

Slow and Fast Slip Dynamics due to Fault and Fracture Networks

Harsha S. Bhat Ecole Normale Supérieure, Paris

Pierre Romanet (Univ. Tokyo) **Kurama Okubo** (IPGP/ENS) **Marion Thomas** (Univ. Oxford)

Stéphanie Chaillat (ENSTA), Romain Jolivet (ENS), Hiroo Kanamori (Caltech), Raul Madariaga (ENS), Ares J. Rosakis (Caltech), Yann Klinger (IPGP), Esteban Rougier (LANL)

Complex fault and crack networks at all scales

And they are 'rough'

Complex Slip Dynamics

What mechanical models exist that explain these range of slip dynamics?

Seismic Signals

Two Broad Themes

- How do complex fault networks interact over long time scales (multiple seismic cycles)?
- How do complex fault and off-fault fracture networks interact during an earthquake rupture (using homogenisation and explicit modelling of off-fault fracture networks)?

Missing ingredientsMechanical/Rheological ComplexityChemical & Mineralogical Complexity(in this talk): Hydrological StructureThermal ConstraintsFar-field loading complexity

Broad ingredients in seismic cycle models

Rate and state friction law

 $V_1 > V_2$

From Dieterich and Kilgore 1994

a/b > 1 : rate strengtheiningeflicien/b < 1 : rate weakening

$$= \tau / (\sigma - p) = \tau / \overline{\sigma}.$$
 -273 °C
Allows for restrengthening of the fault
 $\sigma = \text{Slip}, \quad V = \frac{\partial \sigma}{\partial t} = \text{Slip rate.}$

VslipVruptVslipVruptSeismic (m/s & km/s) and Aseismic (μm/s & km/day)transients with R&S friction on planar faults

- Spatially heterogeneous a/b
- Newtonian viscous rheology + asperities
- Periodic normal stress perturbations → "Aseismic" Stick Slip
- Static stress perturbations from neighbouring faults
- 'Tuning' fault length : Failed nucleation
- Trade-off between dilatant strengthening/thermal pressurisation

Perfettini et al. [2001], Liu and Rice [2005], Liu and Rice [2007], Rubin [2008], Segall and Rice [1995], Segall et al. [2010], Segall and Bradley [2012], Ando et al. [2012] and many others.

However....

Real world

- Complex fault network
- Non planar geometry of faults
- Interaction between faults
- Diversity of observed signals

Dominant modelling philosophy

- Single planar fault
- Linear elastic rheology
- Complexities coming from rheological variations

Can geometry control the observed complexity of the seismic cycle?

(Fast) Seismic cycle models

$$\tau^f(s) = \tau^{el}_t(s) + \tau^{load}(s) + \tau^{rad}(s)$$

Single rate weakening fault

$$L/L_{nuc} = 2$$

Dynamic instability when $L > L_{nuc}(a/b)$

$$L_{nuc} = 2 \times 1.3774 \frac{\mu D_c}{\sigma_n b} ; \quad 0 < a/b < 0.3781$$
$$L_{nuc} = 2 \times 1.3774 \frac{\mu D_c}{\pi \sigma_n b (1 - a/b)^2} ; \quad a/b \to 1$$

Rubin and Ampuero [2005] and Viesca [2016 a, b]

I - Periodic events2- Only dynamic events

- Non-Dimensionalise length scales by L_{nuc}(a/b)
- Keep loading rate constant
- Keep *a/b* constant and rate-weakening (0<a/b<1)
- Anti-plane sense of motion ⇒ No normal traction change

Do spontaneously emerging "stress" heterogeneities produce slow and fast dynamics?

Geometry induced fault dynamics

Geometry induced fault dynamics

Geometry induced fault dynamics

'Phase Diagram' (for fixed overlap distance)

Can we reproduce the observed scaling laws?

 $M_0 \propto T^3 \label{eq:massic} {\rm Classic} ~{\rm 3D}~{\rm earthquakes}$

 $M_0 \propto T^2$ Classic 2D earthquakes

Ide et al., 2007 Gomberg et al., 2016 Sekine et al., 2010 Gao et al., 2012 Denolle and Shearer, 2016

Slow events Rupture Velocity $< 0.01V_s \&$ I μ m/s < Slip Velocity < Imm/s

Can we reproduce the observed scaling laws?

Conclusion

Most basic geometrical fault complexity can give rise to both slow and fast dynamics on purely rate weakening faults

Scaling laws arise from simple fault networks in rate and state framework

A real world application

 $Previous \ Event: \ 61Y \ 07M \ 27d \ 05h \ 00m$

Time: 232Y 05M 03d 01h 45m

Aseismic Event #07

 $\delta_{max} \sim 15.6~{
m cm}$ $L_{rup} \sim 3.6~{
m km}$ $M_w \sim 5.2$ $T \sim 01d~16h~47m~24s$

CR

 $\label{eq:Previous Event: 01Y 11M 28d 21h 26m} Previous Event: 01Y 11M 28d 21h 26m$

 \dot{KF}

 $Previous \ Event: 28Y \ 00M \ 17d \ 06h \ 22m$

Previous Event : 00Y 01M 09d 06h 46m

Complex off-fault crack networks

Complex fault network in kilometric scale to smaller scale off-fault crack network

Coseismic off-fault damage and radiation

Co-seismic dynamic damage generation

Time: 5.626 (s)

 We use the Combined Finite-Discrete Element Method (FDEM) package, Hybrid Optimisation Software Suite (HOSS), developed by Los Alamos National Laboratory

Analysis of Acceleration amplitude spectrum in near-field ground motion

- Relatively high-frequency content (10 ~ Hz) is observed in nearfield ground motion
- Focus on the Maximum cut-off frequency in acceleration amplitude spectrum

Damage evolution in depth

Non dimensionalised damage zone width in depth

• Scaling the damage zone width W by estimated process zone size R_0 , W/R_0

2016 M_w 7.8 Kaikoura Earthquake, NZ

Optical Image Correlation

Displacement profile P2 - asymetric and distributed deformation

Displacement profile P3 - slip quite localized

Combination of high-resolution deformation field and dynamic rupture modelling including off-fault damage

=> unambiguous evidence for rupture along Papatea F. triggering bilateral rupture along Jordan Thrust - Kekerengu Fault

Conclusion

- Secondary crack network can be generated by dynamic earthquake rupture.
 2D distribution of frequency contents shows that the high frequency (10-100Hz) radiation is enhanced by the secondary crack network.
- Macroscopic shear wave velocity in the damage zone decreases by ~20%

•

•

- Our case study shows the damage evolution in depth with more intricate crack networks in deeper cases.
- It shows that the width of damaged zone decreases in depth, forming **"flower-like" structure** as the characteristic slip distance in linear slip-weakening law or the fracture energy on the fault is kept constant with depth.
- This method has been applied to the complex fault system with the same framework.