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Le Petit Baigneur (1968) 

The USS Schenechtady (1943)  

– The ship that never moved 



Coming up!  

Crack primer: Why are cracks interesting –how are they supposed to behave? 

 

When things work … 

      (When cracks behave as they are supposed to…) 

 

Crack instabilities – when things don’t…( a very brief review – wait for next week for 

more!)     (When Nature stops reading the text books…) 

 

Fast Fracture in slow motion 

     (Dynamic fracture of gels) 

 

A new theory of non-linear fracture mechanics 

     (A way out of this mess) 

 

Where are we – where are we going? 

      (The origins of crack instabilities??)  



Why Study Fracture ? 

1. Fundamental open question: 

 Why are some materials brittle (e.g. glass) 

…while others are ductile (e.g. iron) ? 

2. Theory of dynamic brittle fracture is incomplete: 

  Important unresolved questions: Criteria for crack path 

    selection and crack instabilities.  

http://www.liquidinplastic.com 

 Discrepancies between theoretical predictions and 

   experimental observations (more on this later). 

? 



How Things Break – Naïve Approach 

Assume that planes of atoms separate all at once sapplied 

- sapplied 

sapplied 

- sapplied 

r 



How Things Break – Naïve Approach 
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Atoms will dissociate when their binding energy is overcome  

  A ~50% strain is 

required to separate  

the atoms and break  

the material.  

Fracture usually takes place already at ~1% strain. 

A ~50% strain is 

required to separate  

the atoms and break  

the material.  
Something is missing 

in this picture. 

? 



Consider now the same material, this time with an elliptical 

hole inside: 

• The presence of a crack induces a stress singularity at its tip 

• Bonds are then preferentially broken at the tip of the crack. 

smax = sapplied(1+(2l/r))1/2          Inglis (1913)  

  (uniform applied stress s) 

sapplied 

- sapplied 

l 

r 

How Things Break – Crack Approach 

The existence of a crack leads to a large decrease in the material’s 

effective strength. 

The crack acts as a stress “amplifier”  

    sr  0 = K(sapplied, l )  

              
 

                    K(sapplied, l)  “stress intensity factor” 

r1/2 



Solves the displacement/ stress/ strain fields in a linear elastic medium in the 

presence of a sharp crack. 

 Linear Elastic Fracture Mechanics (LEFM) 

Sharp cracks  (r   0)        +         Linear elastic material response  

How Things Break – The (canonic) theory of fracture  



Process Zone 

- sapplied 

 sapplied 

v 

Main assumptions and results 

1) Small strains (linear elastic) up to dissipation (the “process zone”). 

3) Crack Stability:  

    Energy flux to the crack tip  = Energy dissipated (Fracture energy) 

              G  =   G  

? 

2) A universal singularity (K-dominance): 
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Linear Elastic Fracture Mechanics (LEFM) 

• K is called the “stress intensity factor” 

• ij is a universal function  

Universal  

Singularity 

   Higher order contributions 

 G is called the fracture energy and is a material property. 



By focusing elastic energy into a stress field singularity at its tip.  

   Bonds are preferentially broken at the tip of a crack 

sr ~K∙r -1/2 

Material Theoretical 

Strength (GPa) 

Iron 50 

Copper 24-55 

Titanium 31 

Silicon 45 

Glass 37 

Plexiglass 3 

Practical 

Strength (GPa) 

Practical/Theoretical 

Strength 

0.3 0.006 

0.2 0.005 

0.3 0.009 

0.7 0.01 

0.4 0.01 

0.05 0.01 

Material Strength: 



• Singular objects that propagate at v~information (sound) speeds 

• Regularization of singularities  material properties   

Ductile ? Brittle ? 

sr ~ r -1/2 

The dynamics of propagating cracks are both interesting 

and difficult to study: 

? 

Linear Elastic Fracture Mechanics (LEFM)  materials are linearly elastic everywhere  



Symmetry of The LEFM solution 

There are three conventional fracture modes , which are characterized by the  

symmetry of the loading on the crack plane. 

Today we will concentrate on tensile loading           Mode I 
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Equation of Motion for an Infinite Plate    (Mott 1948) 

Assume:    1.  Straight line motion 

     2.  G= Constant 

     3. Energy is conserved 

Etotal = K(l) +P(l)+2Gl= const=P(l0) +2Gl0 
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Fracture initiation (Griffith) condition: 

     Released Pot. Energy= Energy to create surface 

(L. B. Freund 1972)
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∫  jana 

∂S  

   G(l,s) 

Geometry and Loading specific: 

elastic energy released by a static crack 

v = VR[1-G/G(l,s)] 

Local energy balance  the same equation of motion for a crack: 

l 

singular region 

V 

s ~ r -1/2 

Freund, Eshelby, Kostrov ,Willis ~ 1972 

jasabub 

∂S 
 

Energy flux into  

the singular region 

Universal kinematic term 

 (1-v/VR) =  G 

Energy into crack tip   =  dissipation at the tip 

    Dissipation 

“fracture energy” Total Energy flux =  = 

G 



Conditions: 
• Linear elasticity until Dissipative Zone 

• Single crack 

•  rDZ<< r << rsing 
 

• Infinitely large medium – no “history” 

 dependence or memory 

Characteristics: 
Distance from crack tip,  r 

Dissipative Zone (DZ)  

s ~ r -1/2 

Higher order terms of  sr 

S
tress, s

 

rDZ rsing 

•  VR = Asymptotic crack speed 

• v  is first order in time  => a crack  has no inertia  

  => it should jump instantaneously to the value dictated by G and G 

v = VR(1-G/G(l,s)) 

Characteristics of the Equation of motion 
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VR = 3400 m/s  VR = 940 m/s  

All data collapse as predicted for v = vC < 0.4VR  … 

E. Sharon and J. F. Nature 397, 333 (1999) 

Testing the equation of motion: v = VR(1-G/ G(l,s))   G= G(l,s) (1-v/VR) 



G= G (1- V/VR) 

For v < 0.4VR  excellent agreement with the equation of motion  

 When v > VR  something is wrong! 

Independently  

measured G(v) 
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What happens for higher crack velocities? 



At a critical velocity, VC , the motion of a crack   

becomes unstable 

 

At this point:  

   Velocity oscillates 

    Structure is formed on the fracture surface 

 

Instability Mechanism : 

  Local (micro-) crack branching 
 

The explanation: 
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The equation of motion holds only for single cracks! 



Theoretical approaches to the instability 

Cracks are frustratingly stable to any perturbation – no instability observed analytically 

(J. Langer, M. Marder, J. R. Rice, M. Ada-Bedia, M. Ben-Amar,I. Procaccia….) 

 

Crack instability similar to experiments observed when studied on a lattice as well as in  

 MD, finite element simulations, and phase-field models  

(M. Marder, D. Kessler, H. Levine, L. Sander, A. Needleman, F. Abraham, P. Gumbsch,  

H. Gao, Vashishita, Kalia, Ortiz, …) 

 

In both finite element and lattice calculations : 

        Micro-branching goes away when grid sizes are taken to zero! 

 (M. Marder, M. Falk, A. Needleman…) 

 

 

To understand fracture - we need to know what is happening  within/around  the “dissipative 

region”  in the vicinity of a crack’s tip!! 

Empirical ways to model the dissipative zone 

     Phase field models  (I. Aranson, D. Kessler, H. Levine, A. Karma, H. Henry, V. Hakim … 
 

     Cohesive Zone models  (Barenblatt, Dugdale, Needleman, H.Gao, Ortiz,… 
 

Attempts to develop a fundamental theory of amorphous materials 

     (J. Langer,  M. Falk, I. Procaccia, E. Bouchbinder, J. L. Barrat, A. Lemaitre… 

 



Why is fracture such a hard problem to “break”? 

     Basically a wide range of time and length scales are coupled… 

VR (m/s) 

Rapid propagation: 

Material 

Glass     3300 

PMMA    930 

Homolite    900 

Brittle steels    3500 

Small length scales: 

Material Dissipative zone size 

Glass   1-10 nm 

PMMA   < 1-5 mm 

Homolite  1 - 10mm 

. . . 
Can we (experimentally) circumvent these difficulties? 



Sample dimensions: 150 × 150 ×  0.1 mm 

           Frame rate:    5000 frames/sec   

(  ~1 frame  per 0.5-1 mm crack  advance) 

Strobed 

collimated 

beam 

Computer 

Visualization system 
Fast Camera 

s 

s 

High speed visualization enables direct 

measurements of: 

 

•  Crack tip opening profile 

 

•  Displacement field at each point  

(by “particle tracking” imposed scratch patterns) 

VR (m/s) Poisson   

ratio 

Young’s 

Modulus 

(kPa) 

Material 

5.6 0.5 106  5 
Gel 
13.8 % acrylamide 

  2.6%  bis-acrylamide 

930 0.35 
3,900,000 

 
PMMA 

3340 0.22 70,000,000 Soda-Lime glass 

“Yes we can!” – break  “Jello”! 

Fracture of  polyacrylamide gels: sound velocity reduced by 2-3 orders of magnitude 



Brittle fracture in Gels is identical to that of other brittle amorphous materials: 

Micro-branching in Gels: 

•   At a critical velocity a single crack becomes unstable to frustrated micro-branches 

•    Microbranches have the same functional form as in other brittle materials 
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A. Livne, G. Cohen and J. F., Phys. Rev. Lett. 94, 224301 (2005) 

 A. Livne, O. Ben-David, and J. F., Phys. Rev. Lett. 98, 124301 (2007) 

 

Glass PMMA 
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Y 

Polyacrylamide Gels 

Y  X 0.70 



In both Gels and Glass micro-branches are formed in directed lines aligned 

parallel to the propagation direction.  

Gel Glass 

V V 

Micro-branches (fracture surface view) 

“3D” behavior 

V 



Micro-branching limits V to ~0.5VR 

Gel thickness ~ 1 mm 

V> 0.4VR 



Suppression of  micro-branching  ?? 

  

DZ 

Micro-branches (in gels): 

• are noise-triggered 

• Have a minimum width, DZ  

• Disappear when reaching a sample edge 

 

 

When the sample width, h → DZ  

• Number of effective noise sources reduced as  h/DZ →1  

• Branch-lines that are generated  will quickly find an edge and disappear 
 

 

For thin samples: 

 Micro-branches easily disappear  +  Long time for generation 

         single crack  states are dominant 

          Single crack states can accelerate to nearly VR 

 



For very thin gels (thickness ~ minimum micro-branch width):  

 we can suppress the instability… 

               A new oscillatory instability appears at v ~ 0.9VR! 

Gel thickness ~ 0.2 mm 



As a first step in understanding all of this complex stuff: 

 

Let’s take a closer look at “simple” cracks 

• Suppress instabilities (making the material’s thickness ~ 100mm) 

   Compare to equation of motion for v< 0.9CS 

 

• Measure the structure of the near crack-tip region 

  PIV  measure the singular displacement field 



Let’s check the equation of motion for simple cracks: G=G 

Simple crack in an infinite medium  for  constant stress, s:  

Crack length, l (mm) 

v
/c

R
 

0 20 40 
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  s 15.7 kPa 

        14.9 kPa 

        12.4 kPa 

        10.4 kPa 

T. Goldman, A. Livne, J. Fineberg, Phys. Rev. Lett. 104, 1144301(2010). 

The equation of motion works perfectly for an infinite system! 

   Does the (Eq. motion) G=G work for different geometries? 

L.B. Freund (1990) 

v = VR(1-G/ G(l,s))   G= G(l,s) (1-v/VR) 
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Infinite strip 

Under different loading conditions: 

 Dynamics change when cracks feel the finite size of system  

  But G=G still describes the equation of motion of a simple crack! 

b 

Cracks in an infinite strip 

 

   G=G = W [1-v∙f(v)] ~ W  1-  
cl

2[1-(v/cR)2]2 

v∙b 
 

 

 cracks attain a singular inertia as vcR  

T. Goldman, A. Livne, J. Fineberg, Phys. Rev. Lett. 104, 1144301(2010). 

 

Effective Mass   as v  cR 

M. Marder, Phys. Rev. Lett. 66, 2484 (1991). 



Energy Balance  excellent agreement with LEFM predictions… 

 

   What more do we need? 
 

While we are already here… 

       Let’s look at the predictions for the singular fields at crack tips 

    sr  0 = K(sapplied, l )  

                r1/2 
 

                    K(sapplied, l)  “stress intensity factor” 
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Deviations from  

      LEFM! 

What scale is d ? 
• Dissipative Zone? 

• Nonlinear Elastic 

          Zone 

Crack tip shape: a look at the fields surrounding the crack tip 

Parabolic profile V ~ 0.5·VR 

x (mm) 

sr   
K 

√r 

    sr  u/r 

        

 uy(r)  K√r 



Comparison with LEFM – strain field: eyy(r,=0) 
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Measured 

 Approaching the tip takes us Beyond  LEFM!  

 

• Nonlinear zone surrounding crack tip 

  distortion of crack-tip profile 

• ux  K ; uy  K′;    K  K′  

• eyy is far from LEFM predictions 
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In gels: 

1. Stress-strain nonlinearity is known  

2. Nonlinearity is significant at moderate (10-20%) strains: 
 

         Extend LEFM to weakly nonlinear elasticity 
 

 

Near a singularity  high strains  no material is linearly elastic! 
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stress–strain curve for Gels  

Sketch of a New Theoretical framework near the crack tip:  

E. Bouchbinder, A. Livne and J. F., Phys. Rev. Lett. 101, 264302 (2008) 

E. Bouchbinder, A. Livne and J. Fineberg,, JMPS 57, 1568-1577 (2009) 

 
 
 

A. Livne, E. Bouchbinder and J. F., Phys. Rev. Lett. 101, 264301 (2008) 
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Order D problem = LEFM 
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Nonlinearity becomes significant at D ~ 0.1   

The length scale lnl where D is reached is determined dynamically 

 (in gels, lnl ~ mm) 

s/m  e - e2  ....    

When do nonlinearities become relevant? 

Define a critical strain, D,  delineating the importance of  nonlinearity  

Ratio of nonlinear/linear term ~ e ~ K 

3m∙2r)1/2 
eLEFM ~ 

Perform a controlled expansion in D  

of the fields and constitutive relation 

Solve       ∙s  r∂ttu= r v2∂xxu  +  B.C.’s       
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• Excellent (no free parameter) agreement with measurements 

• Leading strain nonlinearity is 1/r ! 

 

 

 
 

 

• A dynamic length-scale exists (no length-scale in LEFM) 

                                    lnl (v)  G/E  
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Results: Strain fields 
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LEFM NL theory 



KI 

4m 2lnl
1/2 

D  = 

LEFM 

D  << 1 

0.0 -0.2 -0.4 -0.6 

0.0 

-0.5 

0.5 

x' (mm) 

y
' (

m
m

) 

Strongly nonlinear 
zone 

Weakly 
nonlinear 

zone 

I 

D  ~ O (0.1) 

D  ~ O (1) 

Asymptotic zone 

D  >> 1 

Hierarchy of Dynamic Scales 



x ' (mm) 

y
 ' 

(m
m

) 

a 

0.0 0.1 0.2 0.3 0.4 

0.0 

0.25 

-0.25 

0.4 0.5 0.6 0.7 0.8 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

v/cs 
 d

 (
m

m
) 

d 

 E. Bouchbinder, A. Livne and J. Fineberg,  

Science 327, 1359–1363 (2010). 

LEFM 

NL theory 

Good… 

  Better … 

            Great!               
   

D  >> 1 theory 

 

We now have: 

      An excellent understanding of simple dynamic cracks 
-6 0 -4 -2 2 

 4 

 2 

0 

-2 

-4 

V ~ 0.5·VR 

x (mm) 
-1 -0.5 0 0.5 

 1 

0 

-1 



   Oscillatory instabilities v>0.9CS      

 

 

 

 

 
A. Livne, O. Ben-David, and J. F., Phys. Rev. Lett. 98, 124301 (2007) 

 

 

What scales are important for crack instabilities? 

Micro-branching 

LEFM has no intrinsic scales…  

Instabilities generate dynamic scales 

Instabilities might be described with scales ~ lnl  given by the 

                       weakly nonlinear theory !??! 

A. Livne, G. Cohen and J. F., 

Phys. Rev. Lett. 94, 224301 (2005) 

 

lbranch ?? 

l ?? 

The theory also supplies a dynamic scale: lnl 



 
 

Next Step… 

  Utilize this new theoretical framework to go beyond single-crack dynamics 

   (e.g. Is this sufficient to understand the origin of crack instabilities..) 



 

• The dynamics of crack instabilities and crack branching?  

     perturb the correct “ground state”!  

 

• Beyond brittle materials  The near-tip stress field structure: 

 How does microscopic structure affect macroscopic behavior? 

              

We now  understand “simple” cracks in brittle materials! 
 

  Equation of motion  Energy Balance  

  Singular fields near crack tip  nonlinear elasticity matters 

 Worse singularity 

 New intrinsic nonlinear length scale, lnl 
 

What’s next: 

       Understanding crack instabilities…using lnl . (Next week) 

Summary: 



Thank You! 


