

Kinking and folding across materials and scales: fundamental mechanisms for shock energy absorption in transports

Nicolas Feld PSA Peugeot-Citroën

Outline

• Context and aim

• Plastic folding of metal tubes

• Fragmentation of laminates

• Perspectives

 Protecting occupants against crush

- Protecting occupants against crush
 - intrusion(survivable space)

- Protecting occupants against crush
 - intrusion(survivable space)
 - accelerations
 (biomechanics)

A. Post and T. B. Hoshizaki, *Rotational acceleration, brain tissue strain, and the relationship to concussion*, J Biomech Eng 137 (3), 2015

- Protecting occupants against crush
 - intrusion(survivable space)
 - accelerations(biomechanics)
 - overaccidents (rebounds)

Aim

- In an almost functional analysis, the ideal shock absorber would display F↑
 - Maximum energy absorbed
 - No stress overshoot
 - No elastic recovery

F_{crit}

... and would contribute to the rest of the structural behavior in normal situations while minimizing volume, mass, and total cost

U

Aim

• Question: which physical mechanisms allow for such a behavior?

Outline

• Context and aim

• Plastic folding of metal tubes

• Fragmentation of laminates

• Perspectives

• Principle:

S. Salehghaffari et al., Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading, Thin-Walled Structures 48, 2010

- Mechanisms and limits
 - Local geometric instability in the elastic-viscoplastic regime + compaction $M(w'', \dot{w}'') + P(w - w_0) = 0$

Z. P. Bazant and L. Cedolin, Stability of structures: elastic, inelastic, fracture, and damage theories, Oxford Engineering Science, 1991

- Mechanisms and limits
 - Local geometric instability in the elastic-viscoplastic regime + compaction
 - Global geometric instability!

- Mechanisms and limits
 - Local geometric instability in the elastic-viscoplastic regime + compaction
 - Global geometric instability!
 - Material instability (splitting)!

S. R. Reid, Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers, Int J Mech Sci 35(12), 1993

13

- Mechanisms and limits
 - Local geometric instability in the elastic-viscoplastic regime + compaction
 - Global geometric instability!
 - Material instability (splitting)!
 - Peak load (limited SEA)!

- Mechanisms and limits
 - Local geometric instability in the elastic-viscoplastic regime + compaction
 - Global geometric instability!
 - Material instability (splitting)!
 - Peak load (limited SEA)!
 - Expensive numerical modeling!

- Possible improvements
 - Stabilizing components
 - Triggers
 - Shape optimization

J. Marzbanrad et al., An energy absorption comparison of square, circular, and elliptic steel 16 and aluminum tubes under impact loading, T. J. Eng. Env. Sci. 33, 2009

Outline

• Context and aim

• Plastic folding of metal tubes

• Fragmentation of laminates

• Perspectives

• Principle:

Damien Guillon, Étude des mécanismes d'absorption d'énergie lors de l'écrasement progressif de structures composites à base de fibre de carbone, Thèse de doctorat de l'Université Paul Sabatier, 2008

- Mechanisms and limits
 - Fibre microbuckling and delamination leading to fragmentation

$$EIw'' + P(w + w_0) - T(w) = 0$$

conjugate kink-bands

- Mechanisms and limits
 - Fibre microbuckling and delamination leading to fragmentation
 - Global geometric and/or material instability!

- Mechanisms and limits
 - Fibre microbuckling and delamination leading to fragmentation
 - Global geometric and/or material instability!
 - Peak load (but high SEA)!

- Mechanisms and limits
 - Fibre microbuckling and delamination leading to fragmentation
 - Global geometric and/or material instability!
 - Peak load (but high SEA)!
 - Impossible FEA modeling!

At strain 5.5 %

T. Nadabe and N. Takeda, Numerical Analysis for Effect of Applied Shear Stress on Longitudinal Compressive Strength of Fiber Reinforced 22 Composite Materials, MCE, 2014

- Possible improvements
 - Shape optimization
 - Triggers
 - Upscaling

Outline

• Context and aim

• Plastic folding of metal tubes

• Fragmentation of laminates

• Perspectives

Perspectives

• The question of scales

Perspectives

- The question of scales
- Future solutions: foams, honeycombs, origamis, microlattices... Similar problems?
 Fundamental mechanisms up to now:
 - Energy storage through plastic buckling/bending
 - Potential energy release through fragmentation
 - … other options?