales

Thank you for your attention

WILEY-VCH

Alex Hansen, Per C. Hemmer, Srutarshi Pradhan

The Fiber Bundle Model

Modeling Failure in Materials

To know more

REVIEWS OF MODERN PHYSICS, VOLUME 82, JANUARY-MARCH 2010

Failure processes in elastic fiber bundles

Srutarshi Pradhan*

Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway and SINTEF Petroleum Research, NO-7465 Trondheim, Norway

Alex Hansen[†]

Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

Bikas K. Chakrabarti[‡]

Theoretical Condensed Matter Physics Division and Centre for Applied Mathematics and Computational Science, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India

(Published 1 March 2010)

The fiber bundle model describes a collection of elastic fibers under load. The fibers fail successively and, for each failure, the load distribution among the surviving fibers changes. Even though very simple, this model captures the essentials of failure processes in a large number of materials and settings. A review of the fiber bundle model is presented with different load redistribution mechanisms from the point of view of statistics and statistical physics rather than materials science, with a focus on concepts such as criticality, universality, and fluctuations. The fiber bundle model is discussed as a tool for understanding phenomena such as creep and fatigue and how it is used to describe the behavior of fiber-reinforced composites as well as modeling, e.g., network failure, traffic jams, and earthquake dynamics.