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Coming up!

Crack primer: Why are cracks interesting —how are they supposed to behave?

When things work ...
(When cracks behave as they are supposed to...)

Crack instabilities — when things don’t...( a very brief review — wait for next week for
more!)  (When Nature stops reading the text books...)

Fast Fracture in slow motion
(Dynamic fracture of gels)

A new theory of non-linear fracture mechanics
(A way out of this mess)

Where are we — where are we going?
(The origins of crack instabilities??)



Why Study Fracture ?

1. Fundamental open question:
Why are some materials brittle (e.g. glass)

...while others are ductile (e.g. iron) ?

e Discrepancies between theoretical predictions and
experimental observations (more on this later).



How Things Break — Naive Approach

O applied Assume that planes of atoms separate all at once

“Gapplied



How Things Break — Naive Approach

Atoms will dissociate when their binding energy is overcome
A ~50% strain is )

required to separate
> the atoms and break o
= the material. ~o0% strainis
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FracCture usualfy takes place already at~1% strain. /
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How Things Break — Crack Approach Capplied

Consider now the same material, this time with an elliptical
hole inside:

Inglis (1913) _ 1/2
(uniform applied stress o) Omax — Gapplied(1+(2|/p))

The cr as a stress “amplifier”

0-p—>0 = K(O-applied’ | )
r1/2

K(Gappiiea: 1) = “stress intensity factor”
“Oapplied
* The presence of a crack induces a stress singularity at its tip
* Bonds are then preferentially broken at the tip of the crack.

SN

The existence of a crack leads to a large decrease in the material’s
effective strength.



How Things Break — The (canonic) theory of fracture

Sharp cracks (p — 0) + Linear elastic material response

Ul

Linear Elastic Fracture Mechanics (LEFM)

Solves the displacement/ stress/ strain fields in a linear elastic medium in the
presence of a sharp crack.



Linear Elastic Fracture Mechanics (LEFM)

Main assumptions and results

1)| Small strains|(|inear elastic) up to dissipation (the “process zone”).

2) Auniversalfsingularity|(K-dominance): ¢ w =

K(O-applied I- V) “““ " ‘
o, = 2 5 (0;v)+0(1 Y
J N2 () o &

- K is called the “stress intensity factor” | T
. . . *e..] High d tributi
« %ij 1S a universal function T 5 X “Higher order contributions

Process Zone

3) Crack Stability:
Energy flux to the crack tip = Energy dissipated (Fracture energy)

G =17

I'"1s called the fracture energy and is a material property.



Material Strength:

Material Theoretical Practical Practical/Theoretical
Strength (GPa) | Strength (GPa) Strength
Iron 50 0.3 0.006
Copper 24-55 0.2 0.005
Titanium 31 0.3 0.009
Silicon 45 0.7 0.01
Glass 37 0.4 0.01
Plexiglass 0.05 0.01

T 1111

6(r) ~K-r 172

LRI

By focusing elastic energy into a stress field singularity at its tip.
Bonds are preferentially broken at the tip of a crack




The dynamics of propagating cracks are both interesting
and difficult to study:

Linear Elastic Fracture Mechanics (LEFM) < materials are linearly elastic everywhere

o(r) ~ 12

* Singular objects that propagate at v~information (sound) speeds
 Regularization of singularities < material properties

v O\

Ductile ? Brittle ?



Symmetry of The LEFM solution

There are three conventional fracture modes , which are characterized by the

symmetry of the loading on the crack plane.

4 Mode 1

R

Ipde I11

Mode II

Today we will concentrate on tensile loading

> Mode |



Equation of Motion for an Infinite Plate  (Mott 1948) A A A

Assume: 1. Straight line motion o
2. I'= Constant 0
3. Energy is conserved v
Er = K(l) +P(1)+2I'I= const=P(l,) +2I'l, |
use: U |

K(Vv ——j(ﬁtU)zd X = ;/Zj(axa’)deX:VZI 2C1 \ Y \

P(l)zj(aauﬂaaﬁ)d x =|-17C,
— 212 2 — 2
E C, V212 +C 17 +2r1=C |7 +2r1,

total
Fracture initiation (Griffith) condition:

Released Pot. Energy= Energy to create surface

0
Const- T
V = Const - (1— I/) V= VRaerigh. (1_ o2 | )

(L. B. Freund 1972)



Local energy balance = the same equation of motion for a crack;

Joc:GocBuB

Energy flux into

singular region

the singular region o~ 1T
I' )= v

-1/2

Geometry

and Loéding specific:

elastic energy released by a static crack

Dissipation

Total Energy flux = jocnoc: G(I,G) . (1'V/VR) =T % “fracture energy”

S Energy i

W@ﬂm%

ion at

e tip

v = VR[1-T/G(1,0)] |

Freund, Eshelby, Kostrov ,Willis ~ 1972



Characteristics of the Equation of motion

V = Vg (L-T/G(l,5))

Conditions:

» Linear elasticity until Dissipative Zone _);;;g%:: Dissipative Zone (DZ)

- Single crack % G~ 12

o : D

rD_Z_<< << rsmg . £ /

* Infinitely large medium — no “history” “q

dependence or memory T
- Higher order terms of o(r)

er Ifsing ]
o Distance from crack tip, r
Characteristics:

. VR = Asymptotic crack speed

* V/ isfirst order in time => a crack has no inertia
=> it should jump instantaneously to the value dictated by I and G



Testing the equation of motion: v = V-(1-I'/ G(l,6)) < I'= G(l,0) (1-v/VR)
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What happens for higher crack velocities?

Independently
measured I'(v)

' (kJ/m?)

I'=G (1- VIVy)

For v < 0.4V excellent agreement with the equation of motion

When v >V, something is wrong!



The explanation:

The Micro-Branching Instability At a critical velocity, V., the motion of a crack

becomes unstable

800

g(? At this point:
< % Velocity oscillates
g Structure is formed on the fracture surface
< 200
3 . :
< ohod Instability Mechanism :
Time ( usec) Local (micro-) crack branching
V<V V~Ve V>>Ve

g

(]

velocity m/s
D
o
o

Fraqgture
Surjace

Sid
Vie

The equation of motion holds only for single cracks!



Theoretical approaches to the instability

Cracks are frustratingly stable to any perturbation — no instability observed analytically
(J. Langer, M. Marder, J. R. Rice, M. Ada-Bedia, M. Ben-Amar,1. Procaccia....)

CPARARISTANH AT Bar WoARRI RIS WHAALLS RHAEHRG W BRI RRIAh el FagsiRative
AT Finit B MG GhR I dfAS K ahihase-field models
(M. Marder, D. Kessler, H. Levine, L. Sander, A. Needleman, F. Abraham, P. Gumbsch,
H. Gao, Vashishita, Kalia, Ortiz, ...)
Empirical ways to model the dissipative zone

In bofthsa e/l madels d lafidealbditloresler, H. Levine, A. Karma, H. Henry, V. Hakim ...

Wosasianena engeis 8y When 8o sizes aretaken 10,419 G ao, Oriiz, ...
(M. Marder, M. Falk, A. Needleman... _
Attempts to develop a fundamental theory of amorphous materials

(J. Langer, M. Falk, I. Procaccia, E. Bouchbinder, J. L. Barrat, A. Lemaitre...



Why 1s fracture such a hard problem to “break™?
Basically a wide range of time and length scales are coupled...

Rapid propagation:

Material Vg (M/s)
Glass 3300
PMMA 930
Homolite 900
Brittle steels 3500

Small length scales:

Material Dissipative zone size
Glass 1-10 nm
PMMA <1-5um
Homolite 1-10pum

Can we '(e'>'<perimentally) circumvent these difficulties?



“Yes we can!” — break “Jello™!
Fracture of polyacrylamide gels: sound velocity reduced by 2-3 orders of magnitude

Visualization system
Fast Camera

H gK}’Iﬁﬂﬁ% visualizgty . | !\- Computer
\ ' —

measurements of:

* (GiRek tip opening
13.8 % acrylamide

« pIsHAEAHER Fiel
(byP‘WK:Ie tracking

Soda-Lime glass 70,000,000

collimated
beam

Sample dimensions: 150 * 150 x 0.1 mm

Frame rate: 5000 frames/sec
( ~1 frame per 0.5-1 mm crack advance)



Brittle fracture in Gels is identical to that of other brittle amorphous materials:

Micro-branching in Gels:
« At a critical velocity a single crack becomes unstable to frustrated micro-branches

« Microbranches have the same functional form as In other brittle materials
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A. Livne, G. Cohen and J. F., Phys. Rev. Lett. 94, 224301 (2005)
A. Livne, O. Ben-David, and J. F., Phys. Rev. Lett. 98, 124301 (2007)



“3D” behavior

In both Gels and Glass micro-branches are formed in directed lines aligned
parallel to the propagation direction.




Micro-branching limits V to ~0.5Vy




Suppression of micro-branching = ??

Micro-branches (in gels): _
* are noise-triggered
« Have a minimum width, AZ

» Disappear when reaching a sample edge

When the sample width, h — AZ
* Number of effective noise sources reduced as h/AZ —1
» Branch-lines that are generated will quickly find an edge and disappear

=>» For thi




For very thin gels (thickness ~ minimum micro-branch width):
we can suppress the instability...
A new oscillatory instability appears at v ~ 0.9VR!




As a first step in understanding all of this complex stuff:

Let’s take a closer look at “simple” cracks

e Suppress instabilities (making the material’s thickness ~ 100um)
Compare to equation of motion for v< 0.9Cq

« Measure the structure of the near crack-tip region
PIV < measure the singular displacement field



Let’'s check the equation of motion for simple cracks: G=I"

Simple crack in an infinite medium for constant stress, :

V= Ve (1-T7 G(l,6)) © I'= G(l,5) (1-v/Vy)

1 w » w - ~
1-v° 8l
r=G= o 1-v/\, )
E 7« 0.8
L.B. Freund (1990) o
(&
= 0.6 o,,=15.7 kPa
14.9 kPa — | |
12.4 kPa — | |
047 10.4 kPa —
0 | 20 | 40

Crack length, I (mm)

The equation of motion works perfectly for an infinite system!
Does the (Eqg. motion) G=I" work for different geometries?

T. Goldman, A. Livne, J. Fineberg, Phys. Rev. Lett. 104, 1144301(2010).



Under different loading conditions: Cracks in an infinite strip
M. Marder, Phys. Rev. Lett. 66, 2484 (1991).
r=G=w [L-v-f(v)] ~w - Vb
¢°[1-(v/cg)T

Effective Mass — o0 as v — Cy
=>»cracks attain a singular inertia as v—Cg

0.7- \“““'\\ 1
e * ¢%0
(&) Infinite

~—

>

0.5 T N T

/b
Dynamics change when cracks feel the finite size of system
But /=G still describes the equation of motion of a simple crack!

T. Goldman, A. Livne, J. Fineberg, Phys. Rev. Lett. 104, 1144301(2010).



Energy Balance <& excellent agreement with LEFM predictions...

What more do we need?

While we are already here...
Let’s look at the predictions for the singular fields at crack tips

Or 50~ K(Gapplied’ | )
rl/2

K(Gappiied: 1) = “stress intensity factor”



Crack tip shape: a look at the fields surrounding the crack tip
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Comparison with LEFM - strain field: Syy(r,G:O)
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Approaching the tip takes us Beyond LEFM!

* Nonlinear zone surrounding crack tip
distortion of crack-tip profile

‘U, & Kju, < K’

K=#K'

- &, is far from LEFM predictions




Sketch of a New Theoretical framework near the crack tip:

Near a singularity =» high strains =» no material is linearly elastic!

stress—strain gqurve for Gels

0.1 0.2
Strain

In gels:
1. Stress-strain nonlinearity is known
2. Nonlinearity is significant at moderate (10-20%) strains:

= Extend LEFM to weakly nonlinear elasticity

A. Livne, E. Bouchbinder and J. F., Phys. Rev. Lett. 101, 264301 (2008)

E. Bouchbinder, A. Livne and J. F., Phys. Rev. Lett. 101, 264302 (2008)
E. Bouchbinder, A. Livne and J. Fineberg,, IMPS 57, 1568-1577 (2009)



|dea of the Theory Perform a controlled expansion in A

_ o of the fields and constitutive relation
When do nonlinearities become relevant? ‘ ‘ | ‘

o/u=¢ - 2-9.(0.1) G(r,0) =Au%@,d
K LEFI\E
-

Ratio of nonlinear/linear term ~ € ~ &€ gy~ :
D e AN e \1/?

(@)
Solve  |V:6=pduu=p V2IZU A
D

Define a critical strain, A, delineating the im@gr@pé}cggfomg@lﬁeari

o Ler,

Order A problem = LEFM
Interatomic separation

Drder A? problem:

P

K
4 (V0P 1 3uv(V-a@)+ AL 9(29 V) _ N0, 0%
I

A

_ _ + B.C.’s (zero stress crack faces) + loading
Nonllnearlty b Inhomogeneous term has the generic form:

The length sce K auh) nically
(in gels




0.2

Results: Strain fields — NL theory

0.2

0.1

r (mm) r (2mm)3

 Excellent (no free parameter) agreement with measurements
* Leading strain nonlinearity is 1/r !

r1/2 I
LEFM NL
term

« A dynamic length-scale exists (no length-scale in LEFM)
|, (v) oc T/E
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We now have:
An excellel

0.25 |

0.4

Good...
Better ...

Great!

0.3 0.2 0.1 0.0

X' (mm)

LEFM

— NL theory
—— A >>1 theory

E. Bouchbinder, A. Livnhe and J. Fineberg,
Science 327, 1359-1363 (2010).



The theory also supplies a dynamic scale: |,

What scales are important for crack instabilities?
A. Livne, G. Cohen and J. F,

Micro-branching Phys. Rev. Lett. 94, 224301 (2005)

<
= =
Ibranch 77

Oscillatory instabilities v>0.9C¢

~— N\

A. Livne, O. Ben-David, and J. F., Phys. Rev. Lett. 98, 124301 (2007) 2, ??

LEFM has no intrinsic scales...
Instabilities generate dynamic scales

=>» Instabilities might be described with scales ~ Inl given by the
weakly nonlinear theory 1?7?!



Next Step...
Utilize this new theoretical framework to go beyond single-crack dynamics
(e.g. Is this sufficient to understand the origin of crack instabilities..)



Summary:

We now understand “simple ” cracks in brittle materials!

v Equation of motion < Energy Balance
v Singular fields near crack tip < nonlinear elasticity matters
=> Worse singularity

= New intrinsic nonlinear length scale, |n|

What’s next:
Understanding crack instabilities...using |, . (Next week)

 The dynamics of crack instabilities and crack branching?
< perturb the correct “ground state”!

 Beyond brittle materials <> The near-tip stress field structure:
How does microscopic structure affect macroscopic behavior?



Thank You!



