Multiphase continuum models for fiber-reinforced media

Jérémy Bleyer

Laboratoire Navier,
Ecole des Ponts ParisTech-IFSTTAR-CNRS (UMR 8205), Université Paris-Est

GdR MePhy, June 5th 2018
Standard homogenization finds **limitations** in many situations:

- poor scale separation
- boundary layers
- localized damage/cracks
- multiple "small" parameters: slender heterogeneities, large contrast of material properties
Introduction

Standard homogenization finds **limitations** in many situations:

- poor scale separation
- boundary layers
- localized damage/cracks
- multiple "small" parameters: slender heterogeneities, large contrast of material properties

These situations are **frequent in fiber-reinforced media**
Generalized continuum models

There are many ways of building generalized continuum models:

- **higher-grade** models (strain gradient)
- **higher-order** models: additional degrees of freedom (Cosserat, stress gradient, micromorphic)
- **non-local** kernels
Generalized continuum models

There are many ways of building generalized continuum models:

- **higher-grade** models (strain gradient)
- **higher-order** models: additional degrees of freedom (Cosserat, stress gradient, micromorphic)
- **non-local** kernels

usually share a common feature: appearance of an **internal length scale**
Generalized continuum models

There are many ways of building generalized continuum models:

- **higher-grade** models (strain gradient)
- **higher-order** models: additional degrees of freedom (Cosserat, stress gradient, micromorphic)
- **non-local** kernels

usually share a common feature: appearance of an internal length scale

Difficulties of generalized continua

- identification of new material parameters (**homogenization** procedures)
- physical meaning of boundary conditions
- **numerical aspects**: higher regularity, increase in number of dofs, prescription of boundary conditions
Scale effects in a multilayered medium

strain gradient models usually induce a **stiffening** size-effect
strain gradient models usually induce a **stiffening** size-effect (stress gradient has been shown to induce a **softening** size-effect [Tran, 2016])
Scale effects in a multilayered medium

strain gradient models usually induce a **stiffening** size-effect (stress gradient has been shown to induce a **softening** size-effect [Tran, 2016])

Multilayered medium : small volume fraction, inclusions much stiffer than matrix

![Diagram](image-url)
strains gradient models usually induce a **stiffening** size-effect (stress gradient has been shown to induce a **softening** size-effect [Tran, 2016])

Multilayered medium: small volume fraction, inclusions much stiffer than matrix
strain gradient models usually induce a **stiffening** size-effect (stress gradient has been shown to induce a **softening** size-effect [Tran, 2016])

Multilayered medium: small volume fraction, inclusions much stiffer than matrix
Scale effects in a multilayered medium

strain gradient models usually induce a **stiffening** size-effect (stress gradient has been shown to induce a **softening** size-effect [Tran, 2016])

Multilayered medium : small volume fraction, inclusions much stiffer than matrix

stiffening size effect

softening size effect

complex behavior (non-local + increasing order) depending on the slenderness and stiffness contrast [Pideri and Seppecher, 1997],[Bellieud and Bouchitté, 1998]
Scale effects in a multilayered medium

strain gradient models usually induce a **stiffening** size-effect (stress gradient has been shown to induce a **softening** size-effect [Tran, 2016])

Multilayered medium : small volume fraction, inclusions much stiffer than matrix

- **stiffening** size effect
- **softening** size effect

complex behavior (non-local + increasing order) depending on the slenderness and stiffness contrast [Pideri and Seppecher, 1997],[Bellieud and Bouchitté, 1998]

- shear stiffening : strain gradient effect due to fiber bending
- compression softening : boundary layer effect due to matrix/fiber relative displacement
Outline

1. A homogenization procedure from Cauchy to multiphase continua
2. Some analytical results
3. Illustrative applications
4. Conclusions
Multiphase model: kinematics

Two superimposed continua with different kinematics: \(u^m \) and \(u^r \)

Construction using the virtual work principle: **first-gradient** theory \(\varepsilon^i = \nabla^s u^i \)

\[
p_{\text{def}}(\varepsilon^m, \varepsilon^r, u^r - u^m) = \sigma^m : \varepsilon^m + \sigma^r : \varepsilon^r + l \cdot (u^r - u^m)
\]

Generalized strains
- strain of matrix displacement \(\varepsilon^m \)
- strain of reinforcement displacement \(\varepsilon^r \)
- relative displacement \([u] = u^r - u^m \)

Generalized stresses
- partial matrix stress \(\sigma^m \)
- partial reinforcement stress \(\sigma^r \)
- interaction force \(l \)
Multiphase model: kinematics

Two superimposed continua with different kinematics: u^m and u^r

Construction using the virtual work principle: first-gradient theory $\varepsilon^i = \nabla_s u^i$

$$p_{\text{def}}(\varepsilon^m, \varepsilon^r, u^r - u^m) = \sigma^m : \varepsilon^m + \sigma^r : \varepsilon^r + l \cdot (u^r - u^m)$$

Generalized strains
- strain of matrix displacement ε^m
- strain of reinforcement displacement ε^r
- relative displacement $[u] = u^r - u^m$

Generalized stresses
- partial matrix stress σ^m
- partial reinforcement stress σ^r
- interaction force l

Standard Cauchy medium by imposing $u^m = u^r = u$
One strain measure $\varepsilon = \varepsilon^m = \varepsilon^r$ associated with the Cauchy stress $\sigma = \sigma^m + \sigma^r$
Multiphase model: equilibrium equations and constitutive relations

Using the virtual work principle (same volume force F for both phases):

$$\text{div } \sigma^m + l + \rho_m F = 0$$
$$\text{div } \sigma^r - l + \rho_r F = 0$$
Multiphase model: equilibrium equations and constitutive relations

Using the virtual work principle (**same** volume force F for both phases):

\[
\text{div } \sigma^m + \mathbb{I} + \rho_m F = 0 \\
\text{div } \sigma^r - \mathbb{I} + \rho_r F = 0
\]

Postulated constitutive relations : ($\eta \ll 1$: reinforcement volume fraction)

[Sudret, 1999], [de Buhan and Sudret, 2000]

\[
\sigma^m = C^m : \varepsilon^m \\
\sigma^r = \eta C^r : \varepsilon^r \\
I = c_I [u]
\]
Multiphase model: equilibrium equations and constitutive relations

Using the virtual work principle (same volume force F for both phases):

\[
\text{div } \sigma^m + l + \rho_m F = 0
\]
\[
\text{div } \sigma^r - l + \rho_r F = 0
\]

Postulated constitutive relations: ($\eta \ll 1$: reinforcement volume fraction)

[Sudret, 1999], [de Buhan and Sudret, 2000]

\[
\sigma^m = C^m : \varepsilon^m
\]
\[
\sigma^r = \eta C^r : \varepsilon^r
\]
\[
l = c_l [u]
\]

going beyond small volume fraction hypothesis: influence of strains of one phase on stresses in the other phase?
Auxiliary problem (periodic heterogeneities)

We consider an auxiliary problem with **microscopic body force** and **eigenstrains**: (perfect bonding between both phases)

\[
\text{div } \sigma + f^i = 0 \quad \forall y \in A^i
\]
\[
\sigma(y) = C^i : (\varepsilon(y) - \varepsilon^i)
\]
\[
U(y) = E \cdot y + u(y) \quad \forall y \in A
\]
\[
\sigma \cdot n \quad \mathcal{A} \text{-antiperiodic}
\]
\[
u(y) \quad \mathcal{A} \text{-periodic}
\]
Auxiliary problem (periodic heterogeneities)

We consider an auxiliary problem with \textbf{microscopic body force and eigenstrains}: (perfect bonding between both phases)

\[
\text{div } \sigma + f^i = 0 \quad \forall y \in \mathcal{A}^i \\
\sigma(y) = C^i : (\varepsilon(y) - \varepsilon^i) \\
U(y) = E \cdot y + u(y) \quad \forall y \in \mathcal{A} \\
\sigma \cdot n \quad \mathcal{A}\text{-antiperiodic} \\
u(y) \quad \mathcal{A}\text{-periodic}
\]

where body forces and eigenstrains are \textbf{phase-wise uniform} and have \textbf{zero-average}:

\[
\langle f \rangle = 0 \implies f^1 = \frac{l}{\phi_1}, \quad f^2 = -\frac{l}{\phi_2} \\
\langle \varepsilon \rangle = 0 \implies \varepsilon^1 = \frac{\Delta E}{\phi_1}, \quad \varepsilon^2 = -\frac{\Delta E}{\phi_2}
\]
Auxiliary problem (periodic heterogeneities)

We consider an auxiliary problem with \textbf{microscopic body force} and \textbf{eigenstrains}: (perfect bonding between both phases)

\[
\begin{align*}
\text{div } \sigma + f^i &= 0 \quad \forall y \in \mathcal{A}^i \\
\sigma(y) &= \mathbb{C}^i : (\epsilon(y) - \epsilon^i) \\
U(y) &= \mathbb{E} \cdot y + u(y) \quad \forall y \in \mathcal{A} \\
\sigma \cdot n &= \mathcal{A}\text{-antiperiodic} \\
u(y) &= \mathcal{A}\text{-periodic}
\end{align*}
\]

where body forces and eigenstrains are \textbf{phase-wise uniform} and have \textbf{zero-average}:

\[
\begin{align*}
\langle f \rangle &= 0 \implies f^1 = l/\phi_1, \quad f^2 = -l/\phi_2 \\
\langle \epsilon \rangle &= 0 \implies \epsilon^1 = \Delta \mathbb{E}/\phi_1, \quad \epsilon^2 = -\Delta \mathbb{E}/\phi_2
\end{align*}
\]

or \textbf{equivalently} with \(E^i = \mathbb{E} - \epsilon^i \), \(\mathbb{E} = \phi_1 \mathbb{E}^1 + \phi_2 \mathbb{E}^2 \) and \(\Delta \mathbb{E} = \phi_1 \phi_2 (\mathbb{E}^2 - \mathbb{E}^1) \)
Auxiliary problem (periodic heterogeneities)

We consider an auxiliary problem with **microscopic body force and eigenstrains**: (perfect bonding between both phases)

\[
\operatorname{div} \sigma \pm \frac{I}{\phi_i} = 0 \quad \forall y \in \mathcal{A}^i
\]

\[
\sigma(y) = \mathcal{C}^i : (E^i + \nabla^s u(y))
\]

\[
U(y) = (\phi_1 E_1 + \phi_2 E_2) \cdot y + u(y) \quad \forall y \in \mathcal{A}
\]

\[
\sigma \cdot n \quad \mathcal{A}\text{-antiperiodic}
\]

\[
u(y) \quad \mathcal{A}\text{-periodic}
\]

where body forces and eigenstrains are **phase-wise uniform** and have **zero-average**:

\[
\langle f \rangle = 0 \implies f^1 = \frac{I}{\phi_1}, \quad f^2 = -\frac{I}{\phi_2}
\]

\[
\langle \epsilon \rangle = 0 \implies \epsilon^1 = \Delta E / \phi_1, \quad \epsilon^2 = -\Delta E / \phi_2
\]

or **equivalently** with \(E^i = E - \epsilon^i \), \(E = \phi_1 E_1 + \phi_2 E_2 \) and \(\Delta E = \phi_1 \phi_2 (E^2 - E^1) \)
Auxiliary problem (resolution)

The previous problem depends on three different loading parameters \((E^1, E^2, I)\).
Auxiliary problem (resolution)

The previous problem depends on three different loading parameters \((E^1, E^2, I)\).

Using an extended version of Hill-Mandel’s lemma, associated dual quantities are:

\[
E^i \quad \leftrightarrow \quad \sigma^i = \frac{1}{|A|} \int_{A^i} \sigma dA = \phi_i \langle \sigma \rangle^i
\]

\[
I \quad \leftrightarrow \quad V = \langle U \rangle^2 - \langle U \rangle^1 = [U]
\]
Auxiliary problem (resolution)

The previous problem depends on **three different loading parameters** \((E^1, E^2, I)\).

Using an extended version of Hill-Mandel’s lemma, associated dual quantities are:

\[
\begin{align*}
E^i & \longleftrightarrow \sigma^i = \frac{1}{|A|} \int_{A^i} \sigma dA = \phi_i \langle \sigma \rangle^i \\
I & \longleftrightarrow V = \langle U \rangle^2 - \langle U \rangle^1 = [U]
\end{align*}
\]

Solution to the auxiliary problem depends linearly upon \((E^1, E^2, I)\):

\[
\begin{align*}
U(y) &= a^1(y) : E^1 + a^2(y) : E^2 + d(y) \cdot I \\
\varepsilon(y) &= A^1(y) : E^1 + A^2(y) : E^2 + D(y) \cdot I
\end{align*}
\]
Auxiliary problem (resolution)

The previous problem depends on **three different loading parameters** \((E_1, E_2, I)\).

Using an extended version of Hill-Mandel's lemma, associated dual quantities are:

\[
\begin{align*}
E^i & \longleftrightarrow \sigma^i = \frac{1}{|A|} \int_{A^i} \sigma dA = \phi_i \langle \sigma \rangle^i \\
I & \longleftrightarrow V = \langle U \rangle^2 - \langle U \rangle^1 = [U]
\end{align*}
\]

Solution to the auxiliary problem depends linearly upon \((E_1, E_2, I)\):

\[
\begin{align*}
U(y) &= a^1(y) \cdot E_1 + a^2(y) \cdot E_2 + d(y) \cdot I \\
\varepsilon(y) &= A^1(y) \cdot E_1 + A^2(y) \cdot E_2 + D(y) \cdot I
\end{align*}
\]

Using the previous relations:

\[
\begin{align*}
\sigma^1 &= D^{11} : E_1 + D^{12} : E_2 + D^1 \cdot I \\
\sigma^2 &= D^{21} : E_1 + D^{22} : E_2 + D^2 \cdot I \\
V &= [a^1] : E_1 + [a^2] : E_2 + [d] \cdot I
\end{align*}
\]
Homogenized constitutive equations

Symmetry relations are obtained from the Maxwell-Betti reciprocity theorem:

\[
\sigma^1 = D^{11} : E^1 + D^{12} : E^2 + D^1 \cdot I
\]
\[
\sigma^2 = (D^{12})^T : E^1 + D^{22} : E^2 + D^2 \cdot I
\]
\[
\mathbf{V} = (D^1)^T : \mathbb{E}^1 + (D^2)^T : \mathbb{E}^2 + [\mathbb{d}] \cdot I
\]
Homogenized constitutive equations

Symmetry relations are obtained from the Maxwell-Betti reciprocity theorem:

\[\sigma^1 = D^{11} : E^1 + D^{12} : E^2 + D^1 \cdot I \]
\[\sigma^2 = (D^{12})^T : E^1 + D^{22} : E^2 + D^2 \cdot I \]
\[V = (D^1)^T : E^1 + (D^2)^T : E^2 + [d] \cdot I \]

summing up the first two equations in the case \(E^1 = E^2 = E \) and \(I = 0 \) gives

\[\Sigma = \sigma^1 + \sigma^2 = C^{hom} : E \]
Homogenized constitutive equations

Symmetry relations are obtained from the Maxwell-Betti reciprocity theorem:

\[\sigma^1 = D^{11} : E^1 + D^{12} : E^2 + D^1 \cdot I \]
\[\sigma^2 = (D^{12})^T : E^1 + D^{22} : E^2 + D^2 \cdot I \]
\[V = (D^1)^T : E^1 + (D^2)^T : E^2 + \begin{bmatrix} d \end{bmatrix} \cdot I \]

summing up the first two equations in the case \(E^1 = E^2 = E \) and \(I = 0 \) gives

\[\Sigma = \sigma^1 + \sigma^2 = C^{\text{hom}} : E \]

Unit cell with central symmetry

\(D^1 = D^2 = 0 \) so that the partial stress constitutive equations decouple from the interaction force:

\[\sigma^1 = D^{11} : E^1 + D^{12} : E^2 \]
\[\sigma^2 = (D^{12})^T : E^1 + D^{22} : E^2 \]
\[I = \begin{bmatrix} d \end{bmatrix}^{-1} \cdot V \]
Link with the multiphase model

An other way to build the auxiliary problem

From the definition of I, interpreted as the resultant force acting on the interface:

$$I = \frac{1}{|A|} \int_{\Gamma} \sigma \cdot n \, dS$$

From [Coussy, 1998], partial stress balance at the macroscopic scale is:

$$\text{div} x \sigma_i + \rho_i F_i \pm I = 0$$

σ_i and I are indeed the pertinent generalized forces for the multiphase model.

Previous resolution gives a macroscopic complementary energy $\Psi^\star(\sigma_i, I)$.

Multiphase constitutive relations:

$$\varepsilon_i = \partial \Psi^\star / \partial \sigma_i$$

$$[u] = \partial \Psi^\star / \partial I$$

Jérémy Bleyer (Laboratoire Navier)
Link with the multiphase model

An other way to build the auxiliary problem

From the definition of I, interpreted as the resultant force acting on the interface:

$$I = \frac{1}{|A|} \int_{\Gamma} \sigma \cdot n_{2 \rightarrow 1} dS$$

From [Coussy, 1998], partial stress balance at the macroscopic scale is:

$$\text{div} \, x \sigma_{i} + \rho_{i} F_{\pm} I = 0$$

σ and I are indeed the pertinent generalized forces for the multiphase model.

Previous resolution gives a macroscopic complementary energy Ψ^*:

$$\epsilon_{i} = \partial_{\Psi^*} \frac{\partial \Psi^*}{\partial \sigma_{i}}$$

$$[u] = \partial_{\Psi^*} \frac{\partial \Psi^*}{\partial I}$$
Link with the multiphase model

An other way to build the auxiliary problem

From the definition of I, interpreted as the resultant force acting on the interface:

$$I = \frac{1}{|A|} \int_{\Gamma} \sigma \cdot n_{2 \rightarrow 1} dS$$

From [Coussy, 1998], partial stress balance at the macroscopic scale is:

$$\text{div}_x \bar{\sigma}^j + \rho_i \bar{E} \pm I = 0$$
A homogenization procedure from Cauchy to multiphase continua

Link with the multiphase model

An other way to build the auxiliary problem

From the definition of \(I \), interpreted as the resultant force acting on the interface:

\[
I = \frac{1}{|A|} \int_{\Gamma} \overline{\sigma} \cdot n_{\rightarrow 1} dS
\]

From [Coussy, 1998], partial stress balance at the macroscopic scale is:

\[
\text{div}_x \overline{\sigma}^i + \rho_i F \pm I = 0
\]

\(\overline{\sigma}^i \) and \(I \) are indeed the pertinent generalized forces for the multiphase model.
Link with the multiphase model

An other way to build the auxiliary problem

From the definition of I, interpreted as the resultant force acting on the interface:

$$I = \frac{1}{|A|} \int_{\Gamma} \sigma \cdot n_{2 \rightarrow 1} dS$$

From [Coussy, 1998], partial stress balance at the macroscopic scale is:

$$\text{div}_X \sigma^i + \rho_i F \pm I = 0$$

σ^i and I are indeed the pertinent generalized forces for the multiphase model.

Previous resolution gives a macroscopic complementary energy $\Psi^*(\sigma^i, I)$

Multiphase constitutive relations:

$$\varepsilon^i = \frac{\partial \Psi^*}{\partial \sigma^i} \quad \leftarrow \quad E^i$$

$$[u] = \frac{\partial \Psi^*}{\partial I} \quad \leftarrow \quad V$$
Outline

1 A homogenization procedure from Cauchy to multiphase continua

2 Some analytical results

3 Illustrative applications

4 Conclusions
Constitutive relations for a biphasic material

D^{ij} can be deduced from the knowledge of C^{hom}:

\[
D^{11} = \phi_1 C^1 - C^1 : [C]^{-1} : \Delta C : [C]^{-1} : C^1
\]

\[
D^{22} = \phi_2 C^2 - C^2 : [C]^{-1} : \Delta C : [C]^{-1} : C^2
\]

\[
D^{12} = C^1 : [C]^{-1} : \Delta C : [C]^{-1} : C^2
\]

with $[C] = C^2 - C^1$ and $\Delta C = \langle C \rangle - C^{hom}$
Constitutive relations for a biphasic material

D_{ij} can be deduced from the knowledge of C_{hom}:

\[
D^{11} = \phi_1 C^1 - C^1 : [C]^{-1} : \Delta C : [C]^{-1} : C^1 \\
D^{22} = \phi_2 C^2 - C^2 : [C]^{-1} : \Delta C : [C]^{-1} : C^2 \\
D^{12} = C^1 : [C]^{-1} : \Delta C : [C]^{-1} : C^2
\]

with $[C] = C^2 - C^1$ and $\Delta C = \langle C \rangle - C_{\text{hom}}$

Stiff linear isotropic inclusions in small volume fraction

Assumptions: $\phi_2 \ll 1$ and $\lim_{\phi_2 \to 0} \phi_2 C^2 = C^0$
Constitutive relations for a biphasic material

D_{ij} can be deduced from the knowledge of C^{hom}:

$$
D^{11} = \phi_1 C^1 - C^1 : [C]^{-1} : \Delta C : [C]^{-1} : C^1
$$

$$
D^{22} = \phi_2 C^2 - C^2 : [C]^{-1} : \Delta C : [C]^{-1} : C^2
$$

$$
D^{12} = C^1 : [C]^{-1} : \Delta C : [C]^{-1} : C^2
$$

with $[C] = C^2 - C^1$ and $\Delta C = \langle C \rangle - C^{\text{hom}}$

Stiff linear isotropic inclusions in small volume fraction

Assumptions: $\phi_2 \ll 1$ and $\lim_{\phi_2 \to 0} \phi_2 C^2 = C^0$

using [Hashin and Rosen, 1964]:

$$
\lim_{\phi_2 \to 0} C^{\text{hom}} = C^{\text{hom},0} = C^1 + E^0 e_1 \otimes e_1 \otimes e_1 \otimes e_1
$$

where $E^0 = \lim \phi_2 E^2 = C^0_{1111}$
Some analytical results

Constitutive relations for a biphasic material

D_{ij} can be deduced from the knowledge of C^{hom}:

\[
\begin{align*}
D^{11} &= \phi_1 C^1 - C^1 : [C]^{-1} : \Delta C : [C]^{-1} : C^1 \\
D^{22} &= \phi_2 C^2 - C^2 : [C]^{-1} : \Delta C : [C]^{-1} : C^2 \\
D^{12} &= C^1 : [C]^{-1} : \Delta C : [C]^{-1} : C^2
\end{align*}
\]

with $[C] = C^2 - C^1$ and $\Delta C = \langle \mathbf{C} \rangle - C^{\text{hom}}$

Stiff linear isotropic inclusions in small volume fraction

Assumptions: $\phi_2 \ll 1$ and $\lim_{\phi_2 \to 0} \phi_2 C^2 = C^0$

using [Hashin and Rosen, 1964]:

\[
\lim_{\phi_2 \to 0} C^{\text{hom}} = C^{\text{hom},0} = C^1 + E^0 e_1 \otimes e_1 \otimes e_1 \otimes e_1
\]

where $E^0 = \lim \phi_2 E^2 = C^{0}_{1111}$, then

\[
\begin{align*}
D^{11} &\rightarrow C^1 \\
D^{22} &\rightarrow C^{\text{hom},0} - C^1 = E^0 e_1 \otimes e_1 \otimes e_1 \otimes e_1 \\
D^{12} &\rightarrow 0
\end{align*}
\]
Constitutive relations for a biphasic material

D_{ij} can be deduced from the knowledge of C^{hom}:

\[
D^{11} = \phi_1 C^1 - C^1 : [C]^{-1} : \Delta C : [C]^{-1} : C^1
\]
\[
D^{22} = \phi_2 C^2 - C^2 : [C]^{-1} : \Delta C : [C]^{-1} : C^2
\]
\[
D^{12} = C^1 : [C]^{-1} : \Delta C : [C]^{-1} : C^2
\]

with $[C] = C^2 - C^1$ and $\Delta C = \langle C \rangle - C^{\text{hom}}$

Stiff linear isotropic inclusions in small volume fraction

Assumptions: $\phi_2 \ll 1$ and $\lim_{\phi_2 \to 0} \phi_2 C^2 = C^0$

using [Hashin and Rosen, 1964]:

\[
\lim_{\phi_2 \to 0} C^{\text{hom}} = C^{\text{hom},0} = C^1 + \mathbf{E}^0 \mathbf{e}_1 \otimes \mathbf{e}_1 \otimes \mathbf{e}_1 \otimes \mathbf{e}_1
\]

where $\mathbf{E}^0 = \lim \phi_2 E^2 = C_{1111}^0$, then

\[
\sigma^m = C^m : \varepsilon^m
\]
\[
\sigma_{11} = \mathbf{E}^0 \varepsilon_{11}, \quad \sigma_{ij} = 0
\]
\[
l = [d]^{-1} \cdot [u]
\]
Some analytical results

Determination of the interaction stiffness

Auxiliary problem with body forces only: similar to homogenization of permeability in porous media ⇒ $[d]$ will depend on the UC size s as s^2
Determination of the interaction stiffness

Auxiliary problem with body forces only: similar to homogenization of permeability in porous media $\Rightarrow \left[a \right]$ will depend on the UC size s as s^2

Example for a 2D layered medium (1: matrix, 2: reinforcement, η reinforcement volume fraction):

$$\left[d_{11} \right] = \langle u(y) \rangle^2 - \langle u(y) \rangle^1$$
Determination of the interaction stiffness

Auxiliary problem with body forces only: similar to homogenization of permeability in porous media ⇒ $[\mathbf{d}]$ will depend on the UC size s as s^2

Example for a 2D layered medium (1: matrix, 2: reinforcement, η reinforcement volume fraction):

$$[d_{11}] = \langle u(y) \rangle^2 - \langle u(y) \rangle^1$$

$$[\mathbf{d}] = \frac{s^2}{12} \begin{bmatrix} \langle 1/\mu \rangle & 0 \\ 0 & \langle 1/(\lambda + 2\mu) \rangle \end{bmatrix}$$
Some analytical results

Determination of the interaction stiffness

Auxiliary problem with body forces only: similar to homogenization of permeability in porous media ⇒ $[\sigma]$ will depend on the UC size s as s^2

Example for a 2D layered medium (1: matrix, 2: reinforcement, η reinforcement volume fraction):

$[d_{11}] = \langle u(y) \rangle^2 - \langle u(y) \rangle^1$

$[d] = \frac{s^2}{12} \begin{bmatrix} \langle 1/\mu \rangle & 0 \\ 0 & \langle 1/(\lambda + 2\mu) \rangle \end{bmatrix} \xrightarrow{Cr \gg Cm} \frac{s^2(1 - \eta)}{12} \begin{bmatrix} \frac{1}{\mu_m} & 0 \\ 0 & \frac{1}{\lambda_m + 2\mu_m} \end{bmatrix}$

[Sudret, 1999] estimate: pullout test on rigid inclusion

$[d_{11}] = s^2(1 - \eta)$
Determination of the interaction stiffness

Auxiliary problem with body forces only: similar to homogenization of permeability in porous media \(\Rightarrow [d] \) will depend on the UC size \(s \) as \(s^2 \)

Example for a 2D layered medium (1: matrix, 2: reinforcement, \(\eta \) reinforcement volume fraction):

\[
[d_{11}] = \langle u(y) \rangle^2 - \langle u(y) \rangle^1
\]

\[
[d] = \frac{s^2}{12} \begin{bmatrix}
\langle 1/\mu \rangle & 0 \\
0 & \langle 1/(\lambda + 2\mu) \rangle
\end{bmatrix} \rightarrow \frac{s^2(1-\eta)}{12} \begin{bmatrix}
\frac{1}{\mu_m} & 0 \\
0 & \frac{1}{\lambda_m + 2\mu_m}
\end{bmatrix}
\]

[Sudret, 1999] estimate: pullout test on rigid inclusion \([d_{11}] = \frac{s^2(1-\eta)}{8\mu_m} \)
Outline

1. A homogenization procedure from Cauchy to multiphase continua

2. Some analytical results

3. Illustrative applications

4. Conclusions
A multilayered block in compression

Vertical displacement is \(u_2(y) = -\frac{\delta}{H} y \) for both phases,

\[
\begin{align*}
 u_m^m(x) &= \delta H (\nu_{hom} x + s \beta_m \sinh(x/\ell) \cosh(L/\ell)) \\
 u_m^r(x) &= \delta H (\nu_{hom} x + s \beta_r \sinh(x/\ell) \cosh(L/\ell))
\end{align*}
\]

where \(\ell \propto 1/\sqrt{c} \) and \(\nu_{hom} \) is an internal length scale arising for this problem.

First-order corrections over a distance \(\approx \ell \).
A multilayered block in compression

Vertical displacement is $u_2(y) = -\frac{\delta}{H} y$ for both phases, horizontal displacement $u_1^i(x)$ is different for each phase and satisfies:

$$\alpha_{11} \frac{d^2 u_1^m}{dx^2} + \alpha_{12} \frac{d^2 u_1^r}{dx^2} + c_I (u_1^r - u_1^m) = 0$$

$$\alpha_{12} \frac{d^2 u_1^m}{dx^2} + \alpha_{22} \frac{d^2 u_1^r}{dx^2} - c_I (u_1^r - u_1^m) = 0$$

with $\alpha_{ij} = \mathbb{D}^{ji}_{1111}$ and $c_I = [d_{11}]^{-1}$
A multilayered block in compression

Vertical displacement is $u_2(y) = -\frac{\delta}{H} y$ for both phases, horizontal displacement $u_1'(x)$ is different for each phase and satisfies:

$$\alpha_{11} \frac{d^2 u_1^m}{dx^2} + \alpha_{12} \frac{d^2 u_1^r}{dx^2} + c_l (u_1^r - u_1^m) = 0$$

$$\alpha_{12} \frac{d^2 u_1^m}{dx^2} + \alpha_{22} \frac{d^2 u_1^r}{dx^2} - c_l (u_1^r - u_1^m) = 0$$

with $\alpha_{ij} = D_{1111}^{ij}$ and $c_l = [d_{11}]^{-1}$

Solution is of the form:

$$u_1^m(x) = \frac{\delta}{H} \left(\nu^{hom} x + s \beta^m \frac{\sinh(x/\ell)}{\cosh(L/\ell)} \right)$$

$$u_1^r(x) = \frac{\delta}{H} \left(\nu^{hom} x + s \beta^r \frac{\sinh(x/\ell)}{\cosh(L/\ell)} \right)$$

where $\ell \propto 1/\sqrt{c_l} \propto s$ is an internal length scale arising for this problem
A multilayered block in compression

Vertical displacement is \(u_2(y) = -\frac{\delta}{H} y \) for both phases, horizontal displacement \(u_1^i(x) \) is different for each phase and satisfies:

\[
\alpha_{11} \frac{d^2 u_1^m}{dx^2} + \alpha_{12} \frac{d^2 u_1^r}{dx^2} + c_I (u_1^r - u_1^m) = 0
\]
\[
\alpha_{12} \frac{d^2 u_1^m}{dx^2} + \alpha_{22} \frac{d^2 u_1^r}{dx^2} - c_I (u_1^r - u_1^m) = 0
\]

with \(\alpha_{ij} = \mathbb{D}_{1111}^{ij} \) and \(c_I = [d_{11}]^{-1} \)

Solution is of the form:

\[
u^m(x) = \frac{\delta}{H} \left(\nu^{\text{hom}} x + s \beta^m \frac{\sinh(x/\ell)}{\cosh(L/\ell)} \right) \]
\[
u^r(x) = \frac{\delta}{H} \left(\nu^{\text{hom}} x + s \beta^r \frac{\sinh(x/\ell)}{\cosh(L/\ell)} \right) \]

where \(\ell \propto 1/\sqrt{c_I} \propto s \) is an internal length scale arising for this problem

first-order corrections over a distance \(\approx \ell \)
Comparisons

Comparison between full heterogeneous computations, Sudret’s model and the present model: N is the number of layers

<table>
<thead>
<tr>
<th></th>
<th>Matrix (phase 1)</th>
<th>Reinforcement (phase 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume fraction</td>
<td>$1 - \eta = 0.9$</td>
<td>$\eta = 0.1$</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>$E_1 = 10$ MPa</td>
<td>$E_2 = 1000$ MPa</td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>$\nu_1 = 0.45$</td>
<td>$\nu_2 = 0.3$</td>
</tr>
</tbody>
</table>
Comparisons

Comparison between full heterogeneous computations, Sudret’s model and the present model: N is the number of layers

$N = 4$

![Graph showing comparisons between different models](image_url)

- u^m (heter.)
- u^m [Sudret, 1999]
- u^m (present)
- u^r (heter.)
- u^r [Sudret, 1999]
- u^r (present)
- Standard homogenization

Phase displacement u'/δ vs. x/L

Reinforcement stress [MPa] vs. x/L
Comparisons

Comparison between full heterogeneous computations, Sudret’s model and the present model: N is the number of layers.
Comparisons

Comparison between full heterogeneous computations, Sudret’s model and the present model: N is the number of layers
Comparisons

Comparison between full heterogeneous computations, Sudret’s model and the present model: N is the number of layers.
A crack-bridging problem
Appeal of such models: prescribe **different boundary conditions for each phase**
A crack-bridging problem

Appeal of such models: prescribe **different boundary conditions for each phase**

Heterogeneous FE computations with $N = 8, 16, 32$ layers (filled symbols)
A crack-bridging problem: delaminated interfaces

Modelling a region with fully delaminated interfaces (zero interaction stiffness)
A crack-bridging problem: delaminated interfaces

Modelling a region with fully delaminated interfaces (zero interaction stiffness)

Matrix displacement

Horizontal stress
Outline

1. A homogenization procedure from Cauchy to multiphase continua
2. Some analytical results
3. Illustrative applications
4. Conclusions
Conclusions and perspectives

Conclusions

- multiphase models: phenomenological constitutive relations for fiber-reinforced materials
- homogenization procedure to identify constitutive parameters
- capture boundary effects which are important for large stiffness contrast
- some advantages over other generalized continua
- retrieves results of **shear lag models**

Perspectives

- justification through asymptotic analysis, range of application?
- micromechanical estimates
- higher-grade version to include bending effects
- non-linear constitutive relations
Conclusions and perspectives

Conclusions
- multiphase models: phenomenological constitutive relations for fiber-reinforced materials
- homogenization procedure to identify constitutive parameters
- capture boundary effects which are important for large stiffness contrast
- some advantages over other generalized continua
- retrieves results of **shear lag models**

Perspectives
- justification through asymptotic analysis, range of application?
- micromechanical estimates
- higher-grade version to **include bending effects**
- **non-linear** constitutive relations
Conclusions and perspectives

Conclusions

- multiphase models: phenomenological constitutive relations for fiber-reinforced materials
- homogenization procedure to identify constitutive parameters
- capture boundary effects which are important for large stiffness contrast
- some advantages over other generalized continua
- retrieves results of shear lag models

Perspectives

- justification through asymptotic analysis, range of application?
- micromechanical estimates
- higher-grade version to include bending effects
- non-linear constitutive relations

Thank you for your attention!
A stress-based auxiliary problem

Standard homogenization:

\[
\psi^*(\Sigma) = \min_{\sigma} \frac{1}{2|A|} \int_{A^1} \sigma : S^1 : \sigma d\Omega + \frac{1}{2|A|} \int_{A^2} \sigma : S^2 : \sigma d\Omega
\]

s.t. \(\text{div} \sigma = 0 \)

\(\sigma \cdot n \quad \mathcal{A}\text{-antiperiodic} \)

\(\langle \sigma \rangle = \Sigma \)
A stress-based auxiliary problem

Extended auxiliary problem:

\[\Psi^*(\sigma^1, \sigma^2, I) = \min_{\sigma} \frac{1}{2|A|} \int_{A_1} \sigma : S^1 : \sigma d\Omega + \frac{1}{2|A|} \int_{A_2} \sigma : S^2 : \sigma d\Omega \]

s.t. \[\text{div} \sigma + f(x) = 0 \]

\[\sigma \cdot n \text{ } A \text{-antiperiodic} \]

\[\phi_i \langle \sigma \rangle^i = \sigma^i \quad i = 1, 2 \]

\[\frac{1}{|A|} \int_{\Gamma} \sigma \cdot n dS = I \]

with body forces at the microscopic scale.
A stress-based auxiliary problem

Extended auxiliary problem:

\[
\psi^*(\sigma^1, \sigma^2, I) = \min \quad \frac{1}{2|A|} \int_{A^1} \sigma : S^1 : \sigma d\Omega + \frac{1}{2|A|} \int_{A^2} \sigma : S^2 : \sigma d\Omega \\
\text{s.t.} \quad \text{div } \sigma + f(x) = 0 \\
\sigma \cdot n \quad \text{A-antiperiodic} \\
\phi_i \langle \sigma \rangle^i = \sigma^i \quad i = 1, 2 \\
\frac{1}{|A|} \int_{\Gamma} \sigma \cdot ndS = I
\]

with body forces at the microscopic scale. Divergence theorem on phase 2 and on phase 1 gives:

\[
\frac{1}{|A|} \int_{A^2} \left(\text{div } \sigma + f(x) \right) d\Omega = I + \phi_2 \langle f \rangle^2 \\
\frac{1}{|A|} \int_{A^1} \left(\text{div } \sigma + f(x) \right) d\Omega = -I + \phi_1 \langle f \rangle^1
\]