

Residual Creases

mechanics of partly (un)folded structures

Dr Mark Schenk

Department of Aerospace Engineering, University of Bristol, United Kingdom www.markschenk.com/research/

Workshop: Folding and Creasing of Thin Plate Structures March 26th 2015 – ESPCI, Paris

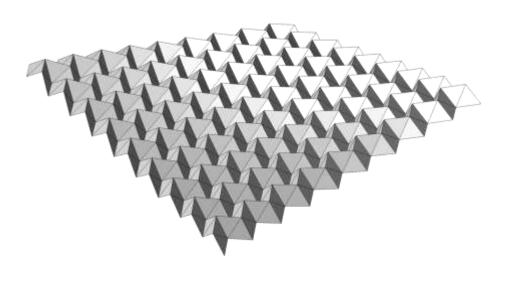
Introduction

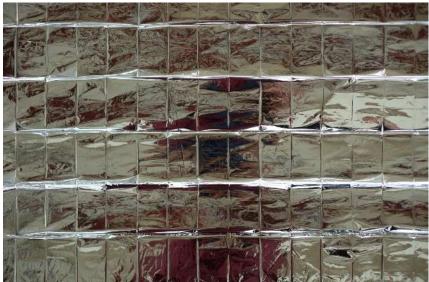
Mark Schenk Lecturer in Aerospace Engineering University of Bristol, UK

Work done at Surrey Space Centre and University of Cambridge.

Talk outline

- brief history of mechanics of partly (un)folded structure
- case study of deployable structure with residual creases
- challenges and future directions

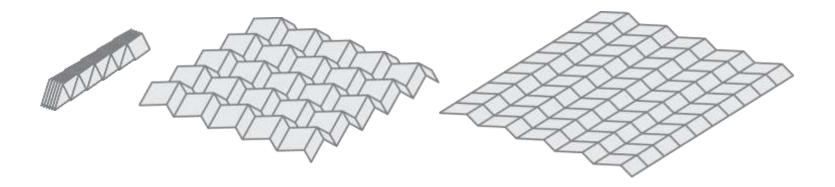




partly-folded or partly-unfolded structures

- effect of folds and creases on global structural properties
- dominated by folding kinematics, but requires structural mechanics

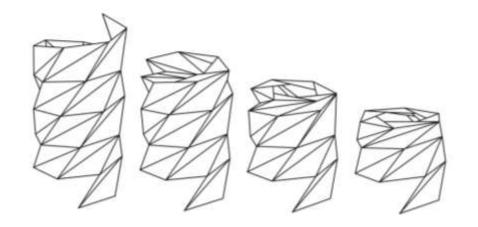
<u>examples</u>: morphing structures (compliant shell mechanisms), deployable structures with residual creases, *etc.*



whistle-stop tour of mechanics of folded structures

kinematics

- rigid origami (rigid panels and frictionless hinges)
- quadrilateral meshes (Kokotsakis, 1933; Tachi, 2009; Stachel, 2010)
- curved creases (Huffman, 1976; Duncan and Duncan, 1982)

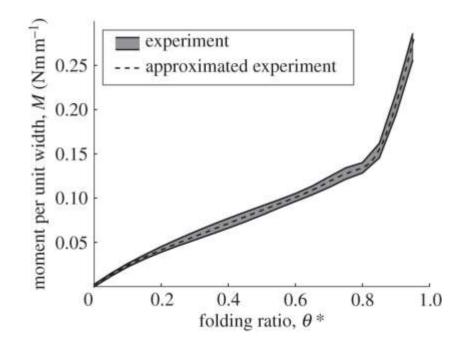


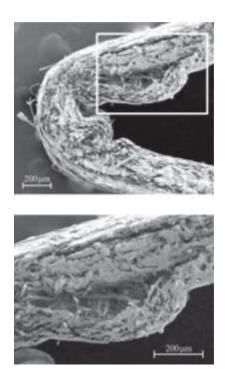
mechanics : kinematics + torsion springs at folds

• *linear* torsion springs

structural analysis

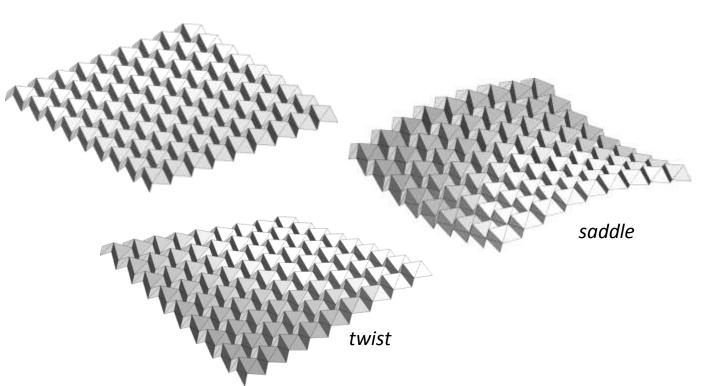
(Resch and Christiansen, 1971; Guest and Pellegrino, 1996; Okuizumi *et al.*, 2011)

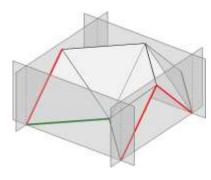

equivalent stiffness of partly-folded sheets (Wei, et al. 2013)

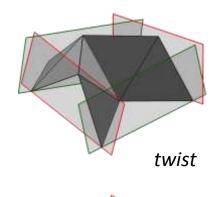

analysis of multi-stability

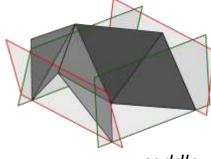
(Hanna, et al. 2014; Silverberg, et al. 2014; Waitukaitis, et al. 2015)

mechanics : kinematics + torsion springs at folds

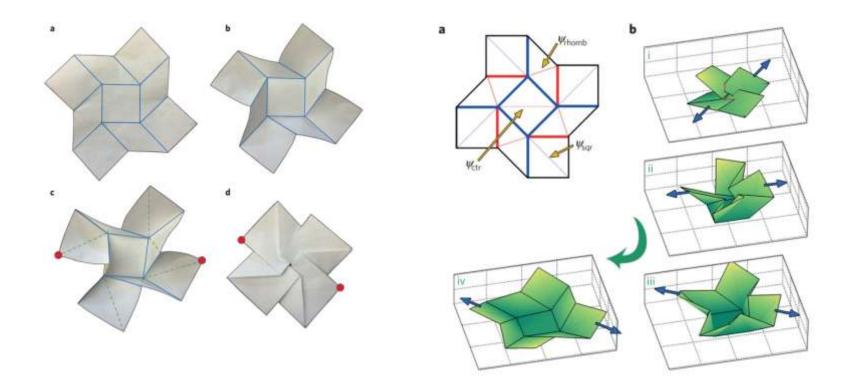

• non-linear torsion springs (Yasuda, et al. 2013)






mechanics: deformation between the creases

- bending along diagonals of quadrilateral elements (Schenk and Guest, 2010-2013; Wei *et al.*, 2013)
- introduces additional degrees of freedom

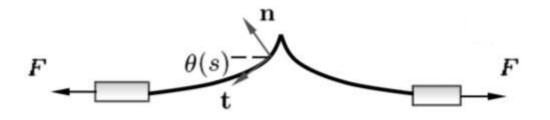


saddle

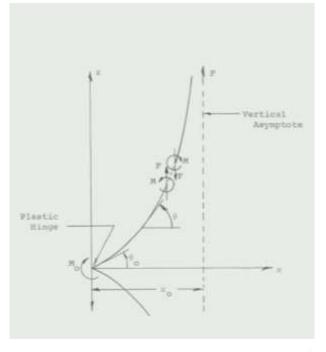

mechanics: deformation between the creases

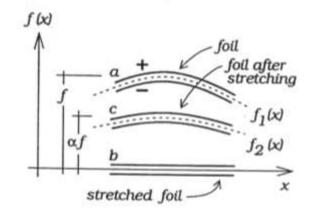
recently published work: bending of facets provides additional degrees of freedom and multi-stability (Silverberg *et al.,* 2015)

mechanics: deformation between the creases


- <u>discrete</u> deformations
 - triangulating quadrilateral panels & linear springs
 (Schenk and Guest, 2010-2013; Silverberg, et al. 2014-2015)
 - folding of constrained facets
 (Lobkovsky *et al.*, 1995-1996;
 Filipov *et al.*, 2014)

mechanics: elastic deformation between the creases


- <u>continuous</u> deformations : linear hinges with elastic facets
 - engineering beams (Papa and Pellegrino, 2008; Furuya et al., 2005)
 - elastica (MacNeal and Robbins, 1976; Lechenault et al. 2014)



• necessity for curved creases (Dias *et al.,* 2012-2014)

mechanics: elasto-plastic modelling

- plastic hinges : manufacturing
 (Duncan and Duncan, 1981; Schenk *et al.*, 2011)
- plastic hinges and elastic facets
 (MacNeal and Robbins, 1967; Hedgepeth, 1981)
- plastic deformation of a smoothly deformed foil (Greschik, 1996)

A look towards the future...

A brief look towards the future:

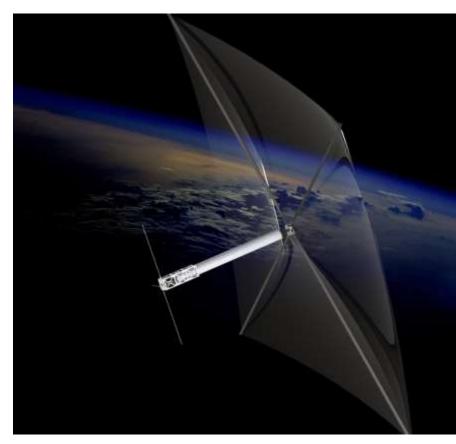
• elasto-plastic modelling of the creases and interlying material

• **detailed modelling** of fold lines : moving away from mechanical trends, to accurate (surrogate-)models

• interactions between creases: **vertices**!

Case Study: Deployable Space Structures

InflateSail

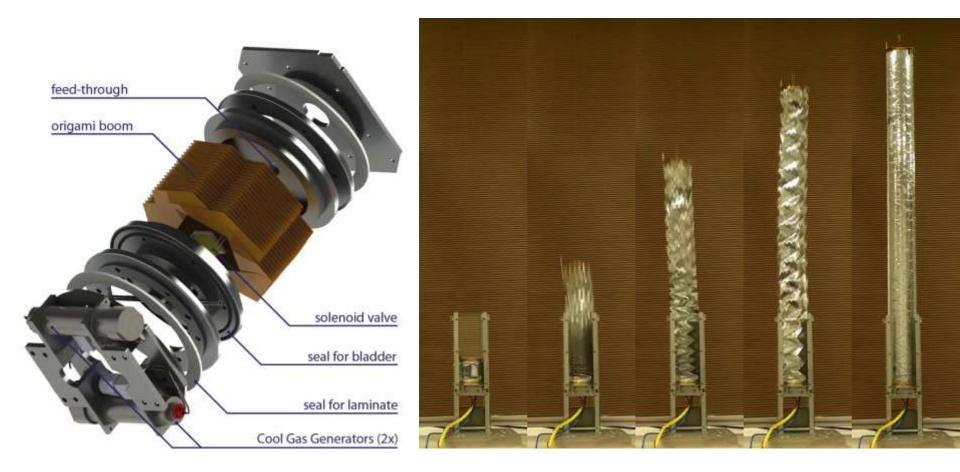

InflateSail: technology demonstration mission

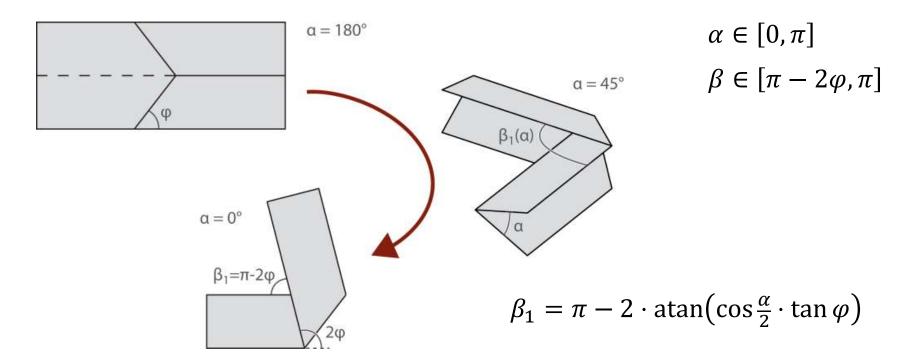
3U CubeSat (100 x 100 x 340 mm)

- deploy 10 m² gossamer sail
- deploy 1 m long inflatable mast

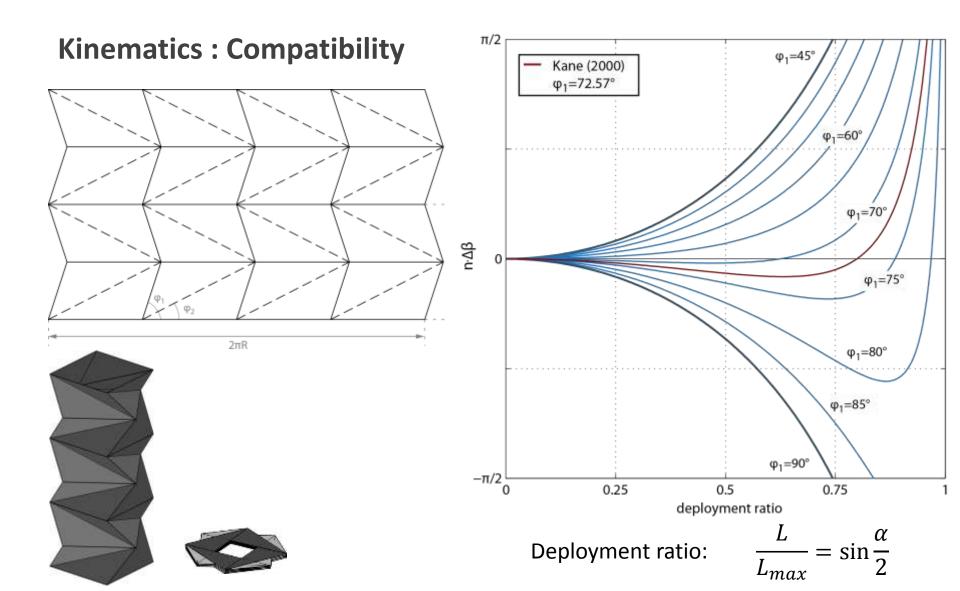
Objective: demonstrate feasibility of drag augmentation to de-orbit satellites from LEO

EU FP7 funding / QB50 launch PI: Prof. Vaios Lappas

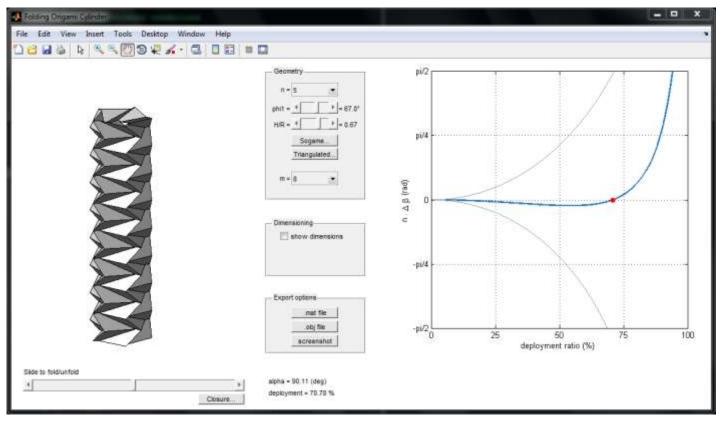




Deployable Origami Mast (<u>video</u>)

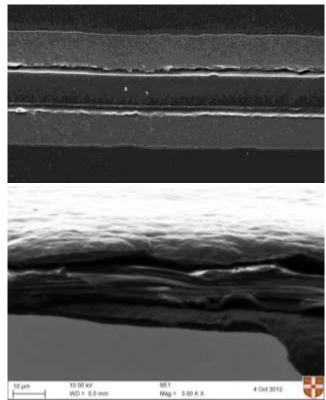


Kinematics : Rigid Origami


building block: reverse fold

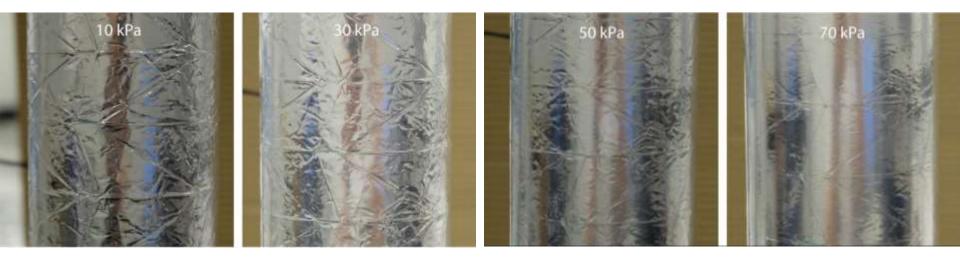
the enclosed angle β_1 is a strictly increasing function of α

Parametric Design Tool



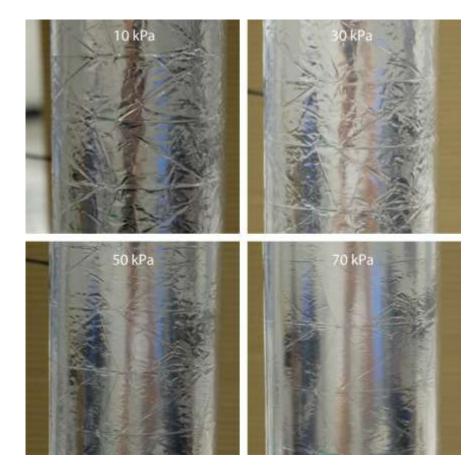
http://www.markschenk.com/research/#software

<u>Schenk, M.</u>, Kerr, S., Smyth, A.M. & Guest, S.D. (2013), "*Inflatable Cylinders for Deployable Space Structures*" Proceedings of the First Conference Transformables 2013, 18–20th September 2013, Seville, Spain.

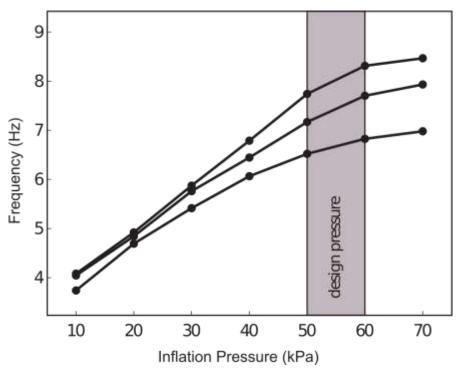

Inflatable Boom : Membrane Material

- laminate of Aluminium-Mylar-Aluminium (14.5/16/14.5 \approx 45 μ m)
- the Aluminium layers provides stiffness, and polymer layer adds toughness
- limited thickness of membrane due to plastic deformation (folding and rigidisation)

Inflatable Boom : Strain-rigidisation


- ensure long-term structural performance after deployment
- <u>strain-rigidisation</u> : permanently remove folding creases by plastic deformation of aluminium-polymer laminate

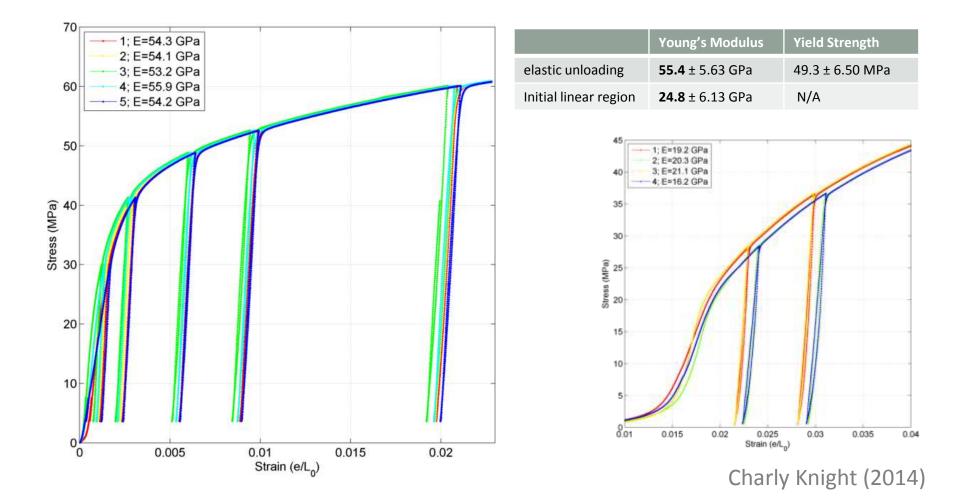
Inflatable Boom : Strain-rigidisation


- investigate efficacy : measure boom against inflation pressures
- first natural frequency as indication of stiffness: $EI \propto \omega_n^2$
- theoretical rigidisation pressure

$$P = \sqrt{\frac{4}{3}} \frac{\sigma_y t}{R} \approx 50 - 60 \ kPa$$

Inflatable Boom : Strain-rigidisation

- recovery up to approximately
 50% of theoretical stiffness
- Experimental! No predictions of stiffness (or strength) due to residual creases


• numerical prediction, *e.g.* feed imperfections into FEM?

Viquerat, A, <u>Schenk, M.</u>, Sanders, B. & Lappas, V. J. (2014), "*Inflatable Rigidisable Mast For End-Of-Life Deorbiting System*" European Conference on Spacecraft Structures, Materials and Environmental Testing (SSMET) 2014, April 1–4, Braunschweig, Germany.

Inflatable Boom : Material Characterisation

- accurately measuring the material properties (E and σ_Y) was challenging!
- ASTM E-345 : "Standard Test Methods of Tension Testing of Metallic Foil"
- define a yield point by 0.2% proof stress σ_Y ; however, tensile tests gave inconsistent results and a <u>very low</u> E for Aluminium foils: <u>15-25 GPa</u>

cause: (negligibly) non-flat material!

- Lessons learned:
 - measuring material properties of thin membranes is tricky!
 - easy to find trends that give good approximations (power laws, etc.) but hard to get accurate numbers.
 - account for non-flatness of the base material (low effective E)
 - common measurement techniques for the hinge stiffness

Gossamer Sails

Fernandez, <u>Schenk</u>, Prassinos, Lappas and Erb (2013), "*Deployment Mechanisms of a Gossamer Satellite Deorbiter*" 15th European Space Mechanisms and Tribology Symposium 2013 (ESMATS 2013), 25–27th September 2013, Noordwijk, The Netherlands.

Gossamer Sails

Residual creases in membranes:

- flatness vs reflectivity
- low in-plane modulus
- uncertain deployed dimensions
- increased bending stiffness (IKAROS mission)

Conclusions

Conclusions & Future Work

- elasto-plastic deformations (folds and facets)
- interactions between creases (vertices)

 accurately measuring the hinge stiffness (not order of magnitude) : develop common measurement techniques

- incorporating low-level analysis into high-level models

Questions

Thank you!

Mark Schenk (M.Schenk@bristol.ac.uk)

References

Duncan J, Duncan J, Sowerby R and Levy B (1981), "Folding without distortion: Curved-line Folding of Sheet Metal", Sheet Metal Industries. Vol. 58(7), pp. 527-533.

Duncan JP and Duncan JL (1982), "Folded Developables", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. Vol. 383(1784), pp. 191-205.

Filipov ET, Tachi T and Paulino GH (2014), "Toward optimization of stiffness and flexibility of rigid, flat-foldable origami structures", In 6th International Meeting on Origami in Science, Mathematics and Education (60SME). University of Tokyo, August 10 -- 13, 2014.

Furuya H, Inoue Y and Masuoka T (2005), "Deployment Characteristics of Rotationally Skew Fold Membrane for Spinning Solar Sail", In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Austin, Texas, 18 - 21 April, 2005. (AIAA 2005-2045)

Greschik G and Mikulas M (1996), "On imperfections and stowage creases in aluminum-rigidized inflated cylinders", In 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Salt Lake City, Utah, 18-19 April, 1996. (AIAA-96-1332)

Guest SD and Pellegrino S (1996), "The Folding of Triangulated Cylinders, Part III: Experiments", ASME Journal of Applied Mechanics. Vol. 63(1), pp. 77-83.

Hanna BH, Lund JM, Lang RJ, Magleby SP and Howell LL (2014), "Waterbomb base: a symmetric single-vertex bistable origami mechanism", Smart Materials and Structures. Vol. 23(9), pp. 094009.

References

Hedgepeth JM, MacNeal RH, Knapp K and MacGillivray CS (1981), "Considerations in the Design of Large Space Structures" (NASA CONTRACTOR REPORT 165744)

Huffman DA (1976), "Curvatures and Creases: A Primer on Paper", IEEE Transactions on Computers. Vol. C-25(10), pp. 1010-1019.

Kokotsakis A (1933), "Über bewegliche Polyeder", Mathematische Annalen. Vol. 107, pp. 627-647.

Lechenault F, Thiria B and Adda-Bedia M (2014), "Mechanical Response of a Creased Sheet", Phys. Rev. Lett.. Vol. 112, pp. 244301.

Lobkovsky A, Gentges S, Li H, Morse D and Witten TA (1995), "Scaling Properties of Stretching Ridges in a Crumpled Elastic Sheet", Science. Vol. 270(5241), pp. 1482-1485.

MacNeal RH and Robbins WM (1967), "Tensile Properties of a Tape with a Transverse Crease" (ARC-R-241)

Okuizumi N, Muta A and Matsunaga S (2011), "Enhancement of a Spring-mass System Model for Numerical Simulations of Centrifugal Deployment Dynamics of Folded Square Membranes", In 28th International Symposium on Space Technology and Science. Okinawa, Japan, June 5--12, 2011. (2011-c-30)

Papa A and Pellegrino S (2008), "Systematically Creased Thin-Film Membrane Structures", Journal of Spacecraft and Rockets. Vol. 45(1).

Resch R and Christiansen HN (1971), "Kinematic Folded Plate System", In Proceedings of IASS Symposium on Folded Plates and Prismatic Structures. Vienna, Austria

References

Schenk M, Allwood JM and Guest SD (2011), "Cold Gas-Pressure Folding of Miura-ori Sheets", In International Conference on Technology of Plasticity (ICTP 2011); special issue Steel Research International. Aachen, Germany, September 25-30th, 2011.

Schenk M and Guest SD (2011), "Origami Folding: A Structural Engineering Approach", In Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (50SME). pp. 293-305. CRC Press.

Schenk M and Guest SD (2013), "Geometry of Miura-folded metamaterials", Proceedings of the National Academy of Sciences. Vol. 110(9), pp. 3276-3281.

Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T, Santangelo CD and Cohen I (2014), "Using origami design principles to fold reprogrammable mechanical metamaterials", Science. Vol. 345(6197), pp. 647-650.

Silverberg JL, Na J-H, Evans AA, Liu B, Hull TC, Santangelo CD, Lang RJ, Hayward RC and Cohen I (2015), "Origami structures with a critical transition to bistability arising from hidden degrees of freedom", Nature Materials. Vol. 14, pp. 389–39.

Stachel H (2010), "A kinematic approach to Kokotsakis meshes", Computer Aided Geometric Design. Vol. 27(6), pp. 428 - 437.

Tachi T (2009), "Generalization of Rigid Foldable Quadrilateral Mesh Origami", Journal of the International Association for Shell and Spatial Structures. Vol. 50(3), pp. 173-179.

Waitukaitis S, Menaut R, Chen BG-g and van Hecke M (2015), "Origami Multistability: From Single Vertices to Metasheets", Phys. Rev. Lett.. Vol. 114, pp. 055503.

Wei ZY, Guo ZV, Dudte L, Liang HY and Mahadevan L (), "Geometric Mechanics of Periodic Pleated Origami", Physical Review Letters. Vol. 110(21), pp. 215501.

Yasuda H, Yein T, Tachi T, Miura K and Taya M (2013), "Folding behaviour of Tachi-Miura polyhedron bellows", Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 469(2159) The Royal Society.