Three Lectures on Interfacial Fracture Mechanics: ESPCI, October 2012

John W. Hutchinson, School of Engineering & Applied Sciences, Harvard University

Lecture #1: Overview. Crack tip fields, Basic solutions, Interface toughness and thin film
delamination as an illustration

Lecture #2: Special elastic mismatch effects, Origins of mixed mode toughness dependence,
Buckling delamination, Thermal barrier coating delamination & interface toughness

Lecture #3: Initiation of delamination vs. steady-state delamination in thin films & 3D effects,
Kinking of a crack out of an interface. Cracks approaching an interface: penetration vs.
kinking. Various applications.

References will included on the slides.
My own papers are available on my website http://www.seas.harvard.edu/hutchinson
These paper will be referenced in the format (year-paper#), e.g., (2012-3)



VARIOUS KINDS OF DELAMINATION CRACKING WE WILL CONSIDER Pg. 2
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Pg. 3
Crack Tip Fields for Bilayer Interface Joining Isotropic Elastic Solids (1992-2; pg.72) &

Dundurs parameters (2D elasticity for bilayers)
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materials.



Crack Tip Fields for Bilayer Interface Joining Isotropic Elastic Solids (1992-2; pg.72)
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K=K|+IIK2 &= | (1 'B] Wy, By Wy /r§
27 1+ﬂ — e X, >
On interface ahead of crack: Mz E2. Ve
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Crack opening displacements :
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Energy release rate: (1 - B%
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To make life simpler, most of our discussion willtake f=0= =0 but a =0

For these cases, the singular stress fields at the tip are identical to those for a homogeneous solid
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Some Basic Bilayer Solutions: Pg. 5
1) crack on an interface between two half spaces: reference cited in (1992-2)

> GOO 00
K, + iK, = (65 + ioc%)] + 2ie)(na)*(a)™ %2 2
gy, = Re[Kr12nr) "2, &y, = Im[Kr*)2nr) 2 41
,B:OZ> (KpKz):(G;;Gﬁ)Vﬂ'a, e
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271 E.\ 27
Valid for arbitrary large elastic mismatch with o #0 & £=0
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For most problems one can take £=0 to make life simple!!



Some Basic Bilayer Solutions: Pg.
2) Crack on an interface between two layers under general loading (1990-1)

The general solution has been obtained M / Interface

and tabulated in (1990-1) see this reference 1

or (1992-2) for full details & numerical tables. | _é‘g Solid | / 2 M
T_y. 3

The energy release rate, G, can be obtained Pz“é{ Solid 2 ) A-h-I“ \ E

by elementary energy accounting because of

steady-state character of the problem. ’ Neutral Axis
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Everything is the above formula is
given by simple formulas (1992-1)
except o(a,f,n), n=hlH
which is plotted & tabulated, 40°1




An illustration of the energy release rate calculation for a steady-state problem Pg.7

Energy in the system/thickness (prescribed P — force /thickness) M = Ph. /2
. . - 2
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Some special cases of bilayers (1992-2)

Homogeneous material
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Crack on an interface between two materials of equal thickness (1992-2)

Kl + 'EKI — 2"-"{§Mh 3/2 —i:“ . ﬂE}—lIEEr’u*[’u,ﬂ]

Recall: ¢= 1 In -7
2r  \1+p

We will revisit this example later
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Some special cases of bilayers (1987-1), (1992-2) Pg. 10

Homogeneous material

=
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2E

(ch—1+12|v| 2h‘3)
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Some special cases of bilayers: film on an infinitely deep substrate (1992-2) Pg. 11

1

G- = (P*h+12M2h*) i —PM{ e /
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An example: Uniformly stressed thin film on deep substrate Pg. 12

O O O, O

|

Before cracking Auxiliary problem
producing stress
intensity factors

Final cracked interface

P=och M=0=
o?h

G=— _ _
2E, p=0 £=0

K, =ovhcosw/\/2 =0.4345+h, K, =chsinw/ /2 =0.558c+h /2 (v =52.1°)

This applies for tensile stress in film (o>0) with K, > O:

If the film stress is compressive (o < 0), the formula predicts K, <0
the formula is not valid--the problem is approximately mode Il

Closed, mode Il crack. Only valid if friction is neglected. o< O : KI = O, K” = —07070\/ h



Mode | cracking in substrate driven by tensile stresses in film or coating (1989-2, 1992-2)

Gr Fiim {under Tenslon) png
! Glass Substrate /prior to release
o O ) 1 3N
Crack Path d
Neglecting elastic mismatch the basic solution gives \
_oh : Ki Ky
K, —ﬁ(cowﬁ\@((d —h)/d)sma))
oh [ .
K, :ﬁ(sma)—ﬁ((d—h)/d)cosa))

Depth of mode I crack

K, =0 with ©=52.1° = %:3.86, K,=0.5865+/h and G =0.343c°h/E

Compare with mixed mode delamination along interface

K,=0.4340+/h, K, =0.5560+h and G=0.500%h/E

Substrate delamination as mode | crack propagation is observed in systems where
the interface is relatively tough and the substrate is brittle. The stress in the film

or coating must be in tension. No mode | path exists in the substrate if the stress
is compression.

See Drory, Thouless & Evans (1988) for experimental observations for metal/glass systems.



pg.14

Mode | cracking within a film or coating driven by stress gradients

ty
Basic solution gives: o, * !
1 do 1 . N d
K, = d"?cos w+—=—d*?| —cos @ +—~=sin \
TR f dy MPNE “’j
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-1
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For a mode I crack to exist within layer with linear stress variation:
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Interface toughness—the role of mode mix (1992-2) K,,K, P81

Experimental finding: The energy release rate required to propagate
a crack along an interface generally depends on the mode mix, often with

larger toughness the larger the mode Il component -2
WLelw) (am?)

Interface Toughness:  T'.(w)

Propagation condition: G =T, (y) 30
A phenomenological interface toughness law 20
o () =T\ (1+tan*((L-2)p))
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Liechti & Chai (1992) data for an epoxy/glass
interface.

A =1= no mode dependence
A<<1= significant mode dependence



