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Complex fault and crack networks at all scales



Mitchell and Faulkner (2012)



Hurst exponent with the azimuthal direction of profile
extraction (q), as pointed by Renard et al. [2006] and
Candela et al. [2009] using different statistical tools. When
departing a few degrees from the direction of the smallest
exponent, i.e., the slip direction, the Hurst exponent sampled
is already very close to the largest exponent, i.e. the direction
normal to slip. In contrast, the pre-factor linearly evolves
with q. In Figure 14b, we estimate the Hurst exponents and
the pre-factors of composite synthetic profiles formed by the
association of two profiles with a roughness root-mean

square standard deviation that scales respectively as RMS =
0.005 L0.6 and RMS = 0.015 L0.8. In this way, the effect of
sampling a combination of slip-parallel and slip-perpendic-
ular topography along the rupture trace is reproduced, as it
could be the case due to the landscape topography and/or
some local vertical slip. As observed previously, the Hurst
exponent and the pre-factor increase respectively nonlinearly
and linearly with the increase of the percentage of the
composite profile scaling as RMS = 0.015 L0.8.

Figure 13. Comparison of the roughness of the earthquakes surface ruptures with that of the exhumed
fault surfaces. The global spectra of the exhumed fault surfaces for the (top) along and (bottom) normal
slip direction are plotted on a log-log graph together with those obtained for the thirteen continental earth-
quakes surface rupture traces. The exhumed fault data are identical to those plotted on Figure 9, and those
of the surface ruptures correspond to that of Figure 12. Power law fits with a Hurst exponent of 0.8 and 0.6
are shown (gray lines). For the sake of comparison with previous studies, power law fits for three self-sim-
ilar rough surfaces (i.e., H = 1) with various pre-factors (RMS = 0.1 L, RMS = 0.01 L, and RMS = 0.001 L),
are displayed (dashed dark lines).
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And they are ‘rough’

tectonic regime (strike-slip, oblique and normal) which pos-
sibly could have affected the fault surface roughness.

2.2. Scanner Devices and Digital Elevation Models
of Fault Roughness
[13] Fault surface topography was scanned in the field

using five different types of 3-D portable LiDAR laser

scanners (see Table 1b) that use the time of flight of a light
beam to accurately measure distances. The laser scanner
records the topography of each exposed fault surface by
collecting a cloud of points whose three dimensional coor-
dinates correspond to points on the fault surface [Renard
et al., 2006; Sagy et al., 2007; Candela et al., 2009; Resor
and Meer, 2009; Wei et al., 2010]. The actual point spacing

Figure 2. Corona Heights fault, California. Multiple bumpy discrete slip surfaces constituting lenses and
striations can be detected at all scales, from the measurement resolution of each scanner device to the size
of the entire exposure. (a) Whole outcrop view. The inset corresponds to the surface shown on Figure 2c.
(b) Zoom on the fault showing different segments constituting the surface. (c, d) Map of fault surfaces
scanned using LiDAR. The inset in C corresponds to the patch shown on Figure 2d. (e, f) Maps of fault
surfaces scanned with the laser profilometer. (g, h) Zoom on the Figures 2e–2f scanned with the white
light interferometer.
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Complex Slip Dynamics

Image Courtesy : 
 M. Thomas

SSE : Nankai (Araki et al 2017)  
Hikurangi (Wallace et al. 2017)

What mechanical models exist that explain these range of slip dynamics? 



Two Broad Themes

How do complex fault networks interact over 
long time scales (multiple seismic cycles)? 

How do complex fault and off-fault fracture 
networks interact during an earthquake 
rupture (using homogenisation and explicit 
modelling of off-fault fracture networks)?

Missing ingredients 
(in this talk)            :  

Mechanical/Rheological Complexity 
Hydrological Structure  

Chemical & Mineralogical Complexity 
Thermal Constraints 
Far-field loading complexity



Broad ingredients in seismic cycle models

Friction laws Elastic Medium

Loading

Fault

Fault

Resistance to movement

�f (s) = �el
t (s) + � load(s) + � rad(s)

Brittle / Plastic Medium

Strain Rate ~ 10-15 /s

Strain Rate ~ 103 /s

Between earthquakes

During earthquakes



Dieterich, 1979
Ruina, 1983

Rate and state friction law 

Experiment

From Dieterich and Kilgore 1994

V1V2 V2V1

V1>V2



Rate / state friction definitions & parameters:
f = friction coefficient = τ / (σ − p) = τ /σ .
V = slip rate.
a = [∂f / ∂ ln(V )]instantaneous > 0 always.
a − b = [df / d ln(V )]steady-state  can be  

   < 0 (potentially unstable), or > 0 (stable).
Unstable slip patch size ≈ 4h*;
h* = 2µL / [π (1−ν)(b − a)maxσ ],
L = slip to renew asperity contact population;

   4h* ≈ 1.0 km ×
L

40 µm
×

1.0 MPa
σ

a = [∂f / ∂ ln(V )]instantaneous

a − b = [df / d ln(V )]steady-state

  (actually, a − b1 − b2 )

granite gouge , water-saturated 
[Blanpied, Marone, Lockner  
& Byerlee, JGR 1998] 

(potentially unstable)

(stable)

Rate / state friction definitions & parameters:

f = friction coefficient 
  = τ / (σ − p)= τ /σ .
δ = slip,    V = ∂δ /∂t = slip rate.

L = slip to renew asperity contact population.
a = [∂ f /∂ln(V )]instantaneous > 0 always.
a−b = [df / d ln(V )]steady-state  can be  

   < 0 (potentially unstable), or > 0 (stable).

Unstable slip patch size ≈ 4h*;
h*= 2µL / [π (1−ν )(b−a)maxσ ],

4h*≈ 1.0 km×
L

40 µm
×

1.0 MPa
σ

−273 ºC

Theory: a = kBT(Kelvin) /σ cΩ

Dieterich, 1979
Ruina, 1983

Rate and state friction law 

Allows for restrengthening of the fault

a/b > 1 :  rate strengthening ; 0 < a/b < 1 :   rate weakening

No change in contact  
population, but they  
resist more because  

they are sheared faster.  
Rate-dependence 

No change in contact shear rate but 
old, hence strong, contacts are slid 
out of existence and replaced with 
shorter-lived, hence weaker, ones. 

State-dependence 



• Spatially heterogeneous a/b 
• Newtonian viscous rheology + asperities 
• Periodic normal stress perturbations →“Aseismic” Stick Slip  
• Static stress perturbations from neighbouring faults 
• ‘Tuning’ fault length : Failed nucleation 
• Trade-off between dilatant strengthening/thermal pressurisation

Perfettini et al. [2001], Liu and Rice [2005],  Liu and Rice [2007], Rubin [2008],  
Segall and Rice [1995],  Segall et al. [2010],  Segall and Bradley [2012], Ando et al. [2012] and many others.

Seismic (m/s & km/s) and Aseismic (𝛍m/s & km/day) 
transients with R&S friction on planar faults

Vslip Vrupt Vslip Vrupt



=

Complexities of 
the medium Resistance

Can geometry control the observed complexity of the seismic 
cycle?

Complex fault network 
Non planar geometry of faults 
Interaction between faults 
Diversity of observed signals

Single planar fault 
Linear elastic rheology 
Complexities coming  
from rheological variations

Real world Dominant modelling philosophy

However!.



(Fast) Seismic cycle models

Friction laws Elastic Medium

Loading

Fault

Fault

Resistance to movement

�f (s) = �el
t (s) + � load(s) + � rad(s)

Rate and state friction 
Ageing state evolution

Quasi-dynamic: 
boundary element  

method with  
radiation damping 

Convolution accelerated 
Using H-Matrices

Global constant  
stress rate 

Romanet [2017]

�f = �n

�
f0 + a log

�
V

V0

�
+ b log

�
V0�

Dc

��
�̇ = 1 � �V

Dc



1- Periodic events
2- Only dynamic events

L/Lnuc = 2

Single rate weakening fault

Dynamic instability when 
L > Lnuc(a/b) 
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Rubin and Ampuero [2005] and Viesca [2016 a, b]



Simplest “Conceptual” Model of Fault 
Geometric Complexity

D

L

L

Fault 1
Fault 2W

• Non-Dimensionalise length scales by Lnuc(a/b) 
• Keep loading rate constant
• Keep a/b constant and rate-weakening (0<a/b<1)
• Anti-plane sense of motion⇒ No normal traction change

Do spontaneously emerging “stress” 
heterogeneities produce slow and fast dynamics?



Geometry induced fault dynamics
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Geometry induced fault dynamics
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Geometry induced fault dynamics
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‘Phase Diagram’ (for fixed overlap distance)
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Can we reproduce the observed scaling laws?

M0 � T 3

M0 � T
Slow events

Classic 3D earthquakes

M0 / T 2

Classic 2D earthquakes

Slow events
Rupture Velocity < 0.01Vs &

 1µm/s < Slip Velocity < 1mm/s

Earthquakes
Rupture Velocity > 0.01Vs & 

Slip Velocity >1mm/s
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L/Lnuc

L/Lnuc

D/Lnuc

Can we reproduce the observed scaling laws?
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Most basic geometrical fault complexity can 
give rise to both slow and fast dynamics on 
purely rate weakening faults

Scaling laws arise from 
simple fault networks in 
rate and state framework

Conclusion



5 km Kickapoo 
fault

Johnson Valley fault

Hom
estead Valley fault

Emerson fault

Camp Rock fault

A real world application
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Sowers et al. (1994) Mitchell and Faulkner (2012)

Complex off-fault crack networks
5km 500m 5m

Complex fault network in kilometric scale to smaller scale off-fault crack network  



Coseismic off-fault damage and radiation

ObservationsTheoretical analysis

Experiments
Rice et al. (2005) Dunham et al. (2011)

Passelègue et al. (2016); Marty, M2 thesis (2016)

Shaded region shows the area 
of potential shear cracks.

Enhanced High-frequency 
radiation in near field ground 
motion

Enhanced High-frequency radiation 
observed from laboratory 
experiments



Co-seismic dynamic damage generation

Maximum compressive principal stress

Grid resolution on the main fault = 

Maximum compressive principal stress

Grid resolution on the main fault = 

• We use the Combined Finite-Discrete Element Method (FDEM) package, 
Hybrid Optimisation Software Suite (HOSS), developed by Los Alamos 
National Laboratory



Analysis of Acceleration amplitude spectrum in near-field ground motion

• Relatively high-frequency content 
(10 ~ Hz) is observed in near-
field ground motion

With off-fault damage

No off-fault damage

With off-fault damageWith off-fault damageWith off-fault damageWith off-fault damage

No off-fault damageNo off-fault damageNo off-fault damageNo off-fault damageNo off-fault damage

Dunham et al. (2011)

Our results

Dunham et al. (2011)

• Focus on the Maximum cut-off 
frequency in acceleration 
amplitude spectrum

10 ~  (Hz)



Damage evolution in depth

extensional compressive

Constant Dc Constant GIIC

“Flower-like structure”
The damage zone width 
decreases with depth.

Sub-Rayleigh Supershear

W (m)

• Q. How does the damage 
zone width evolve in depth? 

extensional compressive

• Measure the damage zone 
width at every 1 km depth
with Constant Dc and 
Constant GIIC cases



Non dimensionalised damage zone width in depth 

Damage zone width W Process zone size R0

" Damage zone width decreases 
in depth with both constant Dc and 
constant GIIC cases.

" Non dimensionalised width, W/R0 , 
is independent of depth.    

• Scaling the damage zone width W by estimated process zone size R0, W/R0

Constant GIIC case

Constant Dc case



2016 Mw 7.8 Kaikoura Earthquake, NZ
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Combination of high-resolution deformation field and dynamic 
rupture modelling including off-fault damage 

=> unambiguous evidence for rupture along Papatea F. triggering 
bilateral rupture along Jordan Thrust - Kekerengu Fault 



Conclusion

• Secondary crack network can be generated by dynamic earthquake rupture. 
2D distribution of frequency contents shows that the　high frequency 
(10-100Hz) radiation is enhanced by the secondary crack network.

• Macroscopic shear wave velocity in the damage zone decreases by ~20%

• Our case study shows the damage evolution in depth with more intricate 
crack networks in deeper cases.

• It shows that the width of damaged zone decreases in depth, forming 
"flower-like" structure as the characteristic slip distance in linear slip-
weakening law or the fracture energy on the fault is kept constant with depth. 

• This method has been applied to the complex fault system with the same 
framework.


