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Fracture mechanics: complex examples

Thermal shock in ceramics (Song et al. 2011)

Thin film cracks Giant’s Causeway
Modelling issues:

Crack nucleation
Morphogenesis of complex crack patterns



Complex crack patterns using variational phase-field models

(Gradient damage models)

Thermal shock, PRL 14 Thin film fracture and debonding, JMPS 14



Full scale simulation in 2d

Ceramic slab from Shao et al. 2011 with �T = 380 �C

Material : E = 340GPa, ⌫ = 0.22, Gc = 42.47 Jm�2, �c = 342.2MPa, � = 8 ⇥ 10�6 K�1

Dimensions: 5L⇥ L⇥ 0.1L, with L = 10mm

` =
3GcE

8�2
c

= 46 µm, `0 =
Gc

E�2�T 2 = 14 µm ) L/` = 215 `0/` = 0.3

5 millions of elements (mesh size ⇠ `/5), 100 time step.



A step back: verification and validation on classical test cases

Are these models quantitively accurate?

Propagation conditions for existing cracks?

Initiation and nucleation of new cracks?

Scale effects?

In linear elastic fracture mechanics, several criteria have been developed to
account for experimental findings (e.g. double criterion). Should these criteria
be added to variational models ?

Are energetic criteria enough to predict crack propagation and nucleation?



Outline

Review of gradient damage models

Basic examples: propagation of a crack and nucleation in a traction test

Nucleation at a V-notch

Nucleation at a U-notch

Effect of an elliptical hole

Structural size effects



Sharp vs Smeared approaches to brittle fracture

Sharp models (Griffith)
Sharp crack

Cracks as surfaces of sharp discontinuity of the
displacement field

Smeared models (Damage)
Localized damage 

Cracks approximated by the localisation of a
smooth auxiliary field (damage).

Sharp model: Griffith
Global minimisation of (K is the irreversible crack set):
Griffith 1921, Francfort and Marigo 1998.

E(u, K) =
Z

⌦\K

1
2
A0"(u) ·"(u) dx +Gc area(K)

Smeared models: gradient damage (phase-field)
Local minimisation of (↵ is a irreversible scalar damage field):
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1
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– Mathematics (Variational regularisations, �-convergence):
Mumford and Shah, 1989, Ambrosio and Tortorelli, 1990, Bourdin et al. 2000.

– Physics: Phase-field models
Ginzburg-Landau 1938-1950, Aranson et al., 2000; Karma et al., 2001

– Mechanics: Damage models
Local model, non-local models, gradient models, etc ...



Traction of a bar: Griffith model

Assume a crack set K in the form of n transverse cracks and a 1D bar model.

Sharp crack
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0(x)2 dx +GcW n(K)
��� /�� �

���

� ���

� ���

��

��
��
�� �� ������

� �����

� ������

� ������

Results for Griffith model

Local minimality criterion: the bar never cracks

Global minimality criterion: a single crack at

UG

L
=

r
2Gc

E0L
�G =

r
2E0 Gc

L

Global minimization is the only way to get crack nucleation without adding ad-hoc geometric
features (initial test-cracks). But the maximum allowable stresses are infinite for short bar
and vanishing for long bars, which is physically not acceptable (see FM98).



Gradient damage model

Total energy functional
(linearized isotropic elasticity with isotropic gradient damage)

E`(u,↵) =
1
2

Z

⌦
A(↵)"(u) ·"(u) dx

| {z }
Strain energy

+
Gc

cw

Z
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✓
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`
+ ` r↵ · r↵

◆
dx
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, cw = 4
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0

p
w(↵)d↵

↵, a scalar field on ⌦: an internal variable representing the damage field.

A(↵) = a(↵)A0: the damaged elastic tensor (decreasing from A(0) = A0 to A(1) = 0).

w(↵): dissipation for homogeneous damage (increasing from w(0) = 0 ).

`: internal length.

Key requirements

stress softening: w
0(↵)

s 0(↵) not increasing, s = a
�1

finite elastic limit: w
0(0) > 0

finite dissipation at full damage: w(1) < 1

Model retained for computations

a(↵) = (1 �↵)2, w(↵) =⇢⇢↵2 ↵

cw = 8/3

Halphen and Nguyen 1975, Fremond, Nedjar 1996; Lorentz, Andrieux 1999, Comi 2001, Nguyen and Andrieux 2005,
Benallal, Marigo 2007; Pham, Marigo 2010; Lorentz, Godard 2011; Pham, Marigo 2013



Gradient damage model
Linearized isotropic elasticity with isotropic gradient damage

E`(u,↵) =
1
2

Z

⌦
a(↵) A0 "(u) ·"(u) dx
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Elastic energy

+
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cw
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↵, a scalar damage field, `: internal length.

Quasi-static time-discrete evolution at time ti from the state (ui�1, ↵i�1):

min
u2Ui , ↵�↵i�1

E`(u,↵), (local minimization with unilateral constraint)

Energetic equivalence with Griffith by setting:

cw = 4
Z 1

0

p
w(↵)d↵ =

8
3

(1 �↵)2, stiffness modulation
↵, local dissipation gradient term

w(↵) = ↵

Halphen and Nguyen 1975, Fremond, Nedjar 1996; Lorentz, Andrieux 1999, Comi 2001, Nguyen and Andrieux 2005,
Benallal, Marigo 2007; Pham, Marigo 2010; Lorentz, Godard 2011; Pham, Marigo 2013



Minimization with bound constraints: variational inequalities
1 degree of freedom system

Example: Scalar function of a scalar variable
f : x 2 R ! f (x) 2 R

x
⇤ = argmin

x�x̄

f (x)

First order optimality conditions:

Minimality implies non-negative variations:

f (x)� f (x⇤) ' f
0(x⇤)(x � x

⇤) � 0, 8x � x̄

Equivalent KKT conditions:

f
0(x⇤) � 0 (x⇤ � x̄) � 0 f

0(x⇤)(x⇤ � x̄) = 0

This is a non-linear problem. If f is convex the
solution is unique.

Case A: x⇤ > x̄ ) f
0(x⇤) = 0

Case B: x⇤ = x̄ ) f
0(x⇤) � 0



Gradient damage model: evolution problem
First order optimality conditions

Equilibrium equations (u-variation)

div� = 0 in ⌦, �n = f on ∂f ⌦, with � = a(↵)A0"(u) (1)

Damage criterion and Kuhn-Tucker conditions (↵-variation)

In ⌦ : ↵ �↵i�1 � 0, D � 0, (↵ �↵i�1)D = 0, (2)

On ∂⌦ : ↵ �↵i�1 � 0,
∂↵
∂n

� 0,
∂↵
∂n

(↵ �↵i�1) = 0, (3)

where D(",↵,�↵) =
a

0(↵)

2
A0" ·"+ Gc

cw

✓
w

0(↵)

`
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◆

The energetic criterion (local energy minimality conditions) implies:

Stress domain for homogenous damage:

D(",↵, 0) � 0 ) A
�1
0 � ·�  � 2 Gcw

0(↵)

cw ` (a�1)0(↵)

Elastic limit in unixial traction:

�c =

s
2GcE w

0(0)
` cw (a�1)0(0)

) �c =

r
3GcE

8`

Stability (second order condition) depends on the gradient term (and `)
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Considered constitutive models
Homogeneous response in 1d traction

AT1 - model
w(↵) = ↵, a(↵) = (1 �↵)2

0 1 2
0
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s
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Finite elastic limit

�c = �M =

r
3GcE0

8 `

Linear elastic followed by softening

AT2 - model
w(↵) = ↵2, a(↵) = (1 �↵)2

0 1 2 3
0

1

UtêUM

s
tês

M

Null elastic limit
Hardening followed by softening
Used in most of the papers on phase-field
fracture

Pham, Marigo, Maurini 2011; Lorentz, Godard 2011



Propagation, nucleation and internal length

Elementary verification tests

Propagation of an existing crack Nucleation in a homogenous bar

⌦ = (0,L) ⇥ (�H,H)
e1

e2

ut = Ut on @⌦ \ �0

Crack tip (lt ,0)
l0

�t

Sharp crack



Illustration: traction of a bar

L = 1,W = 0.1, ` = 0.05
Element size 0.005
Critical load:

Uc

L
=

r
3Gc

8E0 `
�c =

r
3Gc

8E0 `

Elastic

Dissipated
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Elastic phase (homogeneous damage) ) Loss of stability ) Localized solution (fracture)
The dissipated energy in the localized solution is equal to the crack length (Gc = 1)
Crack nucleation is a structural stability problem



Propagation of a straight crack

Surfing experience

Consider a slab with an initial crack l0

Impose asymptotic mode-I displacement on the boundary focussed on a crack tip moving at
a constant speed v

⌦ = (0,L) ⇥ (�H,H)
e1

e2

ut = Ut on @⌦ \ �0

Crack tip (lt ,0)
l0

�t

Top: damage field. Bottom: apply displacement and remove element with ↵ > 0.9



Propagation of a straight crack

Evaluate the Energy Release Rate (ERR) through G-✓ integral (Destuynder et al., 1983), where ✓
is an auxiliary field defining a virtual displacement of the domain with

✓ =

(
e1 close to the tip (red region)
0 far from the tip (blue region)

Crack tip (lt ,0)

Virtual ✓ field
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Griffith and gradient damage models give the same evolution:

G = Gc , no dependence on `



Propagation of a curved crack
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Loading: asymptotic mode-I displacement for propagation along a circular path



Initiation and nucleation tests

Propagation of an existing crack Nucleation in a homogenous bar

⌦ = (0,L) ⇥ (�H,H)
e1

e2

ut = Ut on @⌦ \ �0

Crack tip (lt ,0)
l0

�tGriffith criterion
Sharp crack

Stress criterion

Nucleation at a V-notch ?



Nucleation at a notch

3- and 4-point bending tests

55

40
15

5

13.3

zoom in the notch tips

Experimental results from:
4-point bending on Duraluminium by Yosibash et al, IJF 2004
3-point bending on PMMA by Dunn at al IJSS 1997 and IJF 1997



Nucleation at a notch
Pac-man geometry for the study of the crack nucleation at a notch

� π/� π/�
���

���

���

���

���

���
� π/� π/�

ω

λ(
ω
)

sin(2�(⇡ � !̄)) + � sin(2(⇡ � !̄)) = 0

Asymptotic solution in linear elasticity

�✓✓ = kr
��1

F (✓), �rr = kr
��1 F

00(✓) + (�+ 1)F (✓)
�(�+ 1)

, �r✓ = �kr
��1 F

0(✓)

(�+ 1)
,

where k =
�✓✓

(2⇡ r)��1

����
✓=0

is a generalized stress intensity factor

F (✓) = (2⇡)��1 cos((1+ �)✓)� f (�, !̄) cos((1 � �)✓)

1 � f (�, !̄)
, f (�, !̄) =

(1+ �) sin((1+ �)(⇡ � !̄))

(1 � �) sin((1 � �)(⇡ � !̄))
.

D. Leguillon and E. Sanchez-Palencia, 1987



Nucleation at a notch

Computational method
Assume separation of scale between inner damage
problem and outer linear elastic problem
Apply asymptotic linear elastic solution at the
boundary
Generalized SIF k is the loading parameter (time)
⌦ large enough, mesh small enough

The stress are singular for !̄ < ⇡/2

For !̄ = 0 (a crack), ERR > 0: a crack propagates according to Griffith model.

For any !̄ > 0, ERR=0: the stresses are not singular enough to release enough elastic energy
for a "Griffith" crack.

For !̄ ' ⇡/2 the stress field is almost uniaxial. The critical stress value at nucleation can be
estimated by the one of a bar in traction:

�c =

r
3EGc

8`



Nucleation at a notch

Damaged crack lips: ↵ = 1 on �

Free crack lips:
∂↵
∂n

= 0 on �



Critical loading at nucleation



Nucleation at a notch: critical loading at nucleation

Recovering the limit cases : !̄ ! 0 (crack) and !̄ ! ⇡/2 (bar)

Crack: G = Gc Bar: � = �c /
r

GcE

`

AT1 model, Red : damaged crack lips, blue : undamaged crack lips



Comparison with experimental results: V-notch

Critical generalised stress intensity factor at nucleation
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Full structure numerical computation

Critical force P at initiation
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U-notch: DENT test

Consider the regime a � `, a � ⇢

Study the influence of ⇢/`

Simplify the problem by using asymptotic solution in linear elasticity as a BC



U-notch

Gradient damage vs experimental results for AT1



U-notch



A first summary

Some conclusions from U- and V- notches

1 The local energy minimisation principle on the gradient-damage model

conciliates the stress and toughness criteria.

2 The results are in quantitative agreement with experiments, on many

materials and geometries.

3 No need for ad-hoc nucleation criteria in this framework.



Influence of imperfections: traction of bar with an hole

W

L

D ut = Ute1

�max ' 3�1 for D ⌧ W

Critical loading of a bar without the
hole:

U0(`) = L

r
3Gc

E8`
, �0(`) =

r
3GcE

8`

Two key parameters:
D

W
,

`
D



Crack nucleation in an infinite domain containing an elliptical hole

u
·e

1
=

0

u · e2 = 0

⌦ u = U
R

a
⇢a

Elliptical arc

�

A
(a)

h =
ah
⇢

h = ⇢2ah

h =
R

100

(b)

(a) Problem setting and loading conditions. (b) Typical mesh used for numerical experiment

An analytical solution is available, with maximum stress at A given by

�✓✓ = �

✓
1+

2
⇢

◆

We apply the asymptotic solution for linear elasticity on the boundary



Crack nucleation in an infinite domain containing an elliptical hole

Elastic phase damage nucleating crack nucleating

Critical load for damage nucleation
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Crack nucleation in an infinite domain containing an elliptical hole

Critical load for the nucleation of a full crack with ↵ = 1 on a band

The case of a circular hole

10�1 100 101 102

Relative defect size a/`
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I II III
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-0.33

I (small hole) - � = �0: The effect of the hole is filtered out in the relative
large processing zone. Nucleation as in a homogeneous bar.
II (a ⇠ `) - Non-trivial transition zone with the material scale effect
III (large hole) - � = �0/3: Nucleation at end of the elastic phase.



Crack nucleation in an infinite domain containing an elliptical hole

Critical load for the crack nucleation: shape effect
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For ⇢ = 0.1 and a � ` we recover the scaling law of a crack: � /
r

EGc
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Crack in a domain of finite width and scale effects

Critical load for crack initiation
Results for H = 1, ` = 0.04

�G
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s
ĒGc cos(

a⇡
2H )
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a/�

a ⌧ ` Stress criterion (no effect of the defect)
a � ` Griffith criterion (no effect of the the internal length)
a ' ` "Mixed" regime



Conclusions

Quantitively accurate results for crack nucleation on different geometries.

V-notch and U-notch experimental results can be used to accurately estimate
the parameters of the models.

No need for additional local ad-hoc nucleation criterion, the energy
minimisation principle implies both.

This is a nonlinear damage model, not only a criterion for the limit of validity
of linear elasticity: can predict post-critical behaviour.

Crack nucleation is a structural stability problem.



Movies

file:///Users/maurini/ownCloud/presentations/17-mephy/../src/Media/128061-transient-b-1024.mov
file:///Users/maurini/ownCloud/presentations/17-mephy/../src/Media/1282061-transient-top-b-1024.mov


End

FEniCS/python based, parallel open-source demo codes in the form of interactive
on-linejupyter-notebook available here (no installation required)
https://notebooks.azure.com/cmaurini/libraries/varfrac
Scripts reproducing most of the results of this presentations are available
(thanks to Tianyi Li and Erwan Tanné):
https://bitbucket.org/cmaurini/gradient-damage
See also Blaise Bourdin’s fortran90 code (https://bitbucket.org/bourdin/mef90-sieve)
Tanné, E., Li, T., Bourdin, B., Marigo, J.-J., Maurini, C. (2018). Crack nucleation in
variational phase-field models of brittle fracture. Journal of the Mechanics and Physics of
Solids, 110, 80–99. https://doi.org/10.1016/j.jmps.2017.09.006


	Damage
	Propagation
	Traction
	Notch
	Hole
	End
	Appendix
	Backup Slides


