Sur deux approches du cloquage des films minces

G. Parry*, A. Cimetière, C. Coupeau, J. Colin

Phénomène de cloquage spontané des films minces sur substrats

Observations par microscopie optique

- Présence de fortes contraintes de compression σ :
- thermiques (coefficients de dilatation)
- externes par sollicitations mécaniques (compression, nano-indentation...)
- intrinsèques liées à la technique de dépôt (~GPa par pulvérisation ionique)
- Possibilité de cloquage et délaminage des films minces: apparition de décollements de structures et dimensions très variées

Phénomène de cloquage spontané des films minces sur substrats

✓ Différents faciès de flambage (C. Coupeau et al.)

SOMMAIRE

- I. Modèle de plaque non linéaire géométrique avec contact
- Modélisation du flambage unilatéral des films minces.
- Exploration des équilibres de cloquage.
- Prédiction des structures de cloquage.

II. Système modèle constitué de barres et de ressorts

SOMMAIRE

- I. Modèle de plaque non linéaire géométrique avec contact
- Modélisation du flambage unilatéral des films minces.
 - Exploration des équilibres de clo
- Prédiction des structures de c

II. Système modèle constitue de barres et de ressorts

1. Modélisation du flambage Un exemple de résolution analytique: la ride droite

- Résolution rendue simple par l'invariance suivant la longueur
- Mode de flambage et contrainte critique

$$w(y) = w_m rac{1 + \cos \left([(N_0 - N_{yy})/D]^{1/2} y
ight)}{2}$$
 $N_{yy} = N_c = rac{4D\pi^2}{b^2}$

• Hauteur de la ride en fonction du niveau de l'intensité des contraintes dans le film:

$$w_{m} = h \left[rac{4}{3} \left(rac{N_{0}}{N_{c}} - 1
ight)
ight]^{1/2}$$

1. Modélisation du flambage Bilan de la modélisation

✓ Difficulté de la résolution analytique

Intégration numérique (éléments finis)

Calculs en grands déplacements (non-linéarité géométrique)

Cas du support rigide
 Introduction du contact unilatéral sans frottement

Cas du support élastique
 Couplage d'éléments solides (3D) et d'éléments coques
 (2D)

SOMMAIRE

- I. Modèle de plaque non linéaire géométrique avec contact
 - Modélisation du flambage unilatéral des
- Exploration des équilibres de cloquage.
- Prédiction des structures de c

II. Modèle discret à basse barres et de ressorts

2. Exploration des structures de cloquage *Variation de l'état de contraintes*

On fait varier l'état de contraintes dans le film en contrôlant la compression du substrat

Contraintes induites dans le film (Hyp. $\varepsilon_{ij}^{substrat} = \varepsilon_{ij}^{film}$) $\Delta \sigma_{yy} = \frac{E_f}{E_s} \frac{1 - \nu_f \nu_s}{1 - \nu_f^2} \sigma_{yy}^{\exp} \ge 0 \qquad \Delta \sigma_{xx} = \frac{E_f}{E_s} \frac{\nu_f - \nu_s}{1 - \nu_f^2} \sigma_{yy}^{\exp} \le 0$ Cyclage possible

\checkmark Etape 1: compression uniaxiale du substrat (contrainte σ_0)

- Apparition de bandes rectilignes
- Création de rides droites stabilisées par une forte surcompression latérale

✓ Nickel(320nm)/Polycarbonate

✓ Etape 2: compression extérieure relâchée

2. Exploration des structures de cloquage *Transition ride-bulles:observations expérimentales*

- surcompression latérale: rides stables
- transition rides-bulles provoquée par une surcompression longitudinale
- film redéposé entre les bulles (contact avec le substrat)
- distribution périodique des bulles

Rapport des contraintes σ_{yy} et σ_{xx} : Paramètre critique déterminant dans la transition

2. Exploration des structures de cloquage modélisation par éléments finis

Hypothèses du calcul

- Prise en compte des non linéarités géométriques
- Eléments de coques
- Déformations membranaires finies et grandes rotations

Conditions aux limites

- Déplacements imposés sur les bords
- Conditions d'encastrement suivant la longueur
- Conditions de périodicité suivant la largeur
- support rigide (w≥0) (substrat)

2. Exploration des structures de cloquage calcul de la transition ride-bulle

- 7 Contrainte latérale : formation de la ride
- 7 Contrainte longitudinale : formation de la ride
- Etat final: Bulle complètement déposée sur le substrat

2. Exploration des structures de cloquage *Transition ride-bulles:résultats du calcul*

- suivi de la bifurcation et du régime post-critique
- point P_E: contact bulle-substrat
- point P_c: montée puis stabilisation au niveau du sommet de la bulle

2. Exploration des structures de cloquage *Transition ride-bulles:prévision numérique d'un claquage*

• Augmentation monotone du chargement conduit à une transition violente

2. Exploration des structures de cloquage *Transition ride-bulles:prévision numérique d'un claquage*

- Transition par claquage : flambage sous force décroissante
- Hystérésis \rightarrow charge critique différente en charge et en décharge
- Valeur critique du rapport de forme a/b au delà duquel un claquage survient

2. Exploration des structures de cloquage *Faits marquants*

 Caractérisation complète de la transition ride-bulles: ondulations naissantes → bulle déposée sur le substrat

 Calcul de la longueur d'onde optimale en fonction du chargement Caractérisation d'un point équi-énergétique → plusieurs longueurs d'ondes

• Mise en évidence d'un claquage au delà d'un rapport de forme critique a/b des bulles

Bon accord entre les calculs et l'expérimentation

2. Exploration des structures de cloquage *Transition ride-cordon:observation par AFM*

- apparitions localisées
- propagation progressive le long des rides droites

2. Exploration des structures de cloquage *Transition ride-cordon:calcul*

✓ Equilibre de cordon (calcul)

2. Exploration des structures de cloquage *Autres transitions prévues par le calcul*

✓ Transition bulles-cordon

• Augmentation de la contrainte transversale à partir d'une distribution périodique de bulles

• Exemple de calcul suscitant de nouvelles expérimentations

SOMMAIRE

- I. Modèle de plaque non linéaire géométrique avec contact
 - Modélisation du flambage unilatéral des
 - Exploration des équilibres de cloque
- Détermination de la structure de cloquage.

II. Modèle discret à bas de ressorts

3. Prédiction des structures de cloquage Solutions d'équilibre homologue

 b_2

12

✓ Paramètre de chargement adimensionnel

Il a pu être démontré que deux équilibres de même nature formés sur deux domaines délaminés homothétiques de rapport $\alpha = b_2/b_1$ (cas des bandes) subissent la même transition pour une même valeur du paramètre adimensionnel: $\sigma b^2 \qquad b^2$

ou

 $\epsilon \overline{h^2}$

Ce paramètre permet de s'affranchir des paramètres géométriques (épaisseur du film, largeur des bandes)

 $\overline{E}h^2$

• Exemple de deux rides \mathcal{R}_1 et \mathcal{R}_2 :

b.

Si \mathcal{R}_1 subit une transition pour un état de contrainte σ_1 , alors \mathcal{R}_2 subit la même transition pour un état de contrainte σ_2 telle que: $\sigma_2(\mathbf{b}_2/\mathbf{h}_2)^2 = \sigma_1(\mathbf{b}_1/\mathbf{h}_1)^2$

3. Prédiction des structures de cloquage *Cartographie des équilibres*

✓ Bulles ou cordons ?

• Transition: valeur critique du coefficient de Poisson v (Audoly et al.)

• Preuve expérimentale de la coexistence des cordons et des bulles sur le même échantillon (*Coupeau et al.*)

Ni (50 nm) / PC

✓ Détermination de l'équilibre le plus stable pour un chargement donné

Espace d'étude: (β_t , β_l)

$$\beta_{t} = \frac{\bar{\sigma}_{yy}}{\bar{E}} \left(\frac{b}{h}\right)^{2}$$
$$\beta_{l} = \frac{\bar{\sigma}_{xx}}{\bar{E}} \left(\frac{b}{h}\right)^{2}$$

b: largeur de la bande h: épaisseur du film $\overline{\sigma_{yy}}$: contrainte transversale $\overline{\sigma_{xx}}$: contrainte longitudinale $\overline{E} = E/(1-v^2)$

• Chargement (β_t , β_l) donné $\rightarrow m$ équilibres différents

- Calcul de la densité d'énergie par unité de longueur: $e^k(\beta_t, \beta_l), k \in 1..m$
- Equilibre *i* stable si $e^{i}(\beta_{t}, \beta_{l}) = \min\{e^{k}(\beta_{t}, \beta_{l}), k \in 1..m\}$

Détermination des frontières

✓ Domaines de stabilité

 $rac{ar{\sigma_{yy}}}{ar{E}}$

Plan

Parry et al., Phys. Rev. E 74 (2006) 066601

- Cordons de téléphone :
- Niveaux de contraintes équibiaxiales d'intensité importante
- Bulles :
- Relaxation des contraintes latérales

•« Diagramme de phase » des états d'équilibre

• Pour un film donné, on peut connaitre le type d'équilibre présent en fonction de l'état de contrainte

 Inversement, forme des équilibres → informations locales sur l'état de contrainte

• Explication de la coexistance: largeur des bandes

- I. Modèle de plaque non linéaire géométrique avec constant
- Modélisation du flambage unilatéral des filses
- Exploration des équilibres de cloq
- Prédiction des structures de cl

II. Système modèle constitué de barres et de ressorts

Modèle simplifié

Système modèle constitué de barres et de ressorts

- Portion de bande délaminée largeur b longueur a → assemblage barres/ressorts
 ♥ comportement mécanique le plus proche possible de celui de la plaque
- Modèle simple: 2 ddl -> étude **analytique** de la transition ride-bulles

• Problème à deux paramètres

 ψ et ϕ caractérisent la forme de la structure

$$\theta = f(\phi, \psi)$$

- Moments de rappel
- Barres élastiques

Énergie potentielle. Identification des raideurs en traction/compression

Potentiel

$$V = \frac{1}{2}C_1\theta^2 + \frac{1}{2}C_2\psi^2 + \frac{1}{2}C_3\phi^2 + C\phi(\psi - \theta) + V_0$$

C₁, **C**₂, **C**₃, **C**: constantes de raideur

V_o: énergie de déformation membranaire

N: force par unité de longueur le long des bords

Termes de compression

Identification avec compression d'une plaque plane:

• compression suivant la longueur:

$$k_i = Eh\frac{b}{a}$$

• compression suivant la largeur:

$$k_i = Eh \frac{a}{b}$$

Gestion du contact

Le déplacement vertical **d** des rotules latérales est lié au déplacement latéral \mathbf{u}_2 et à l'angle $\boldsymbol{\theta}$:

$$d=(rac{b}{2}-u_2) an(heta)=rac{b}{2}\left(1-\epsilon_2
ight) an(heta)$$

Lorsque les rotules touchent le plan rigide (d=0), une force de réaction R apparaît.

Le déplacement d et la force de réaction R doivent satisfaire les relations suivantes:

Énergie potentielle : forme adimensionnelle

✓ Energie potentielle V du système:

$$\begin{split} \check{V} &= \tilde{a}\theta^2 + \tilde{a}\psi^2 + rac{1}{\tilde{a}}\varphi^2 + rac{2}{3}\varphi(\psi - \theta) + \tilde{k}\tilde{a}\epsilon_1^2 + \\ & ilde{k}\tilde{a}\left(1 - rac{1 - \epsilon_1}{\cos\varphi}
ight)^2 + ilde{k}\tilde{a}\left(1 - rac{1 - \epsilon_2}{\cos\theta}
ight)^2 + ilde{k}\tilde{a}\left(1 - rac{1 - \epsilon_2}{\cos\psi}
ight)^2 \\ &- \lambda d(\theta) \end{split}$$

avec $k = \frac{Ehb^2}{4\pi^2 D} = \frac{E}{\sigma_c} = \frac{1}{\epsilon_c}$: raideur en compression / raideur en flexion $\tilde{a} = a/b$: longueur/largeur de bulle ϵ_1 et ϵ_2 : déformations imposées dans les deux directions $\lambda = \frac{Rb}{2\pi^2 D}$: Force de réaction

Équations d'équilibre

• Choix du chargement:

 $\begin{cases} \epsilon_1 = \varrho \epsilon \\ \epsilon_2 = \epsilon \end{cases}$ avec ϱ un paramètre caractéristique du chargement

Les équilibres vérifient: En absence de contact: $V_1(arphi,\psi,\epsilon)=V(arphi,\psi,\lambda=0,\epsilon)$ $\left\{egin{array}{l} \displaystylerac{\partial V_1}{\partial \psi}=f_1(arphi,\psi,\epsilon)=0\ \ \displaystylerac{\partial V_1}{\partial arphi}=f_2(arphi,\psi,\epsilon)=0 \end{array}
ight.$ En présence de contact: $V_2(\psi,\lambda,\epsilon)=V(arphi=rac{b}{a}\psi,\psi,\lambda,\epsilon).$ $egin{aligned} &rac{\partial V_2}{\partial \psi} = g_1(\psi,\lambda,\epsilon) = 0 \ &rac{\partial V_2}{\partial \lambda} = g_2(\psi,\lambda,\epsilon) = 0 \end{aligned}$

Etude de la stabilité au sens de la seconde variation du potentiel

 $rac{\partial^2 V}{\partial u_i \partial u_j}_{1 \leq i \leq 2, 1 \leq j \leq 2}$

Résultats: nature des équilibres, effet de taille, stabilité

• Bulles courtes

Déformation $\varepsilon = 15.10^{-3}$

Rapport de forme: a/b = 0.9

Conclusion

⇒Existence de deux équilibres sous forme de bulle

- équilibre I : bulle peu profonde
- équilibre II: bulle déposée

bulles courtes \rightarrow équilibre I stable bulles longues \rightarrow équilibre II stable \rightarrow paradoxe cohabitation bulles courtes et longues

⇒ Perte de stabilité associée à un élancement a/b critique

Au delà d'un rapport a/b critique, I devient instable et II devient stable \rightarrow à rapprocher du **claquage** observé expérimentalement et numériquement.

⇒Modèle

Bonne représentation des phénomènes observés (nombre et nature des équilibres, étude de stabilité)

Prédictif au niveau des valeurs (valeurs critiques chargement, longueurs critiques)