Ductile damage studied by X-ray attenuation and diffraction imaging

S. Dancette¹, E. Maire¹, C. Le Bourlot¹, W. Ludwig^{1 2}, + collaborators at UCL, Arcelormittal, ESRF beamlines,...

¹MATEIS Lab, INSA Lyon, Fr

²ESRF, Grenoble, Fr

GDR MePhy, Nouveaux défis en mécanique de la rupture 27-28 novembre 2017, Campus Jussieu

Outline

Introduction

- Background on ductile damage
- 2 Attenuation and phase imaging
 - Experimental setups
 - Routine experiments
 - High resolution
 - Cavity tracking
 - Diffraction imaging
 - Diffraction constrast tomography (DCT)
 - DCT based CPFEM

3

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

Context

Herbig et al., Acta Mat. 2011

Damage investigation at MATEIS-METAL

- Structure, microstructure \implies damage development.
- 2D and 3D in-situ, non destructive, experiments (tension, compression, torsion, indentation, fatigue, ...)

Outline

Introduction

- Background on ductile damage
- Attenuation and phase imaging
 - Experimental setups
 - Routine experiments
 - High resolution
 - Cavity tracking
- Diffraction imaging
 - Diffraction constrast tomography (DCT)
 - DCT based CPFEM

Diffraction imaging

Conclusion - Outlook

Ductile fracture: macrosopic

Mateis

Diffraction imaging

Conclusion - Outlook

Ductile fracture: microscopic

Diffraction imaging

Conclusion - Outlook

Ductile damage

Courtesy of Prof. T. Pardoen, UCL

- nucleation, growth and coalescence of cavities
- Iots of models (especially for growth)...,
- little experimental comparison (before \sim 2000).

シママ 7/45

Ъ,

Conclusion - Outlook

A long history of science

Ductile fracture occurs in the bulk of opaque samples... Observation ?

- post-mortem fractography,
- post-mortem sectioning,
- in-situ observation in a SEM,
- ... none really quantitative.
- Need for quantification of nucleation, growth and coalescence.
- Years 2000: in-situ tensile tests under synchrotron tomography, right scale of 1 micron.

8/45

Conclusion - Outlook

Motivations / Open questions

Better observing and quantifying ductile damage

- Do it in the bulk, non destructively,
- for the 3 stages of ductile damage: nucleation, growth and coalescence.

Effect of local microstructure

- Behavior of individual cavities during deformation ? How heterogeneous ?
- Relate the individual behavior to
 - Iocal microstructure configuration ?
 - Iocal crystallographic orientation of grains ?

Outline

2

Introduction

- Background on ductile damage
- Attenuation and phase imaging
 - Experimental setups
 - Routine" experiments
 - High resolution
 - Cavity tracking
- Diffraction imaging
 - Diffraction constrast tomography (DCT)
 - DCT based CPFEM

Conclusion - Outlook

10/45

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Diffraction imaging

Conclusion - Outlook

X-ray computed tomography

(from Phoenix X ray)

Figure: Lab tomography.

- Lab or synchrotron X-rays.
- Diverging or parallel beam.
- Scan time: 0.05s to hours.
- Resolution: 25nm to centimeters.
- Absorption or phase contrast.
- Non destructive: in-situ/in-operando testing.

11/45

Diffraction imaging

Conclusion - Outlook

Synchrotron tomographs: high resolution / high speed

APS BNL Berkeley

ID 19 -Home Page-

ID15 fast acquisition ID22 Very high resolution

Diffraction imaging

Conclusion - Outlook

In situ tensile rig

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ■ ⑦ ۹ ○ 13/45

Outline

Introduction

- Background on ductile damage
- 2 Attenuation and phase imaging
 - Experimental setups
 - Routine" experiments
 - High resolution
 - Cavity tracking

Diffraction imaging

- Diffraction constrast tomography (DCT)
- DCT based CPFEM

Conclusion - Outlook

14/45

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

Typical result 1 mm sample diameter, \sim 1 micron voxel size, 300 microns central box for analysis

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

Typical result 1 mm sample diameter, \sim 1 micron voxel size, 300 microns central box for analysis

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

17/45

Typical result 1 mm sample diameter, \sim 1 micron voxel size, 300 microns central box for analysis

DP 600 1.1 **Arcelor**Mittal ▲□▶ 4 □▶ 4 □▶ 4 □▶ 4 □▶ [→] □ - のへで

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

3D imaging: *qualitative* observations Model materials

[Babout et al., Acta Mat. 52 (2004) 2475–2487]

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

3D imaging: *qualitative* observations Ferritic steels - different hardening behaviors

[C. Landron PhD, INSA Lyon 2011]

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

3D imaging: *qualitative* observations

TWIP

[C. Landron PhD, INSA Lyon 2011]

Diffraction imaging

Conclusion - Outlook

3D imaging: quantitative measurements

- nucleation:
 e.g. nbr of cavities/mm³
- growth:
 - e.g. equivalent diameter of biggest cavities.
- coalescence:
 - e.g. cavity spacing.

<ロト < 回 > < 国 > < 国 > < 国 > 、

• \implies comparison to models!

12

 $\mathcal{A} \mathcal{A} \mathcal{A}$

21/45

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

3D imaging: *quantitative* measurements nucleation

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ■ 釣�♡ 22/45

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

3D imaging: *quantitative* measurements

Outline

2

Introduction

Background on ductile damage

Attenuation and phase imaging

- Experimental setups
- Routine" experiments
- High resolution
- Cavity tracking

Diffraction imaging

- Diffraction constrast tomography (DCT)
- DCT based CPFEM

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

High resolution Down to 25 nm voxel size at ID16-B beamline, ESRF

- Local tomography: \sim 50 or 100 μ m wide region in the sample.
- Exploiting phase shift of incident X-ray beam on microstructure.

Diffraction imaging

Conclusion - Outlook

Comparing standard and high resolution

Diffraction imaging

Conclusion - Outlook

Quantification with high resolution

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ かへで 27/45

Conclusion - Outlook

Motivations / Open questions

Better observing and quantifying ductile damage

- Do it in the bulk, non destructively,
- for the 3 stages of ductile damage: nucleation, growth and coalescence.
 - \implies attenuation and phase contrast tomography

Effect of local microstructure

- Behavior of individual cavities during deformation ? How heterogeneous ?
 - \implies automatic cavity tracking
- Relate the individual behavior to
 - local microstructure configuration ?
 - Iocal crystallographic orientation of grains ?

Outline

2

Introduction

Background on ductile damage

Attenuation and phase imaging

- Experimental setups
- "Routine" experiments
- High resolution
- Cavity tracking

Diffraction imaging

- Diffraction constrast tomography (DCT)
- DCT based CPFEM

Diffraction imaging

Conclusion - Outlook

Cavity tracking

tracking anim

- Graph-based algorithm to track cavities/particles in successive in-situ volumes.
- [Lecarme et al., Acta Mat. 2014], [Hannard et al., Acta Mat. 2016]

Diffraction imaging

Conclusion - Outlook

Cavity tracking

- Highly heterogeneous growth.
- Strong influence of local microstructure.
- Not predicted by standard damage models...

Conclusion - Outlook

Motivations / Open questions

Better observing and quantifying ductile damage

- Do it in the bulk, non destructively,
- for the 3 stages of ductile damage: nucleation, growth and coalescence.
 - \implies attenuation and phase contrast tomography

Effect of local microstructure

- Behavior of individual cavities during deformation ? How heterogeneous ?
 - \implies automatic cavity tracking
- Relate the individual behavior to
 - local microstructure configuration ?
 - Iocal crystallographic orientation of grains ?
 - ⇒ Diffraction Contrast Tomography (DCT)

Outline

Introduction

- Background on ductile damage
- Attenuation and phase imaging
 - Experimental setups
 - "Routine" experiments
 - High resolution
 - Cavity tracking

3 D

- **Diffraction imaging**
- Diffraction constrast tomography (DCT)
- OCT based CPFEM

Diffraction imaging

Conclusion - Outlook

Diffraction Contrast Tomography (DCT)

- Often followed by phase contrast tomography (PCT) to monitor damage development.
- Setup available at ESRF, ID11 beamline.
- [Ludwig et al., Rev. Sci. Inst. 2009]

Diffraction imaging

Conclusion - Outlook

DCT reconstruction

- Identification of *hkl* and \overline{hkl} diffraction spots (Friedel pairs) for each grain.
- Regrouping sets of pairs per grain \implies crystal orientation.
- Algebraic reconstruction of 3D grain shapes from diffraction spots.

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

DCT reconstruction Example of a β -Ti alloy

[Ludwig et al., Rev. Sci. Inst. 2009]

Diffraction imaging

Conclusion - Outlook

三 うくぐ

37/45

Sample used in this illustration

- 1050 AI alloy loaded in-situ, ID11 beamline, ESRF.
- Initial state and first 2% of plastic deformation followed by DCT and far-field diffraction.
- Ductile damage further followed by PCT.

Diffraction imaging

Conclusion - Outlook

Initial polycrystal reconstruction, DCT

- 1050 Al alloy, recrystallized
- $\bullet \sim$ 120 grains
- Avg diameter:
 73 μm
- Average ini. disorientation: 0.1°

Outline

Introduction

- Background on ductile damage
- Attenuation and phase imaging
 - Experimental setups
 - "Routine" experiments
 - High resolution
 - Cavity tracking

3 Diffraction imaging

- Diffraction constrast tomography (DCT)
- DCT based CPFEM

Diffraction imaging

Conclusion - Outlook

3D meshing

Attenuation and phase imaging

Diffraction imaging

Conclusion - Outlook

1050 Al model Crystal Plasticity Finite Element Modeling (CPFEM)

- Elasto-viscoplastic UMAT [Delannay et al., Int. J. PLast. 2006].
- 12 FCC $\{111\}\langle 110\rangle$ slips systems for aluminum.
- Voce hardening of the slip systems.
- Initial grain orientation from DCT.
- Scale transition: DCT-based CPFEM (full field).
- 50% tensile deformation.

Diffraction imaging

Conclusion - Outlook

CPFEM - heterogeneity of stress

Figure: Von Mises from the initial to deformed configurations.

Diffraction imaging

Conclusion - Outlook

CPFEM - crystal rotations

Diffraction imaging

Conclusion - Outlook

Cavity growth, on-going

Figure: cavity growth, experiment vs. simulation

- Cavity growth strongly affected by local neighborhood.
- Local heterogeneity of plastic flow analyzed by DCT-based CPFEM.

- A lot has been learned about ductile damage in the last 20 years.
- New tools are available:
 - cavity/particle tracking,
 - fast imaging,
 - high resolution,
 - but also DVC, laminography, FE-based modelling, ...
- The vision has changed.
- Still a lot to do/discover:
 - H₂ embrittlement,
 - new materials,
 - Development of microstructure-based models

- A lot has been learned about ductile damage in the last 20 years.
- New tools are available:
 - cavity/particle tracking,
 - fast imaging,
 - high resolution,
 - but also DVC, laminography, FE-based modelling, ...
- The vision has changed.
- Still a lot to do/discover:
 - *H*₂ embrittlement,
 - new materials,
 - Development of microstructure-based models

- A lot has been learned about ductile damage in the last 20 years.
- New tools are available:
 - cavity/particle tracking,
 - fast imaging,
 - high resolution,
 - but also DVC, laminography, FE-based modelling, ...
- The vision has changed.
- Still a lot to do/discover:
 - *H*₂ embrittlement,
 - new materials,
 - Development of microstructure-based models

- A lot has been learned about ductile damage in the last 20 years.
- New tools are available:
 - cavity/particle tracking,
 - fast imaging,
 - high resolution,
 - but also DVC, laminography, FE-based modelling, ...
- The vision has changed.
- Still a lot to do/discover:
 - H₂ embrittlement,
 - new materials,
 - Development of microstructure-based models