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Context 

• Protecting occupants 
against crush 

– intrusion 
(survivable space) 

– accelerations 
(biomechanics) 

A. Post and T. B. Hoshizaki, Rotational acceleration, brain tissue strain, 
and the relationship to concussion, J Biomech Eng 137 (3), 2015 
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Context 

• Protecting occupants 
against crush 

– intrusion 
(survivable space) 

– accelerations 
(biomechanics) 

– overaccidents 
(rebounds) 
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Aim 

• In an almost functional analysis, the ideal 
shock absorber would display 

– Maximum energy absorbed 

– No stress overshoot 

– No elastic recovery 

… and would contribute to the rest of the 
structural behavior in normal situations while 
minimizing volume, mass, and total cost 
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Aim 

• Question: which physical mechanisms allow 
for such a behavior? 
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Plastic folding of metal tubes 

• Principle: 

10 S. Salehghaffari et al., Attempts to improve energy absorption characteristics of circular 
metal tubes subjected to axial loading, Thin-Walled Structures 48, 2010 



Plastic folding of metal tubes 

• Mechanisms and limits 

– Local geometric instability in the 
elastic-viscoplastic regime + 
compaction 

negative acoustic tensor (localization) 

stress recovery (compaction 
and conjugate buckling) 

Z. P. Bazant and L. Cedolin, Stability of structures: elastic, inelastic, fracture, and damage theories, Oxford Engineering Science, 1991 
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Plastic folding of metal tubes 

• Mechanisms and limits 

– Local geometric instability in the 
elastic-viscoplastic regime + 
compaction 

– Global geometric instability! 

S. Salehghaffari et al., Attempts to improve energy absorption characteristics of 
circular metal tubes subjected to axial loading, Thin-Walled Structures 48, 2010 
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Plastic folding of metal tubes 

• Mechanisms and limits 

– Local geometric instability in the 
elastic-viscoplastic regime + 
compaction 

– Global geometric instability! 

– Material instability (splitting)! 

S. R. Reid, Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers, Int J Mech Sci 35(12), 1993 
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Plastic folding of metal tubes 

• Mechanisms and limits 

– Local geometric instability in the 
elastic-viscoplastic regime + 
compaction 

– Global geometric instability! 

– Material instability (splitting)! 

– Peak load (limited SEA)! 

F. Mokhtarnezhad et al., Improving the crashworthiness characteristics of cylindrical tubes subjected to 
axial compression by cutting wide grooves from their outer surface, Int J Crashworthiness 14(6), 2009 
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Plastic folding of metal tubes 

• Mechanisms and limits 

– Local geometric instability in the 
elastic-viscoplastic regime + 
compaction 

– Global geometric instability! 

– Material instability (splitting)! 

– Peak load (limited SEA)! 

– Expensive numerical modeling! 
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Plastic folding of metal tubes 

• Possible improvements 

– Stabilizing components 

– Triggers 

– Shape optimization 

 

16 J. Marzbanrad et al., An energy absorption comparison of square, circular, and elliptic steel 
and aluminum tubes under impact loading, T. J. Eng. Env. Sci. 33, 2009 
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Fragmentation of laminates 

• Principle: 

Damien Guillon, Étude des mécanismes d'absorption d'énergie lors de l'écrasement progressif de structures composites à base de fibre de carbone, Thèse de doctorat 
de l’Université Paul Sabatier, 2008 
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Fragmentation of laminates 

• Mechanisms and limits 

– Fibre microbuckling and 
delamination leading 
to fragmentation 

19 
B. Budiansky, Micromechanics, Computers and Structures 16(4), 1983 

conjugate kink-bands 



Fragmentation of laminates 

• Mechanisms and limits 

– Fibre microbuckling and 
delamination leading 
to fragmentation 

– Global geometric and/or 
material instability! 
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Fragmentation of laminates 

• Mechanisms and limits 

– Fibre microbuckling and 
delamination leading 
to fragmentation 

– Global geometric and/or 
material instability! 

– Peak load (but high SEA)! 

– Impossible FEA modeling! 

T. Nadabe and N. Takeda, Numerical Analysis for Effect of Applied Shear Stress on Longitudinal Compressive Strength of Fiber Reinforced 
Composite Materials, MCE, 2014 
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Fragmentation of laminates 

• Possible improvements 

– Shape optimization 

– Triggers 

– Upscaling 

A. Johnson and A. K. Pickett, Impact and crash modelling of composite structures: a challenge for damage mechanics, 1999 
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Perspectives 

• The question of scales 

N. Feld, O. Allix, E. Baranger, J.-M. Guimard, 2011, 2012 & 2014 
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Perspectives 

• The question of scales 

• Future solutions: foams, honeycombs, 
origamis, microlattices… Similar problems? 
Fundamental mechanisms up to now: 

– Energy storage through plastic buckling/bending 

– Potential energy release through fragmentation 

– … other options? 
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