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Talk outline
- brief history of mechanics of partly (un)folded structure
- case study of deployable structure with residual creases

- challenges and future directions
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partly-folded or partly-unfolded structures

» effect of folds and creases on global structural properties

 dominated by folding kinematics, but requires structural mechanics

examples: morphing structures (compliant shell mechanisms),

deployable structures with residual creases, etc.
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whistle-stop tour of mechanics of folded structures

kinematics
* rigid origami (rigid panels and frictionless hinges)
e quadrilateral meshes (Kokotsakis, 1933; Tachi, 2009; Stachel, 2010)

e curved creases (Huffman, 1976; Duncan and Duncan, 1982)
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mechanics : kinematics + torsion springs at folds

* linear torsion springs

structural analysis

(Resch and Christiansen, 1971;
Guest and Pellegrino, 1996;
Okuizumi et al., 2011)

equivalent stiffness of partly-folded sheets (Wei, et al. 2013)

analysis of multi-stability
(Hanna, et al. 2014; Silverberg, et al. 2014; Waitukaitis, et al. 2015)
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mechanics : kinematics + torsion springs at folds

* non-linear torsion springs (Yasuda, et al. 2013)
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mechanics: deformation between the creases

* bending along diagonals of quadrilateral elements
(Schenk and Guest, 2010-2013; Wei et al., 2013)

* introduces additional degrees of freedom

saddle




A brief history...

mechanics: deformation between the creases

recently published work: bending of facets provides additional degrees
of freedom and multi-stability (Silverberg et al., 2015)
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mechanics: deformation between the creases

e discrete deformations

— triangulating quadrilateral panels & linear springs
(Schenk and Guest, 2010-2013; Silverberg, et al. 2014-2015)

— folding of constrained facets
(Lobkovsky et al., 1995-1996;
Filipov et al., 2014)
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mechanics: elastic deformation between the creases

e continuous deformations : linear hinges with elastic facets

— engineering beams (Papa and Pellegrino, 2008; Furuya et al., 2005)
— elastica (MacNeal and Robbins, 1976; Lechenault et al. 2014)
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* necessity for curved creases (Dias et al., 2012-2014)
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mechanics: elasto-plastic modelling

e plastic hinges : manufacturing L?/ o
(Duncan and Duncan, 1981; Schenk et al., 2011) l B
* plastic hinges and elastic facets (‘“\\ o

(MacNeal and Robbins, 1967; Hedgepeth, 1981)

e plastic deformation of a smoothly
deformed foil (Greschik, 1996)
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A brief look towards the future:
» elasto-plastic modelling of the creases and interlying material

* detailed modelling of fold lines : moving away from
mechanical trends, to accurate (surrogate-)models

* interactions between creases: vertices!
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Case Study:

Deployable Space Structures
' w
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InflateSail: technology demonstration mission

3U CubeSat (100 x 100 x 340 mm)

* deploy 10 m? gossamer sail

 deploy 1 mlonginflatable mast

Objective: demonstrate feasibility of
drag augmentation to de-orbit

satellites from LEO

EU FP7 funding / QB50 launch
Pl: Prof. Vaios Lappas




Inflatable Origami Mast
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Deployable Origami Mast ( )
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origami boom
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seal for laminate

Cool Gas Generators (2x)
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Kinematics : Rigid Origami

building block: reverse fold

\ =180 a € [0, ]

By =m — 2 -atan(cos$ - tan )

the enclosed angle 3 is a strictly increasing function of «
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Kinematics : Compatibility
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Inflatable Origami Mast

Parametric Design Tool
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http://www.markschenk.com/research/#software

Schenk, M., Kerr, S., Smyth, A.M. & Guest, S.D. (2013), "Inflatable Cylinders for Deployable Space Structures " Proceedings of the First Conference
Transformables 2013, 18 —20th September 2013, Seville, Spain.
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Inflatable Origami Mast

Inflatable Boom : Membrane Material

* |aminate of Aluminium-Mylar-Aluminium (14.5/16/14.5 = 45um)

* the Aluminium layers provides stiffness,
and polymer layer adds toughness

* |imited thickness of membrane due to
plastic deformation (folding and rigidisation) e
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Inflatable Boom : Strain-rigidisation

e ensure long-term structural performance after deployment

e strain-rigidisation : permanently remove folding creases by plastic

deformation of aluminium-polymer laminate
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Inflatable Boom : Strain-rigidisation

* investigate efficacy : measure
boom against inflation pressures

e first natural frequency as
indication of stiffness: EI &« w2

* theoretical rigidisation pressure

p= [22% L 50— 60 kPa
3 R




Inflatable Origami Mast

o

Inflatable Boom : Strain-rigidisation

ol

* recovery up to approximately 8l
50% of theoretical stiffness = 7|

* Experimental! No predictions £ 5|
of stiffness (or strength) due .
to residual creases

design pressure

10 20 30 40 50
Inflation Pressure (kPa)

 numerical prediction, e.g. feed imperfections into FEM?

Viquerat, A, Schenk, M., Sanders, B. & Lappas, V. J. (2014), "Inflatable Rigidisable Mast For End-Of-Life Deorbiting System" European
Conference on Spacecraft Structures, Materials and Environmental Testing (SSMET) 2014, April 1-4, Braunschweig, Germany.
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Inflatable Boom : Material Characterisation

* accurately measuring the material properties (E and oy) was challenging!

« ASTM E-345 : “Standard Test Methods of Tension Testing of Metallic Foil”

* define ayield point by 0.2% proof stress oy; however, tensile tests gave
inconsistent results and a very low E for Aluminium foils: 15-25 GPa
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cause: (negligibly) non-flat material!
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 Lessons learned:

— measuring material properties of thin membranes is tricky!

— easy to find trends that give good approximations (power laws,
etc.) but hard to get accurate numbers.

— account for non-flatness of the base material (low effective E)

— common measurement techniques for the hinge stiffness
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Gossamer Sails
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Fernandez, Schenk, Prassinos, Lappas and Erb (2013), "Deployment Mechanisms of a Gossamer Satellite Deorbiter" 15th European Space
Mechanisms and Tribology Symposium 2013 (ESMATS 2013), 25-27t September 2013, Noordwijk, The Netherlands.
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Residual creases in membranes:
* flatness vs reflectivity
* low in-plane modulus

* uncertain deployed dimensions

* increased bending stiffness
(IKAROS mission)
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Conclusions & Future Work
- elasto-plastic deformations (folds and facets)

- interactions between creases (vertices)

- accurately measuring the hinge stiffness (not order of
magnitude) : develop common measurement techniques

- incorporating low-level analysis into high-level models
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Thank you!

Mark Schenk (IV.Schenk@bristol.ac.uk)
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