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Motivations

Materials with microstructure
Composites, on-demand tunable material (3D printed)…

Mechanical engineering
Thermo-mechanical behaviors

Continuum mechanics models at both scales

Microscale length ~ 0.01 mm – 1 cm

Scale change: homogenization & relocalization
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Outlines

Kind of the scale transition approaches we use

A specific example
(not new: [Auriault 1983])

Transient thermal behavior / high contrast phase 

A macroscopic memory effect

Numerization of the homogenization
(more recent: [DD et al 2015])

Cell model, microscopic problem, macroscopic quantities

Uncertainties in the micro-structure
(on the way)

Geometric parameters, non-intrusive approach
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Our typical approach

Spatial scales?
Microstructure component: l

Elementary representative volume: d

Studied structure: L

Separation ?  l < d << L

e = d / L small

[a synthesis in: DD 2000]
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Our typical approach

Flavor of the solution field

Reference problem: resolve the micro scale on the whole structure

Often unaffordable…

 “Decouple” the local resolution (at a micro/cell scale) from the global 
resolution (at the structure/macro/homogenized scale)

e.g. precompute on a single cell
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Our typical approach

Equivalence for the homogenized model

Which boundary conditions on the micro cell?
Dirichlet, Neumann, self-consistent, periodic superposition…

Different approaches, different results (bounds?)

homogeneous loading

homogeneous equivalent cellheterogeneous cell

localization

local fields

homogenization

effective (averaged) answer homogeneous answer



7

Our typical approach

(quasi-)Periodic homogenization
The elementary representative volume is an elementary (small) cell

1. A description with two spatial coordinates

Note that the spatial derivative is now

2. Each field in your solution is asymptotically developed as:

U(x,y) = U0(x,y) + eU1(x,y) + e2U2(x,y) + …

each being Y-periodical

[Sanchez-Palencia 1980]
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Our typical approach

(quasi-)Periodic homogenization

3. Write the problem ODE,PDE… for any e 0: identify the different powers of e

One should obtain in the best case: 

what the macro fields are

what the cell micro-problem is

what the homogenized macro problem is

and what the homogenized parameters are, how to relocalize the macro fields on the 
micro cell

Interesting features
The approach embed the derivation of the homogenized model: used as a modeling tool

Few parasitic boundary effects on the cell

[Sanchez-Palencia 1980]
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Transient thermal (but linear) bi-phasic material with a large 
contrast in conductivity

Phases F and S

Perfect interface between the phases

Characteristic times

A macro thermal load will lead to a micro answer visible at macro scale…

A specific example [Auriault 1983]
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In practice…

Finite value of e = l / L

e = 1/10 : a big microstructure

Does a given microstructure lead to a 
macroscopic memory effect? Depends 
on the structure size!

A macro memory effect arises only with 
contrast O(e2)

X 100
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Lets do it…
Asymptotic development of temperature fields

Develop the models (heat balance, bcs…)

We obtain successively :

 A macro S-temperature 

 The micro problem for qS1:  

a steady-state thermal problem, parametered with ZS0 as a load, on S-phase only

leads to a relocalization operator for the micro-temperature gradient

(note the linear dependency, LS is computed once for all)

A specific example [Auriault 1983]
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Lets do it…
We obtain successively:

 The problem giving qF0:  a transient thermal problem on the F-phase only,
loaded with a boundary condition on the interface with qS10

but now                                 is not a macro-field only!

 A macro problem with a 2-field unknown…

with homogenized material parameters:
capacity 
conductivity

And we stop here the asymptotic development…

A specific example [Auriault 1983]



13

Lets do it…
Interpretation:

At this scale, qF0 can be seen as a field of internal variables, serving as 
memorizing the past evolution of the material

But, defined at the micro scale, it is too huge to store at every time step

An equivalent (hereditary) model with a memory function

A specific example [Auriault 1983]
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Lets do it…
Interpretation:

b(t) is also a macroscopic material characteristic (back-in-time function)

Semi-analytical solution (1D stratified composite):

evanescent memory with a characteristic time tF

a.k.a. kernel, resolvent, Duhamel integral… see also Prony series…

A specific example [Auriault 1983]
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For a 3D microstructure… rely on simulation
Pre-compute on a cell to provide

Capacity CM: simple average (analytical)

Conductivity kM: requires to solve few (3) steady-state thermal micro-problems, 
and provides also the relocalization operator LS to rebuilt the micro-solution as 
post-treatment once the homogenized problem is solved 

Memory effect function b(t): requires to solve a transient thermal micro-problem

(every micro-problem is linear here, hence easy to pre-compute once for all, with 
periodic boundary conditions and macro loading)

Numerization

[DD et al 2015]
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A 3D example

A specific example [Auriault 1983]

Macro temperature field 
(load)

Micro temperature field 
(answer)

Micro temperature gradient 
(relocalization)
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Limitations

As for any approach: edge effects
Close to structure boundary: periodicity assumption does not hold any 
more…

Higher order corrections or local reanalysis (DDM, MGM, zoom…)
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Limitations

Non-linear behavior issue

Linear  superposition, easy pre-computation

Non-linear  less easy…

A “no pre-computation” solution: FE2 approach          [Feyel et al 2001]
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Limitations

Non-linear behavior issue

Linear  superposition, easy pre-computation

Non-linear  less easy…

Try to avoid identical or similar solves (and store computed knowledge)

intrusivity

PGD
(Proper Generalized 

Decomposition)

TPWL
(Trajectory 

PieceWise Linear)

Adaptive RB
(Reduced Basis)

Fitting, data-

driven, ROM
(Reduced Order 

Modeling)

Cost (?)
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Motivation
On-demand material tuning: 

Goal-oriented design of the microstructure

Target performance of the macroscopic behavior

First step: 

manufacturing process uncertainties  influence on the macroscopic behavior

Issues
Multiple parameters

Multiple queries

Uncertainties

Carnot Ingénierie@Lyon project: MURMUR (Multiscale robust design of 

material microstructures), LaMCoS project: MaDAMe_R2 (Multiscale 

Design of Advanced Materials using Rapid and Robust approaches) )
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Issues
Multiple parameters

Multiple queries

What is needed (which quantity of interest?, full cdf, first moments, level 
of confidence, envelops…)

Uncertainties

intrusivity

Stochastic FE 

code / PCE
(Polynomial chaos 

expansion)

QMS

ROM

Collocation-PCE
(Quasi Monte-Carlo, 

Surrogate models)

Black-box MCS
(Monte-Carlo 

Simulations)

Cost (?) – depends on the number of parameters…
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Non-intrusive collocation-based PCE

No matter if linear or non-linear (black-box)

Computational complexity with the number of parameters

If QoI = macro characteristics (CM, kM, b),

How do uncertainties propagate through scales?

Uncertainties

Input parameters 
values

Black-box 
model

Quantity of 
interest (QoI)
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Non-intrusive collocation-based PCE

Representation of a random variable X :

from a basic r.v. set x

yi = orthogonal polynomial basis

Xi = coefficient

Input: given a stochastic distribution  particular polynomial basis

QoI: identify the coefficients by projection/least square on a set of 
runs (collocation points for inputs)

Uncertainties

Input parameters 
values

Black-box 
model

Quantity of 
interest (QoI)
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Uncertain input parameters: 
Phase material characteristics

Geometry parametrization

Uncertainties

elongation 
(stochastic distribution: uniform)

distortion 
(stochastic distribution: uniform)
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Uncertain QoI: 
example of macroscopic conductivity kM eigenvalues
coefficients of variation: 

Uncertainties

inputs QoI

micro 
conductivity 

kF

distortion elongation kMI = kMII kMIII

0 0 1 0 0

0.3536 0 0.0845 0.0919

0 2.582 0.0907 0.0921

0.3536 2.582 0.1718 0.181
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Outlooks and prospects

Robust design of ad hoc microstructures

Optimization (many query problem also)

Performance QoI = macro characteristics

Integrity QoI = relocalization operator/field

(tensor representation/decomposition…)

Topological optimization at both scales

Increasing the number of parameters 
(curse of dimensionality)
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