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Introduction

Standard homogenization finds limitations in many situations:
@ poor scale separation
@ boundary layers
@ localized damage/cracks

@ multiple "small" parameters: slender heterogeneities, large contrast of
material properties
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Introduction

Standard homogenization finds limitations in many situations:
@ poor scale separation
@ boundary layers
@ localized damage/cracks

@ multiple "small" parameters: slender heterogeneities, large contrast of
material properties

These situations are frequent in fiber-reinforced media
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Generalized continuum models

There are many ways of building generalized continuum models :
@ higher-grade models (strain gradient)

o higher-order models : additional degrees of freedom (Cosserat, stress
gradient, micromorphic)

@ non-local kernels
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Generalized continuum models

There are many ways of building generalized continuum models :
@ higher-grade models (strain gradient)

o higher-order models : additional degrees of freedom (Cosserat, stress
gradient, micromorphic)

@ non-local kernels

usually share a common feature : appearance of an internal length scale

Difficulties of generalized continua
o identification of new material parameters (homogenization procedures)
@ physical meaning of boundary conditions

@ numerical aspects : higher regularity, increase in number of dofs, prescription
of boundary conditions
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Scale effects in a multilayered medium

strain gradient models usually induce a stiffening size-effect
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Scale effects in a multilayered medium

strain gradient models usually induce a stiffening size-effect
(stress gradient has been shown to induce a softening size-effect [Tran, 2016])

Multilayered medium : small volume fraction, inclusions much stiffer than matrix
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Scale effects in a multilayered medium

strain gradient models usually induce a stiffening size-effect
(stress gradient has been shown to induce a softening size-effect [Tran, 2016])

Multilayered medium : small volume fraction, inclusions much stiffer than matrix
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complex behavior (non-local + increasing order) depending on the slenderness
and stiffness contrast [Pideri and Seppecher, 1997],[Bellieud and Bouchitté, 1998]
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Scale effects in a multilayered medium

strain gradient models usually induce a stiffening size-effect
(stress gradient has been shown to induce a softening size-effect [Tran, 2016])

Multilayered medium : small volume fraction, inclusions much stiffer than matrix
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complex behavior (non-local + increasing order) depending on the slenderness
and stiffness contrast [Pideri and Seppecher, 1997],[Bellieud and Bouchitté, 1998]

@ shear stiffening : strain gradient effect due to fiber bending

@ compression softening : boundary layer effect due to matrix/fiber relative

displacement
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A homogenization procedure from Cauchy to multiphase continua
Outline

0 A homogenization procedure from Cauchy to multiphase continua
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A homogenization procedure from Cauchy to multiphase continua

Multiphase model : kinematics

fiber-reinforced material matrix phase

1
v elative Two superimposed continua
displacement ~ with different kinematics : u
v and u"

m

U2
reinforcement phase
Construction using the virtual work principle : first-gradient theory &'

=V

m . m+gr:§r+i'(yr_gm)

IS
11

Paer (€™, €" u" — u™) =
Generalized stresses

@ partial matrix stress g™

Generalized strains

@ strain of matrix displacement g™

@ strain of reinforcement displacement " @ partial reinforcement stress ¢”

o relative displacement [u] = u" — u™ @ interaction force /
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A homogenization procedure from Cauchy to multiphase continua

Multiphase model : kinematics

fiber-reinforced material matrix phase U
‘ Two superimposed continua
relative

displacement ~ with different kinematics : u
v and u”

m

U2
reinforcement phase
Construction using the virtual work principle : first-gradient theory &'

=V

m . m+gr:§r+i'(yr_gm)

IS
11

Paer (€™, €" u" — u™) =

Generalized strains Generalized stresses

@ strain of matrix displacement g™ @ partial matrix stress g™

@ strain of reinforcement displacement ¢" @ partial reinforcement stress o"
o relative displacement [u] = u" — u™ @ interaction force /
Standard Cauchy medium by imposing u™ = u" = u
r

IS!

One strain measure ¢ = £ = ¢ associated with the Cauchy stress ¢ = o™ +
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A homogenization procedure from Cauchy to multiphase continua

Multiphase model : equilibrium equations and constitutive
relations

Using the virtual work principle (same volume force F for both phases):

divo™ + 1+ pf = 0
divgr —1I+pFE =0
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A homogenization procedure from Cauchy to multiphase continua

Multiphase model : equilibrium equations and constitutive
relations

Using the virtual work principle (same volume force F for both phases):

divo™ + 1+ pf = 0
divgr —1I+pFE =0

Postulated constitutive relations : (7 <« 1 : reinforcement volume fraction)

[Sudret, 1999], [de Buhan and Sudret, 2000]
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A homogenization procedure from Cauchy to multiphase continua

Multiphase model : equilibrium equations and constitutive
relations

Using the virtual work principle (same volume force F for both phases):

diva™ + 1+ pmF =0
divgr —1I+pFE =0

Postulated constitutive relations : (7 <« 1 : reinforcement volume fraction)
[Sudret, 1999], [de Buhan and Sudret, 2000]

IS}

gf — n(cl’ gr
I=¢,[u]

going beyond small volume fraction hypothesis : influence of strains of one phase
on stresses in the other phase ?
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A homogenization procedure from Cauchy to multiphase continua

Auxiliary problem (periodic heterogeneities)

We consider an auxiliary problem with microscopic body force and eigenstrains:
(perfect bonding between both phases)

E
divg—f—fizg VXEAI <_T T <_j 1\ T;
a(y) =C": (ely) — €) o =% |
Uly)=E-y+uly) Vyed e== L
a-n A-antiperiodic -~ Phase 2 (2 .
u(y) A-periodic . Phase 1 (¢1) .

Vol b
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We consider an auxiliary problem with microscopic body force and eigenstrains:
(perfect bonding between both phases)
I I A

dve+f =0 Vyed — — N
oy) = C' (ely) ~ €) Bl R
Uly)=E-y+uly) Vyed e== L
a-n A-antiperiodic -~ Phase 2 (2 .
u(y) A-periodic . Phase 1 (¢1)

T

where body forces and eigenstrains are phase-wise uniform and have
zero-average:
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A homogenization procedure from Cauchy to multiphase continua

Auxiliary problem (periodic heterogeneities)

We consider an auxiliary problem with microscopic body force and eigenstrains:
(perfect bonding between both phases)
I I A

dve+f =0 Vyed — _— N .
a(y) =C": (ely) — €) o =10
Uly)=E-y+uly) Vyed e== L
a-n A-antiperiodic -~ Phase 2 (2 .
u(y) A-periodic . Phase 1 (¢1)

T

where body forces and eigenstrains are phase-wise uniform and have
zero-average:

{

&)
S~

=0 = f'=1/¢p1, f=-1/p
=0 = € =AE/é1, €=-DE/¢

—~
Ilg)
LU

or equivalently with E' = E — ¢/, E = ¢1E" + ¢2E” and AE = ¢162(E*> — EV)
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A homogenization procedure from Cauchy to multiphase continua

Auxiliary problem (periodic heterogeneities)

We consider an auxiliary problem with microscopic body force and eigenstrains:
(perfect bonding between both phases)

E
B =17 £\
o) = C': (E' + Zuly) — . .
Uly)=(1E, + pE) -y +uly) VyeA == \}/1\
a-n A-antiperiodic— Phase 2 (¢ —
H(.Z) A‘Periodic Phase 1 (¢1)

o

where body forces and eigenstrains are phase-wise uniform and have
zero-average:

or equivalently with £' = E — ¢, E = ¢1E' + $,E” and AE = ¢1¢o(E* — EV)
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A homogenization procedure from Cauchy to multiphase continua

Auxiliary problem (resolution)

The previous problem depends on three different loading parameters (él,éz,[)
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A homogenization procedure from Cauchy to multiphase continua

Auxiliary problem (resolution)

The previous problem depends on three different loading parameters (él,éz,[)

Using an extended version of Hill-Mandel’s lemma, associated dual quantities are:
. . 1 .
E = o = [ gdA=9¢ig)
= ET ML TE

(U2 —(U)'=1U]

I — V
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A homogenization procedure from Cauchy to multiphase continua

Auxiliary problem (resolution)

The previous problem depends on three different loading parameters (él,éz,[)
Using an extended version of Hill-Mandel’s lemma, associated dual quantities are:

1 .
o ], et =i

(U2 —(U)'=1U]

E s o =

I — V

Solution to the auxiliary problem depends linearly upon (él,éz,i):

al(y): E' +a(y)  E*+d(y)- 1
Al(y): E'+A%(y): E*+ D(y) -1

1)
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I'<
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A homogenization procedure from Cauchy to multiphase continua

Auxiliary problem (resolution)

The previous problem depends on three different loading parameters (él,éz,[)
Using an extended version of Hill-Mandel’s lemma, associated dual quantities are:
1

E «+— o = [ gdA=¢ia)
£ R

I «— Vv U? (W) =1u

Solution to the auxiliary problem depends linearly upon (él,éz,i):

Uy) = a'(y):E+a°(y) E+dy) 1
y) = Ay E+A%y) E+D(y)-1
Using the previous relations:
g1:D11:£1+D12:£2+D1~1
2=D":E'+D*: E°+D* |
v =[a'l: E'+[a°] : E*+[d] 1

IS
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Homogenized constitutive equations

Symmetry relations are obtained from the Maxwell-Betti reciprocity theorem:

glz ]D)ll:él_i_ D12:£2+D1'l
g2:(1[])12)1—:;1_1_ ]D)22:£2+D2'1
M: (DI)T£1+(D2)T£2+IIQ]|1
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A homogenization procedure from Cauchy to multiphase continua

Homogenized constitutive equations

Symmetry relations are obtained from the Maxwell-Betti reciprocity theorem:

glz ]D)ll:él_i_ D12:£2+D1'l
g2:(1[])12)1—:;1_1_ D22:£2+D2'1
M: (DI)T£1+(D2)T£2+IIQ]|1

summing up the first two equations in the case 51 = 52 = E and | = 0 gives
;:g1+g2:chom:£
Unit cell with central symmetry

D' = D? = 0 so that the partial stress constitutive equations decouple from the
interaction force :

1_  pl.pglipi2. g2
2 (D)7 . E1+]DJ22 :Ez
= [V

IS

IS
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Link with the multiphase model

An other way to build the auxiliary problem

From the definition of /, interpreted as the resultant force acting on the interface:

1
i:m/rg'ﬂz—uds
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From the definition of /, interpreted as the resultant force acting on the interface:
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i:m/rg'ﬂz—uds

From [Coussy, 1998], partial stress balance at the macroscopic scale is:
divig' +piF+1=0

g’ and / are indeed the pertinent generalized forces for the multiphase model
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Link with the multiphase model
An other way to build the auxiliary problem

From the definition of /, interpreted as the resultant force acting on the interface:

1
i:m/rg'ﬂz—uds

From [Coussy, 1998], partial stress balance at the macroscopic scale is:
divig' +piF+1=0

o' and [ are indeed the pertinent generalized forces for the multiphase model

Previous resolution gives a macroscopic complementary energy \Il*(gi,[)
Multiphase constitutive relations:
T )
§I — _ — EI
= 6g1 =
ov*
ul=—— <+—V
=G —V
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Some analytical results

Constitutive relations for a biphasic material
DY can be deduced from the knowledge of Co™:

D! HCt—C:[C]7rAC: [C] 7t Ct
D? = $C?>-C?*:[C]"*:AC:[C]7*:C?
D? = C':[C]t:AC:[C]t:C?
with [C] = C2 — C! and AC = (C) — Chom
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Stiff linear isotropic inclusions in small volume fraction
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Some analytical results

Constitutive relations for a biphasic material

DY can be deduced from the knowledge of Co™:
D! HCt—C:[C]7rAC: [C] 7t Ct
D?? = ¢,C?>-C?:[C]*:AC:[C]t:cC?
D? = C':[C]t:AC:[C]t:C?

with [C] = C2 — C! and AC = (C) — Chom

Stiff linear isotropic inclusions in small volume fraction
Assumptions: ¢ < 1 and lim ¢C? = C°

¢2—)0
using [Hashin and Rosen, 1964]:

lim Chom = Chom0 = Cl 4 E%, ®e, ®e; ® e,
$2—0

where E® = lim ¢oE? = C9,,;, then

gm = Cmgm
ofy = E%f;, ofj=0
I o= [dl™"-[u]
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Some analytical results

Determination of the interaction stiffness

Auxiliary problem with body forces only: similar to homogenization of

permeability in porous media = [d] will depend on the UC size s as s
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Some analytical results

Determination of the interaction stiffness

Auxiliary problem with body forces only: similar to homogenization of

permeability in porous media = [d] will depend on the UC size s as s

th

Example for a 2D layered medium (1: matrix, 2:
reinforcement, 7 reinforcement volume fraction):
é u(y)

s Ins —

[dui] = (u(y))* = (u(y))!

1Tt

Jérémy Bleyer (Laboratoire Navier) June 5th 2018 12 /18



Some analytical results

Determination of the interaction stiffness

Auxiliary problem with body forces only: similar to homogenization of

permeability in porous media = [d] will depend on the UC size s as s

Example for a 2D layered medium (1: matrix, 2:
reinforcement, 7 reinforcement volume fraction):

th
T T T

s Ins —

[dui] = (u(y))* = (u(y))!

1Tt

é u(y)

S (/) 0
=3 1"0" a/o+2m)
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Some analytical results

Determination of the interaction stiffness

Auxiliary problem with body forces only: similar to homogenization of

permeability in porous media = [d] will depend on the UC size s as s

Example for a 2D layered medium (1: matrix, 2:
reinforcement, 7 reinforcement volume fraction):

th
T T T

s Ins —

[dui] = (u(y))* = (u(y))!

1Tt

é u(y)

1

21w 0 200 O
= —_— - 7 ,um
=50 wo+om) ezt 12 | 1
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Some analytical results

Determination of the interaction stiffness

Auxiliary problem with body forces only: similar to homogenization of

permeability in porous media = [d] will depend on the UC size s as s

Example for a 2D layered medium (1: matrix, 2:
reinforcement, 7 reinforcement volume fraction):

th
T T T

s Ins —

[dui] = (u(y))* = (u(y))!

1Tt

é u(y)

1

21w 0 200 O
= — _ 7 ,um
=50 wo+om) ezt 12 | 1
Am + 2pm
, o s*(1—n)
[Sudret, 1999] estimate : pullout test on rigid inclusion [di1] = “emn
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lllustrative applications

A multilayered block in compression

§
Vertical displacement is up(y) = 5y for both phases,
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Illustrative applications

A multilayered block in compression

§
Vertical displacement is uz(y) = 5 for both phases,

horizontal displacement uj(x) is different for each phase N
and satisfies: 1 d f | on ln 1 .

d?ul d?uf
ozndT; + alsz; +a(uf —u") =0

>

d2um d2ur
1 1 r m ofi =0y =poh =0f, =0
ap——— +am—— —c(u; —u") =0
dX2 dX2 ( 1 1)

u' =uy =0, ofy=00,=0

with o = ]D)g'111 and ¢ = [di1] !
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Illustrative applications

A multilayered block in compression

§
Vertical displacement is uz(y) = 5 for both phases,

horizontal displacement uj(x) is different for each phase ) i
ofr Ul =l = —6,| o =ol, =
and satisfies: 1 H f & ln 1 .
o
d2um d2ur
s § 1 r m
11 + ap——= +¢(u; —ui") =0
dX2 dX2 ( 1 1 )
d? uf’ dzu{
_ r m O =Tl =T = =0
12 + o —q(uf —u")=0
dX2 dX2 ( 1 1 )

with o = ID)?111 and ¢ = |[d11]]71 s e
Solution is of the form:
m _ d hom mSinh(X/g)
ux) = H (V x+sp cosh(L/¢)
r _ d hom rSinh(X/g)
u(x) = H <V x+sp cosh(L/¢)

where ¢ < 1/,/¢; o s is an internal length scale arising for this problem
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Illustrative applications

A multilayered block in compression

§
Vertical displacement is uz(y) = 5 for both phases,

horizontal displacement uj(x) is different for each phase

u' =uy=—6,| ofh=0,=0

and satisfies:

d?ul" d?uf
1 1 r my __
allw +OZ12W + C[(Ul — U ) =0
d2uf d?uf

1 r my __
a1 72 + oo a2 a(uf —u")=0

m_ o —|gm — g —
of1 =01 =0 =01, =0

with o = ID)?H1 and ¢ = [di1] !
Solution is of the form:
m _ d hom mSinh(X/g)
ux) = H (V x+sp cosh(L/¢)
r _ d hom rSinh(X/g)
u(x) = H <V x+sp cosh(L/¢)

u' =uy =0, ofy=00,=0

where ¢ < 1/,/¢; o s is an internal length scale arising for this problem

first-order corrections over a distance ~ ¢

Jérémy Bleyer (Laboratoire Navier)

June 5th 2018 13 /18



Illustrative applications

Comparisons

Comparison between full heterogeneous computations, Sudret’'s model and the
present model : N is the number of layers

Matrix (phase 1)  Reinforcement (phase 2)

Volume fraction 1-n=09 n=20.1
Young's modulus E; =10 MPa E, = 1000 MPa
Poisson ratio v1 = 0.45 v, =0.3
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Illustrative applications

Comparisons

Comparison between full heterogeneous computations, Sudret’'s model and the
present model : N is the number of layers

N =4

0.25 > 2% —
® " (heter.) l,’
—== " [Sudret,1999] "%
0.20 u™ (present) ,,’ 2
® " (heter.) 4
=== u" [Sudret,1999] ,/, o pme———
—— " (present) P = R
: 3 2 15 ~J
------ standard homogenization s g Sso
= \\\
s | o
’ - £ s,
£10 g
N
N
N
N
o 0, (heter.) AN
0.05 51 === o, [Sudret,1999] \\
v —— 0, (present) \\
------ standard homogenization N
0.00 0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
/L /L
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Illustrative applications

Comparisons

Comparison between full heterogeneous computations, Sudret’'s model and the
present model : N is the number of layers

0.20 — 2% —
® u" (heter.)
0.18 4 === ™ [Sudret,1999] 7 et
u™ (present) 7 20 “~~\\~
® " (heter.) Sso
- = ~
=== u" [Sudret,1999] & ‘\\
—— W (present = \,
u” (present) ) 2 15 N

------ standard homogenization 8 \,
% N5
= \
g \
g i\
£10 N

\
\
\
o o, (heter.) ‘\
51 === o, [Sudret,1999] A\
0.03 o, (present)
------ standard homogenization
0.00 0
0. 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
/L /L
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Illustrative applications

Comparisons

Comparison between full heterogeneous computations, Sudret’'s model and the
present model : N is the number of layers

0.16 — 25 =
® u" (heter.)
0.14 4 === u™ [Sudret,1999] D I bkl Ll b g
™ (present) ~<
u™ (presen 2 \\\
0124 ® u’ (heter.) M
=== u" [Sudret,1999] z N
= 0.10 1 — u" (present) = \\
. 2 15 \
g | standard homogenization , z \
“ \
0.08 Z \
] v
£ \
0.06 g10
\
\
\)
0.04 o 0, (heter.) \
51 === o, [Sudret,1999]
0.02 —— 0, (present)
------ standard homogenization
0.00 0
0. 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
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Illustrative applications

Comparisons

Comparison between full heterogeneous computations, Sudret’'s model and the

present model : N is the number of layers

N =32

0.14 2% —
® u" (heter.)
0124 "7 U [Sudret,1999] =
u™ (present) / B 20
® " (heter.) 7o
=== u" [Sudret,1999] =
— u" (present) =) _
. 2 15
------ standard homogenization g
%
o 0, (heter.)
51 === o, [Sudret,1999]
0.02 —— 0, (present)
----- standard homogenization
0.00 0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
/L /L
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A crack-bridging problem

Appeal of such models: prescribe different boundary conditions for each phase

L L
Ur=Ur=0
i multiphase —
continuum

| T Ur=u;=s

1 Up =
H maixcrackl T s |

)
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Illustrative applications

A crack-bridging problem
Appeal of such models: prescribe different boundary conditions for each phase

L L
Um=Ur =0
H I il multiphase
i continuum
| T i H Ur=ur=:5
1 Uz
=0
H maixcrackl T s W
s ! g

Heterogeneous FE computétions with N = 8,16, 32 layers (filled symbols)

0.04 6
— N=38 — N=38
— N=16 — N=16

£0.03 — N=32 % — N=3

Z0.02 £

£ 001 = z

5] J

0.00 crack . P S .
0.0 0.2 04 0.6 08 Lo 00 0.1 0.2 0.3 0.4 0.5
y/H x
Matrix displacement Interfacial shear stress
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lllustrative applications

A crack-bridging problem: delaminated interfaces

Modelling a region with fully delaminated interfaces (zero interaction stiffness)

d d
| —

multiphase
continuum
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lllustrative applications

A crack-bridging problem: delaminated interfaces

Modelling a region with fully delaminated interfaces (zero interaction stiffness)

| —
multiphase
continuum
delaminated
0.00 60
® matrix (heter.)
008 —— atrix (multiphase)
g 0.07 ® reinf. (heter.)
g reinf. (multiphase reinf. (heter.)
= 0.06 (multiphase) . t
7 —— reinf. (multiphase)
é 0.05 matrix (heter.)
g 0.04 s —— matrix (multiphase)
]
=
0.03
0.02 10
0.0 02 04 0.6 08 Lo 0.0 0.1 0.2 0.3 0.4 0.5
y/H »

Matrix displacement
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Qutline

@ Conclusions
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Conclusions

Conclusions and perspectives

Conclusions

@ multiphase models : phenomenological constitutive relations for
fiber-reinforced materials

@ homogenization procedure to identify constitutive parameters
@ capture boundary effects which are important for large stiffness contrast

@ some advantages over other generalized continua

@ retrieves results of shear lag models
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Conclusions

Conclusions

@ multiphase models : phenomenological constitutive relations for
fiber-reinforced materials

@ homogenization procedure to identify constitutive parameters
@ capture boundary effects which are important for large stiffness contrast
@ some advantages over other generalized continua

@ retrieves results of shear lag models

Perspectives
@ justification through asymptotic analysis, range of application ?
@ micromechanical estimates

@ higher-grade version to include bending effects

@ non-linear constitutive relations

Thank you for your attention!
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A stress-based auxiliary problem

Standard homogenization:

1 1
V*(X) =min — o:S'odQ 4+ — 0:S%:0dQ
B =mn o) .2 e g L2
st. dive=0
a-n A-antiperiodic
(@)=%
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A stress-based auxiliary problem

Extended auxiliary problem:

1 1

v (gl o2, 1) = g A Alg Slzng—i—M Azg:82:gd§2
st. dive+f(x)=0
g- ; .A—antiperiodic
=g i=12

|A|/U ndS

with body forces at the microscopic scale.
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A stress-based auxiliary problem

Extended auxiliary problem:

* 1 1. 1 . Q2.
v (gl o2, 1) = g A Alg S .ng—i—M Azg adQ
st. dive+f(x)=0
g- ; A—antiperiodic
=g i=12

|A|/O' ndS

with body forces at the microscopic scale. Divergence theorem on phase 2 and on
phase 1 gives :

_|il| (diva + £(x)) dQ = [ + ¢»(f)?
AZ

|jl| (divg+ﬁ(5)) dQ = —1 + ¢ (f)*
_Al
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