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Talk outline

- brief history of mechanics of partly (un)folded structure

- case study of deployable structure with residual creases

- challenges and future directions



A brief history…

partly-folded or partly-unfolded structures

• effect of folds and creases on global structural properties

• dominated by folding kinematics, but requires structural mechanics

examples: morphing structures (compliant shell mechanisms), 

deployable structures with residual creases, etc.



A brief history…

whistle-stop tour of mechanics of folded structures

kinematics

• rigid origami (rigid panels and frictionless hinges) 

• quadrilateral meshes (Kokotsakis, 1933; Tachi, 2009; Stachel, 2010)

• curved creases (Huffman, 1976; Duncan and Duncan, 1982)



A brief history…

mechanics : kinematics + torsion springs at folds

• linear torsion springs

structural analysis 
(Resch and Christiansen, 1971; 

Guest and Pellegrino, 1996; 

Okuizumi et al., 2011)

equivalent stiffness of partly-folded sheets (Wei, et al. 2013) 

analysis of multi-stability 
(Hanna, et al. 2014; Silverberg, et al. 2014; Waitukaitis, et al. 2015)



A brief history…

mechanics : kinematics + torsion springs at folds

• non-linear torsion springs (Yasuda, et al. 2013)



A brief history…

mechanics: deformation between the creases

• bending along diagonals of quadrilateral elements

(Schenk and Guest, 2010-2013; Wei et al., 2013)

• introduces additional degrees of freedom

saddle

twist

twist

saddle



A brief history…

mechanics: deformation between the creases

recently published work: bending of facets provides additional degrees 

of freedom and multi-stability  (Silverberg et al., 2015)



A brief history…

mechanics: deformation between the creases

• discrete deformations

– triangulating quadrilateral panels & linear springs

(Schenk and Guest, 2010-2013; Silverberg, et al. 2014-2015)

– folding of constrained facets 

(Lobkovsky et al., 1995-1996; 

Filipov et al., 2014)



A brief history…

mechanics: elastic deformation between the creases

• continuous deformations : linear hinges with elastic facets

– engineering beams (Papa and Pellegrino, 2008; Furuya et al., 2005)

– elastica (MacNeal and Robbins, 1976; Lechenault et al. 2014)

• necessity for curved creases (Dias et al., 2012-2014)



A brief history…

mechanics: elasto-plastic modelling

• plastic hinges : manufacturing

(Duncan and Duncan, 1981; Schenk et al., 2011)

• plastic hinges and elastic facets

(MacNeal and Robbins, 1967; Hedgepeth, 1981)

• plastic deformation of a smoothly 

deformed foil (Greschik, 1996)



A look towards the future…

A brief look towards the future:

• elasto-plastic modelling of the creases and interlying material

• detailed modelling of fold lines : moving away from 

mechanical trends, to accurate (surrogate-)models

• interactions between creases: vertices!



Deployable Space Structures

Case Study: 



InflateSail

InflateSail: technology demonstration mission

3U CubeSat (100 x 100 x 340 mm) 

• deploy 10 m2 gossamer sail

• deploy 1 m long inflatable mast

Objective: demonstrate feasibility of 

drag augmentation to de-orbit 

satellites from LEO

EU FP7 funding / QB50 launch

PI: Prof. Vaios Lappas



Inflatable Origami Mast

Deployable Origami Mast (video)

https://www.youtube.com/watch?v=-ihGgpfCG44


Inflatable Origami Mast

Kinematics : Rigid Origami

building block: reverse fold

the enclosed angle 𝛽1 is a strictly increasing function of 𝛼

𝛽1 = 𝜋 − 2 ⋅ atan cos 𝛼
2
⋅ tan𝜑

𝛼 ∈ 0, 𝜋

𝛽 ∈ 𝜋 − 2𝜑, 𝜋



Inflatable Origami Mast

𝐿

𝐿𝑚𝑎𝑥
= sin

𝛼

2
Deployment ratio:

Kinematics : Compatibility



Inflatable Origami Mast

Parametric Design Tool

http://www.markschenk.com/research/#software

Schenk, M., Kerr, S., Smyth, A.M. & Guest, S.D. (2013), "Inflatable Cylinders for Deployable Space Structures " Proceedings of the First Conference 
Transformables 2013, 18—20th September 2013, Seville, Spain.

MATLAB/guiOrigamiCylinder.m
MATLAB/guiOrigamiCylinder.m


Inflatable Origami Mast

Inflatable Boom : Membrane Material

• laminate of Aluminium-Mylar-Aluminium (14.5/16/14.5 ≈ 45μm)

• the Aluminium layers provides stiffness, 

and polymer layer adds toughness

• limited thickness of membrane due to

plastic deformation (folding and rigidisation)



Inflatable Origami Mast

Inflatable Boom : Strain-rigidisation

• ensure long-term structural performance after deployment

• strain-rigidisation : permanently remove folding creases by plastic 

deformation of aluminium-polymer laminate



Inflatable Origami Mast

Inflatable Boom : Strain-rigidisation

• investigate efficacy : measure 

boom against inflation pressures

• first natural frequency as 

indication of stiffness: 𝐸𝐼 ∝ 𝜔𝑛
2

• theoretical rigidisation pressure

𝑃 =
4

3

𝜎𝑦𝑡

𝑅
≈ 50 − 60 𝑘𝑃𝑎



Inflatable Origami Mast

Inflatable Boom : Strain-rigidisation

• recovery up to approximately 

50% of theoretical stiffness

• Experimental! No predictions 

of stiffness (or strength) due 

to residual creases

• numerical prediction, e.g. feed imperfections into FEM?

Viquerat, A, Schenk, M., Sanders, B. & Lappas, V. J. (2014), "Inflatable Rigidisable Mast For End-Of-Life Deorbiting System" European 
Conference on Spacecraft Structures, Materials and Environmental Testing (SSMET) 2014, April 1–4, Braunschweig, Germany.



Inflatable Origami Mast

Inflatable Boom : Material Characterisation

• accurately measuring the material properties (E and 𝜎𝑌) was challenging!

• ASTM E-345 : “Standard Test Methods of Tension Testing of Metallic Foil”

• define a yield point by 0.2% proof stress 𝜎𝑌; however, tensile tests gave 

inconsistent results and a very low E for Aluminium foils: 15-25 GPa



Inflatable Origami Mast

cause: (negligibly) non-flat material!

Young’s Modulus Yield Strength

elastic unloading 55.4 ± 5.63 GPa 49.3 ± 6.50 MPa

Initial linear region 24.8 ± 6.13 GPa N/A

Charly Knight (2014)



Inflatable Origami Mast

• Lessons learned:

– measuring material properties of thin membranes is tricky!

– easy to find trends that give good approximations (power laws, 

etc.) but hard to get accurate numbers.

– account for non-flatness of the base material (low effective E)

– common measurement techniques for the hinge stiffness



Gossamer Sails

Fernandez, Schenk, Prassinos, Lappas and Erb (2013), "Deployment Mechanisms of a Gossamer Satellite Deorbiter" 15th European Space 
Mechanisms and Tribology Symposium 2013 (ESMATS 2013), 25–27th September 2013, Noordwijk, The Netherlands.



Gossamer Sails

Residual creases in membranes:

• flatness vs reflectivity

• low in-plane modulus 

• uncertain deployed dimensions

• increased bending stiffness

(IKAROS mission)



Conclusions

Conclusions & Future Work

- elasto-plastic deformations (folds and facets)

- interactions between creases (vertices)

- accurately measuring the hinge stiffness (not order of 

magnitude) : develop common measurement techniques

- incorporating low-level analysis into high-level models



Questions

Thank you!

Mark Schenk (M.Schenk@bristol.ac.uk) 

mailto:M.Schenk@bristol.ac.uk
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