

Contributions of austenite-martensite transformation to deformability of steels From atomistic mechanisms to microstructural response

Francesco Maresca, William A. Curtin

LAMMM / Laboratory for Multiscale Mechanics Modeling

francesco.maresca@epfl.ch

Funding from European Research Council Advanced Grant Program for the project *"Predictive Computational Metallurgy"* (W.A. Curtin)

erc

Advanced High Strength Steels: Nanolaminate Martensite/Austenite Microstructures

Tensile Strength (MPa)

(World Auto Steel, AHSS application guidelines 2014 – V5.0)

Nanolaminate martensite/austenite prevalent in_

- Quenched and partitioned (Q&P) steels;
- TRIP steels;
- Bainitic
- Nanobainitic
- •

High strength (1-2 GPa) and elongation (10-30%)

Nano-/micro-scale determines Macroscale response!

Hierarchical microstructure over multiple length scales

i. Prior austenite (10-500 μm)ii. Packets (10-100 μm)iii. Blocks (3-30 μm) iv. Subblocks (1-10 μm) v. Laths (100-500 nm) vi. Interlath retained austenite (5-50 nm)

Hierarchical microstructure over multiple length scales

i. Prior austenite (10-500 μ m) ii. Packets (10-100 μ m) iii. Blocks (3-30 μ m) iv. Subblocks (1-10 μ m) v. Laths (100-500 nm) vi. Interlath retained austenite (5-50 nm)

martensite-austenite laminate (block/sub-block model):

1) $F_L = \xi F_M + (1 - \xi) F_A$ Laminate def. = phase average deformation 2) $P_L = \xi P_M + (1 - \xi) P_A$ Laminate stress = phase average stress

constraints:

3)
$$F_M \cdot (I - p \otimes p) = F_A \cdot (I - p \otimes p)$$
 Phase compatibility

4) $P_M \cdot p = P_A \cdot p$ Interface equilibrium phase constitutive equations: $P_A = \mathcal{F}(F_A)$ $P_M = \mathcal{G}(F_M)$

Austenite-martensite phase transformation model

Austenite-martensite phase transformation model

In situ transformation strain ("shape deformation")

Atomistic interface vs experiments

- 1) Interface orientation mismatch not important (local variations)
- 2) Phases aligned with experiments!
- 3) Interface steps like experiments
- 4) Same match on other orientation (not shown here)

[Molecular statics (T=0K) with MEAM-T Fe potential (Lee et al. 2012)]

Insights trascend the potential

BCC-FCC (periodic) bicrystals with different orientation relationships:

$$\varphi = 3.11^{\circ}$$
, $\varphi = 4.75^{\circ}$,
 $\varphi = 5.21^{\circ}$ (~NW), $\varphi = 5.7^{\circ}$

Atomistic interface vs experiments

- 1) Interface orientation mismatch not important (local variations)
- 2) Phases aligned with experiments!
- 3) Interface steps like experiments
- 4) Same match on other orientation (not shown here)

[Molecular statics (T=0K) with MEAM-T Fe potential (Lee et al. 2012)]

Insights trascend the potential

BCC-FCC (periodic) bicrystals with different orientation relationships:

$$\varphi = 3.11^\circ$$
, $\varphi = 4.75^\circ$,
 $\varphi = 5.21^\circ$ (~NW), $\varphi = 5.7^\circ$

Atomistic interface defects

Observed interface structure:

 $a_{\rm fcc}/2$ [101] screw dislocations 1)

gliding on $(111)_{fcc}$

 $a_{\rm bcc}/2$ [111] kinks in the bcc 2)

gliding on $(\overline{1}01)_{hcc}$

Why was this not considered before?

Thought that it could not be glissile: crossing dislocations []_{bcc}

BUT there is no slip plane for these bcc segments to move into the fcc phase (misaligned)

Atomistic interface motion

The interface can glide, at ~zero stress!

- **1) Defects do not interact/cross**
- 2) They glide in a cooperative manner

Predictive theory of martensite crystallography

Determination of the shape deformation

$$\boldsymbol{P}^{(1)} = \boldsymbol{S} \cdot \boldsymbol{P}^{(3)} \cdot \boldsymbol{P}^{(2)}$$

where $S = R \cdot B$ $(R = R_{\varphi} \cdot R_{\psi})$ $P^{(i)} = I + m^{(i)}s^{(i)} \otimes n^{(i)}$ i = 1,2,3

1) Specify
$$P^{(2)}$$
, $P^{(3)}$

2) Calculate $P^{(1)} = I + m^{(1)}s^{(1)} \otimes n^{(1)}$

a. Habit plane normal vector $\boldsymbol{n}^{(1)}$

b. Shape deformation direction $s^{(1)}$

c. Shape deformation magnitude $m^{(1)}$

Experimentally measurable variables

Predictive theory of martensite crystallography

From atomistics we see:

1) $P^{(2)}$ is the shear due to $a_{bcc}/2$ [111] kinks on (101)_{bcc}

2) $P^{(3)}$ is the shear due to $a_{fcc}/2$ [$\overline{1}01$] screw dislocations on (111) $_{fcc}$

Predictive theory of martensite crystallography

Ogawa & Kajiwara (2004)

Calculation procedure:

- 1) Guess $\beta \rightarrow P^{(3)}$
- 2) Calculate $P^{(1)} = S \cdot P^{(3)} \cdot P^{(2)}$
- 3) Calculate right stretch tensor $\boldsymbol{U} = \sqrt{[\boldsymbol{P}^{(1)}]^T \cdot \boldsymbol{P}^{(1)}}$
- 4) Calculate the eigenvalues $\begin{pmatrix} \lambda_{\min} \\ \lambda_{int} \\ \lambda_{\max} \end{pmatrix}$
- 5) Tune β : iterate 1-4 until λ_{int} =1

→ $P^{(1)}$ can be written in the form $P^{(1)} = I + m^{(1)}s^{(1)} \otimes n^{(1)}$

where $m^{(1)}$, $s^{(1)}$ and $n^{(1)}$ are functions of $(\lambda_{\min}, \lambda_{\max})$ and their eigenvectors (e_{\min}, e_{\max}) $\rightarrow R_{\Delta}$ making contact with experiments

Theory validation on atomistic simulations

Theory with defects is consistent with all aspects of simulations!

	Simulations	Theory	Simulations	Theory	
$\frac{a_{\rm fcc}}{a_{ m bcc}}$	≃ 1.2537	1.2537	≃ 1.2518	1.2518	Defined input
φ	4.75°	4.75°	3.11°	3.11°	J
β	1.5	1.515	1.46	1.552	
n ⁽¹⁾	(2 3 2) _{fcc}	(2 3 2) _{fcc}	(10 17 10) _{fcc}	(10.5 17.6 10) _{fcc}	
s ⁽¹⁾	$[\bar{1} \ 0 \ 1]_{\rm fcc} + 19.5^{\circ}$	$[\bar{1} \ 0 \ 1]_{\rm fcc} + 19.5^{\circ}$	$[\bar{1} \ 0 \ 1]_{\rm fcc} + 19.9^{\circ}$	$[\bar{1} \ 0 \ 1]_{\rm fcc} + 20.4^{\circ}$	
<i>m</i> ⁽¹⁾	0.59	0.57	0.55	0.56	
dθ	0.34°	0.28°	0.49°	0.34°	
dφ	0° (constrained)	-0.15°	0° (constrained)	0.017°	
dχ	0° (constrained)	-0.003°	0° (constrained)	0.021°	
η	0° (constrained)	0.38°	0° (constrained)	3.5°	
Sη		37.9 nm		4.1 nm	

Theory validation on atomistic simulations

Theory with defects is consistent with all aspects of simulations!

	Simulations	Theory	Simulations	Theory	
$\frac{a_{\rm fcc}}{a_{ m bcc}}$	≃ 1.2537	1.2537	≃ 1.2518	1.2518	Defined input
φ	4.75°	4.75°	3.11°	3.11°	J
β	1.5	1.515	1.46	1.552	
n ⁽¹⁾	(2 3 2) _{fcc}	(2 3 2) _{fcc}	(10 17 10) _{fcc}	(10.5 17.6 10) _{fcc}	
s ⁽¹⁾	$[\overline{1} \ 0 \ 1]_{\mathrm{fcc}} + 19.5^{\circ}$	$[\bar{1} \ 0 \ 1]_{\rm fcc} + 19.5^{\circ}$	$[\bar{1} \ 0 \ 1]_{fcc} + 19.9^{\circ}$	$[\bar{1} \ 0 \ 1]_{\rm fcc} + 20.4^{\circ}$	
<i>m</i> ⁽¹⁾	0.59	0.57	0.55	0.56	
dθ	0.34°	0.28°	0.49°	0.34°	
$d \varphi$	0° (constrained)	-0.15°	0° (constrained)	0.017°	
dχ	0° (constrained)	-0.003°	0° (constrained)	0.021°	
η	0° (constrained)	0.38°	0° (constrained)	3.5°	
S_{η}		37.9 nm		4.1 nm	

Activation criterion for transformation

f transformation criterion

 τ_c critical resolved shear stress at which transformation starts

 $\dot{\varepsilon}_{tr}$ transformation rate (\propto normalized interface speed)

Continuum model for austenite-martensite laminate

martensite-austenite laminate:

1) $F_L = \xi F_M + (1 - \xi) F_A$ Laminate def. = phase average deformation 2) $P_L = \xi P_M + (1 - \xi) P_A$ Laminate stress = phase average stress

constraints:

- 3) $F_M \cdot (I p \otimes p) = F_A \cdot (I p \otimes p)$ Phase compatibility
- 4) $P_M \cdot p = P_A \cdot p$ Interface equilibrium

phase constitutive equations: $P_A = \mathcal{F}(F_A)$ $P_M = \mathcal{G}(F_M)$

Continuum model for transformation

Single-phase models / constitutive assumptions and evolution laws

Elasticity: $\overline{S} = \mathbb{C}: E_e$ Hooke's law $(P = F_e \cdot \overline{S} \cdot F_i^{-T})$

Transformation (in Austenite)

$$\dot{\varepsilon}_{tr}^{\alpha} = \dot{\varepsilon}_0 \left(\frac{\tau^{\alpha}}{\tau_{tr}^{\alpha}}\right)^{1/m} \qquad \tau^{\alpha} = \langle (\boldsymbol{C}_e \cdot \overline{\boldsymbol{S}}) : \boldsymbol{s}^{(1)} \otimes \boldsymbol{n}^{(1)} \rangle \qquad \text{Ass.: } \boldsymbol{\xi} = \boldsymbol{\xi}_0, \quad \varepsilon_{tr,max} = \varepsilon_{tr}$$

Plastic slip (in Martensite)

$$\dot{\gamma}^{\alpha} = \dot{\gamma}_0 \left(\frac{|\tau^{\alpha}|}{\tau_y^{\alpha}}\right)^{1/m} \operatorname{sign}(\tau^{\alpha}) \qquad \tau^{\alpha} = (\boldsymbol{C}_e \cdot \overline{\boldsymbol{S}}): \boldsymbol{s} \otimes \boldsymbol{n}$$

Material model parameters:

- 1) Initial phase fractions ξ and 1- ξ (from XRD for a specific material)
- 2) Elasticity C (from experiments)
- 3) Critical stresses for transformation τ_{tr}^{α} and slip $\tau_{y}^{\alpha} \leftarrow$

No arbitrary, free-fitting parameters!

Can be determined from solute strengthening theories/experiments

Application: FeC martensite polycrystal

- Correct order (MP1 stronger than MP2) reproduced
- Inset: model without austenite films cannot reproduce correct strength difference

Conclusions: atomistic to continuum modeling of nano A/M

1) Atomistic fcc austenite/bcc martensite interface

- reproduces all main aspects of experimental interfaces,
- reveals (first time!) interface defects

2) Predictive crystallographic theory for martensite

- reproduces simulation results and is consistent with experiments
- can be used to explore potential of existing/new alloys

3) Atomistic applied load simulations

- reveal Schmid-type response of interface
- interface motion controlled by fcc/bcc screw dislocations (forward/reverse tr.)

4) Continuum model of transformation

- kinematics of austenite controlled by apparent slip along transformation systems;
- comparison with experiments show austenite films can contribute substantially to plastic deformation of nanolaminate austenite/martensite microstructures.

More details in: Maresca & Curtin (2017), *Acta Materialia* 134:302 Maresca, Kouznetsova, Geers, Curtin, *Under review*

Contributions of austenite-martensite transformation to deformability of steels From atomistic mechanisms to microstructural response

Francesco Maresca, William A. Curtin

LAMMM / Laboratory for Multiscale Mechanics Modeling

francesco.maresca@epfl.ch

Funding from European Research Council Advanced Grant Program for the project *"Predictive Computational Metallurgy"* (W.A. Curtin)

erc

