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Introduction

X-ray tomo in situ tensile
tester

EBSD-SEM in situ
tensile tester

Damage investigation at MATEIS-METAL

@ Structure, microstructure = damage development.

@ 2D and 3D in-situ, non destructive, experiments
(tension, compression, torsion, indentation, fatigue, ...)
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Ductile fracture: macrosopic
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Ductile fracture: microscopic
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Ductile damage

Void coalescence

Courtesy of Prof. T. Pardoen, UCL

@ nucleation, growth and coalescence of cavities

@ lots of models (especially for growth)...,
@ little experimental comparison (before ~ 2000).
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A long history of science

Ductile fracture occurs in the bulk of opaque samples...
Observation ?

@ post-mortem fractography,

@ post-mortem sectioning,

@ in-situ observation in a SEM,
@ ... none really quantitative.

@ Need for quantification of nucleation, growth and
coalescence.

@ ~ Years 2000: in-situ tensile tests under synchrotron
tomography, right scale of 1 micron.
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Motivations / Open questions

Better observing and quantifying ductile damage
@ Do it in the bulk, non destructively,

@ for the 3 stages of ductile damage:
nucleation, growth and coalescence.

y

Effect of local microstructure

@ Behavior of individual cavities during deformation ?
How heterogeneous ?
@ Relate the individual behavior to

@ local microstructure configuration ?
@ local crystallographic orientation of grains ?

v
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@ Experimental setups
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X-ray computed tomography

X-ray source sample array detector

@ Lab or synchrotron X-rays.
e @ Diverging or parallel beam.
m 1 @ Scan time: 0.05s to hours.

-ray cone beam 0

. Resolution: 25nm to
! Y .
i, s ey centimeters.

! @ Absorption or phase
Itube control CNC -'Jbltl.*ct stage] |data acquisiﬁnii contrast.
computed tomography / volume reconstruction @ Non destructive:
(from Phoenix X ray) In-situ/in-operando testing.

Figure: Lab tomography.
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Synchrotron tomographs: high resolution / high speed
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In situ tensile rig

Tension, compression

Buffiere et al. Acta Mater 1998

Buffiere et al Eip

Mech 2009
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« Stepping motor

* Reductor

 F and U recorded
«10° — 1 mm/s

* Force sensors :
50 — 5000 N

 Grips adapted for
different geometries

30

f

Width = 1,5 fum
thickness of the all sample : 1.5 mm
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@ "Routine" experiments
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Typical result

1 mm sample diameter, ~ 1 micron voxel size, 300 microns central box for analysis

DP 600
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Typical result

1 mm sample diameter, ~ 1 micron voxel size, 300 microns central box for analysis

DP 600
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Typical result

1 mm sample diameter, ~ 1 micron voxel size, 300 microns central box for analysis

DP 600
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3D imaging: qualitative observations

Model materials
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3D imaging: qualitative observations

Ferritic steels - different hardening behaviors

£=0.72 Ferrite

DP

Martensite

[C. Landron PhD, INSA Lyon 2011]
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3D imaging: quantitative measurements

S o o @ nucleation:
é ==DP g 3
Z 40000 &= martensite e.g. nbr Of CaVItleS/mm
@ growth:
’ 0 02 04 06 08 1 1.2 e.g. eqUivalent diameter Of
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biggest cavities.

@ coalescence:
— e.g. cavity spacing.

@ — comparison to models!
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3D imaging: quantitative measurements

nucleation
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3D imaging: quantitative measurements
growth
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@ High resolution
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High resolution

Down to 25 nm voxel size at ID16-B beamline, ESRF

@ Local tomography: ~ 50 or 100 um wide region in the
sample.

@ Exploiting phase shift of incident X-ray beam on
microstructure.
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Comparing standard and high resolution
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Quantification with high resolution
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Motivations / Open questions

Better observing and quantifying ductile damage
@ Do it in the bulk, non destructively,

@ for the 3 stages of ductile damage:
nucleation, growth and coalescence.
—> attenuation and phase contrast tomography

o

Effect of local microstructure

@ Behavior of individual cavities during deformation ?
How heterogeneous ?
—> automatic cavity tracking

@ Relate the individual behavior to

@ local microstructure configuration ?
@ local crystallographic orientation of grains ?
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@ Cavity tracking
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Cavity tracking

Tracking graph: following a porosity
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acquisition time (t)

@ Graph-based algorithm to track cavities/particles in
successive in-situ volumes.
@ [Lecarme et al., Acta Mat. 2014], [Hannard et al., Acta Mat. 2016]
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Cavity tracking

—— Experimental results
—— Model

200

0 005 0.1 015 02 0.25

[Lecarme et al., Acta Mat. 2014]

@ Highly heterogeneous growth.
@ Strong influence of local microstructure.
@ Not predicted by standard damage models...
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Motivations / Open questions

Better observing and quantifying ductile damage
@ Do it in the bulk, non destructively,

@ for the 3 stages of ductile damage:
nucleation, growth and coalescence.
—> attenuation and phase contrast tomography

o

Effect of local microstructure

@ Behavior of individual cavities during deformation ?
How heterogeneous ?
— automatic cavity tracking

@ Relate the individual behavior to

@ local microstructure configuration ?
@ local crystallographic orientation of grains ?

— Diffraction Contrast Tomography (DCT)
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e Diffraction imaging
@ Diffraction constrast tomography (DCT)
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Diffraction Contrast Tomography (DCT)

Extinction spot

Mono- %

chromatic X-rays

Grains on detector.

Detector plane
Herbig et al., Acta Mat. 2011

@ Often followed by phase contrast tomography (PCT) to
monitor damage development.

@ Setup available at ESRF, ID11 beamline.
@ [Ludwig et al., Rev. Sci. Inst. 2009]
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DCT reconstruction

@ I|dentification of hkl and hkl/ diffraction spots (Friedel pairs)
for each grain.

@ Regrouping sets of pairs per grain = crystal orientation.

@ Algebraic reconstruction of 3D grain shapes from
diffraction spots.
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DCT reconstruction
Example of a g—Ti alloy

[Ludwig et al., Rev. Sci. Inst. 2009]
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Sample used in this illustration

In-situ

cavities (red)

DCT PCT

@ 1050 Al alloy loaded in-situ, ID11 beamline, ESRF.

@ Initial state and first 2% of plastic deformation followed by
DCT and far-field diffraction.

@ Ductile damage further followed by PCT.
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Initial polycrystal reconstruction, DCT

@ 1050 Al alloy,
recrystallized
i @ ~ 120 grains
iy . 120 8 @ Avg diameter:
73 pm
- @ Average Iini.
g disorientation:
0.1°

Tensile axis IPF
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@ DCT based CPFEM
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3D meshing

Reconstructed Diffraction Initial surface mesh
Contrast Tomography (DCT) (Avizo, marching cubes)
experimental volume > 5 millions low quality triangles
89464 9028
triangles triangles
Avgy: 0.6 Avgy:0.95

Gamma
0 05 1

y 22432 triangles
Avg y :0.94

Surface remeshing
(STL remeshing algo in GMSH)

105 16
I - —

Optimized mesh Mesh size field Initial 3D mesh (GMSH)
(~ 500 e3 tetrahedra) (GMSH distance map) (~ 730 e3 tetrahedra)
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1050 Al model

Crystal Plasticity Finite Element Modeling (CPFEM)

@ Elasto-viscoplastic UMAT [Delannay et al.,
Int. J. PLast. 2006] .

@ 12 FCC {111}(110) slips systems for
aluminum.

@ Voce hardening of the slip systems.
@ Initial grain orientation from DCT.

@ Scale transition:
DCT-based CPFEM (full field).

@ 50% tensile deformation.

DCT-based CPFEM mesh
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CPFEM - heterogeneity of stress
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Figure: Von Mises from the initial to deformed configurations.
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CPFEM - crystal rotations
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Cavity growth, on-going

120 —8= 58 =8= 74 =0
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Figure: cavity growth, experiment vs. simulation

@ Cavity growth strongly affected by local neighborhood.

@ Local heterogeneity of plastic flow analyzed by DCT-based
CPFEM.



Conclusion - Outlook

Conclusion - QOutlook

@ A lot has been learned about ductile damage in the last 20
years.



Conclusion - Outlook

Conclusion - QOutlook

@ A lot has been learned about ductile damage in the last 20
years.

@ New tools are available:

e cavity/particle tracking,
e fast imaging,

@ high resolution,

e but also DVC, laminography, FE-based modelling, ...



Conclusion - Outlook

Conclusion - QOutlook

@ A lot has been learned about ductile damage in the last 20
years.

@ New tools are available:

e cavity/particle tracking,

e fast imaging,

@ high resolution,

e but also DVC, laminography, FE-based modelling, ...

@ The vision has changed.



Conclusion - Outlook

Conclusion - QOutlook

@ A lot has been learned about ductile damage in the last 20
years.

@ New tools are available:

e cavity/particle tracking,

e fast imaging,

@ high resolution,

e but also DVC, laminography, FE-based modelling, ...

@ The vision has changed.

@ Still a lot to do/discover:

e H> embrittlement,
@ new materials,
@ Development of microstructure-based models



