
                                  Lecture 2:  Energy release rate and Introduction to cohesive zone model 

There are several ways to derive the energy release rate of a crack in a perfectly linear elastic solid 

with a structureless crack tip (higher order singular terms are not present).   A favorite version of mine 

was due to John Hutchinson in his notes on Nonlinear Fracture Mechanics (see Reference [4] in lecture 

1) which is reproduced below with some minor modifications.  Consider a plane strain or plane stress 

elastic sample loaded in Mode I with an initial straight crack of length a subjected to displacement 

boundary conditions (later we will see that the energy release rate is independent of the nature of the 

loading system, so we could have applied traction boundary conditions, for example).   Consider a 

straight advance of the crack tip resulting in the crack length increasing from a to a a , during this 

advance the displacements prescribed on the specimen boundaries remains fixed.   Thus, the potential 

energy of the system is the strain energy of the specimen.  We compute this change in strain energy by 

observing that before the crack is advanced the traction acting the crack plane (y = 0) is 22 0( x , )  and 

for very small a , it is given by 
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where x is the distance directly ahead of the crack tip, see picture below (copied from Hutchinson’s 

book).  In (2.1), KI(a) denotes the Mode I stress intensity factor under the prescribed displacement at 

crack length a. 

 

Figure 1 

The energy release during the extension, a
1, is the negative of the work done by the traction 

22 0( x , ) and this is (due to linear elasticity): 
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where 0 0v(x , ) v( x, )   is the separation of the crack faces in the final position when the crack is at

a a .   Since a  is very small, we can compute this separation using the asymptotic result (eq. 10 in 

lecture 1), that is, 
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 The standard notation for the energy release rate is G, which I used to denote the shear modulus.    
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Substituting (2.1 & 2.3) into (2.2) gives: 
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Taking the limit as a  goes to zero gives the energy release rate  (unit = energy/area), i.e. 
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For plane strain, 3 4   .  For plane stress, 
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The argument above can be repeated for Mode II and Mode III cracks.   Since the modes are decoupled, 

the energy release   per unit crack advance is 
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In the derivation above, the specimen is under displacement controlled so that the potential 

energy change of the system is the change in strain energy of the specimen.   We now showed that the 

energy release rate is independent of the nature of the loading system.   The derivation below is due to 

Hutchinson [4].  Consider a crack body loaded in Mode I by a testing machine with compliance MC   

(represented by a spring with stiffness 1 M/ C  in Figure 2 below).  Note MC  is independent of crack 

length.   

Figure 2 



Let T  denote the total displacement which will be regarded as prescribed.  The total energy of the 

system (machine + sample) is the strain energy of the spring + the strain energy of the sample.  The load 

P acting on the spring (as well as the sample) is 
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where   is the displacement of sample at the load point.   Thus, the strain energy of the spring is 
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The strain energy of the sample is given by 
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where  C a / P  is the compliance of the sample (which is assumed to be linearly elasticity) and 

depends on the crack length a (for a given sample, the compliance increases with crack length).  The 

total potential energy of the system, PE, is the sum of the strain energies of the sample and the spring, 

that is,  
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The energy release rate   is the change in potential energy of the system per unit area of crack 

extension at fixed prescribed displacement T , 
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where b is the thickness of the specimen.   The final result is independent of the machine compliance.   

Note that an infinitely stiff machine ( MC   ) corresponds to a displacement controlled test, whereas 

an infinitely soft machine ( 0MC  ) corresponds to a force controlled test.   In addition, eq.(2.12) allows 

us to determine the energy release rate in a specimen by measuring the change in compliance of two 

specimens with slightly different crack lengths. 

Example 1 

Consider the cantilever beam specimen shown in Figure 3 below.  The compliance of the specimen C(a) 

can be estimated using beam theory, it is: 
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Figure 3   Side-view of a cantilever beam specimen, a is the crack length.  The beam has a rectangular 

cross-section with width b and height h.   The specimen is assumed to be perfectly bonded to a rigid 

substrate.   Caution: the loading is not pure mode I (why?) 

The energy release rate under displacement control is obtained from 2.12,  
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Note that in a displacement controlled test, the energy release rate decreases with crack length, hence 

crack growth is generally stable under displacement controlled.   You can show easily that in a load 

controlled test, 
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  , so energy release rate increases with crack length. 

Here are some points:   

1. (2.7), when specialized to a Mode I crack, shows that the energy release rate (a global quantity) 

is directly related to the local quantity KI which characterize the strength of the crack tip fields.   

In particular, it shows exactly how the stress intensity factor is related to the change in 

compliance of the structure due to crack growth.   

2. The Griffith fracture criterion, which is based on energy balance is equivalent to the stress 

intensity factor based fracture criterion.   For a Mode I crack, 
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3. The above derivation assumes that the material is perfectly elastic all the way to the crack tip 

and that the inverse square root singular field is the only singular term.    Therefore, only a 

perfectly elastic solid with a structureless crack tip is the energy release rate given by (2.7). 

A different way of deriving the energy release rate (J integral)  

 A derivation of energy release rate that does not require a purely elastic solid and introduces 

the concept of translation invariance which naturally leads to the well-known path independent J 

integral is given here.  In the derivation below, I assume the material is elastic everywhere, except for a 

small region   surrounding the crack tip.   In this region, the material need not be elastic, in fact the 



local fields may not be continuous (e.g. the material may separate directly ahead of Mode I crack, see 

cohesive zone model below).  However, I still assume mechanical energy is a well-defined quantity.      

The crack is assumed to be planar with a straight front.  In addition, the stress and deformation 

fields are independent of the out of the plane direction (e.g. the sample can be loaded in plane strain, in 

plane stress or in anti-plane shear).  The crack is assumed to grow in the positive X direction with speed

( )a t 2, as shown in Fig.4a below.   Let ( , )X Y  be a fixed coordinate system in the laboratory specifying 

the coordinates of a material point.  Let 1 2( , )x x be a coordinate system attached to the tip of the 

moving crack.   

 

Figure 4a   (X,Y) is a fixed or Lab. frame whereas 1 2( , )x x  is a frame attached to the crack tip 

which is moving at a(t ) .    The process zone (t)  is contained inside the contour C, which translates 

with the moving crack tip.       

Let C be a fixed continuous curve that starts from a point on the lower crack face, goes around 

the crack tip in anti-clockwise direction, and ends at a point (not necessary the same point) on the upper 

crack face.   We select C to be the smallest curve so that it completely encloses (t)  and such that the 

material outside and on C is elastic (see Fig. 4a, the curve in Fig. 4a is a rectangle, but you can use a 

circle or some other appropriate smooth curve).  We denote the area inside C by A ( A   can be 

viewed as a transition zone where material changes behavior).  Thus, stresses and deformations are 

continuous across C. With respect to the moving frame 1 2( , )x x , C is fixed.   That is, C can be described 

by 

   1 2( ), ( )x f s x g s      (2.14) 

where s is the arc length.  Note that A is a region of ever changing material points.  Note also that x2 = Y 

and 
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 a  is much slower than wave speed so the crack moves in a quasi-static fashion.   
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The amount of energy flow to the crack tip per unit time, defined as  a , is the rate of traction 

work acting on material particles that coincides instantaneously with the curve C minus the rate of 

change of mechanical energy of material points C  inside C, and is denoted by  C .   The rate of stress 

work acting on material particles that lies on C is: 
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where iU  are the displacements of the material point at ( , )X Y  and s is the arc length on C.  Note that 

the unit outward normal vector 

n  of C as well as the curve itself does not depend on t since the 

integration is performed in the moving frame.   In (2.16a),  1 2( ( ), ( ),iu x s x s t  is the material derivative 

of the material point at ( , )X Y , that is,  
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Combining (2.17) and (2.16a), the rate of stress work acting on material particles that coincides 

instantaneously with the curve   is: 
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where all relevant quantities are written using coordinates in the moving frame of reference and for the 

sake of keeping the notation simple, I have not included the independent variables in the arguments of 

the functions in (2.18).    

Next, we find   on material points that lies inside C.  Note we have to compute the change of 

mechanical energy on the same material points.  The material points inside C are changing with time in 

the material frame (Lab. frame).   Therefore, we use Reynolds’s transport theorem and found 
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Here / Aw t  is the rate of change of mechanical energy inside A with respect to the moving frame.  

Note that if the local fields are continuous everywhere (e.g. inside (t) ), then we can write the first 

term in (2.19) as 
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where w in the above equation is the amount of stress work on a material point which is at  1 2x ,x .   

Specifically, the stress work on a material particle at ( , )X Y is defined by:  

 ( , , ) ( , , ) ( , , )


   ij ijw X Y t X Y t dE X Y t     (2.20) 

where ,ij ijE  is the infinitesimal strain and stress tensor expressed in material frame (X,Y), and   is a 

curve or path in the strain space from  0ijE  to ( , , )ijE X Y t : that is,   denote the strain history of the 

material point occupying ( , )X Y  from t = 0 to the current time t .   Note that w defined in (2.16) does 

not assume the existence of a strain energy density function and is valid for any stable materials.   

    A simple way to understand (2.19) is as follows: the first term on the RHS of (2.19) is the rate of 

change of the total mechanical energy relative to the moving frame.   The problem with this term is that 

we are interested in the rate of stress work on the material points inside C at time t (that is, we are 

following this set of material points).  However, as the moving frame (crack tip) moves from t to t + dt, 

material points inside C close to its left edge exit this edge whereas material points just outside the right 

edge of C enters C through this edge (it is easy to visualize this if the curve C is a rectangle, such as the 

one shown above).   Since our goal is to compute the rate of stress work on the same set of material 

points which was inside C at time t, we must add the energy of those material points that exit the left 

edge of C and subtract the energy of those material points that enter the right edge from the first term


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t
 in (2.19).   Mathematically, this means subtracting 
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(2.19).      

The energy flow to the crack tip per unit time,  a  is obtained by subtracting (2.19) from (2.18),  
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In general, the term inside the square bracket in (2.21) is not zero.   It is zero when we have 

steady state inside the C, that is, the fields inside C are independent of time.  Note that, for steady state 

condition to exist, the material must be homogeneous in the x direction and the crack speed 

independent of time, i.e., ( )  
ssa t a .   Also, ss(t )   is independent of time.  Thus, for steady state, 

the energy flow to the crack tip per unit time is given by  
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Since the material is elastic outside and on C, CJ  is independent of path.  Specifically, the same 

value of the path integral is obtained for all paths   enclosing the crack tip (in the manner described 

above) as long as these paths lies outside C (see Fig.4b).    To prove this, we note that for any close path

C  that lies inside an elastic region that contains no singularities, the J integral, defined by  
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is zero.  This is because 
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Let us use this result to show that paths such as   in Figure 4b satisfy 
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To see this, construct the close path 1 2C C         in Figure 4b.  Clearly, C  does not enclose any 

singularities, so J integral on C is zero.   Note the integrand of J on ,    is identically zero (since 

1 0n   and crack surfaces are traction free), using J J    proves (2.25).  

 

Figure 4b    Diagram showing the definition of the curves 1, C ,   and 2 .    

For a perfectly linear elastic solid with a structureless crack tip, the energy release rate can be 

computed using the elastic near tip fields in the first lecture by shrinking the contour C all the way to the 

crack tip.   For example, take C to be a circular contour of radius 0   with center at the crack tip.  The 

calculations are slightly messy, but you may be interested in noting that since the stress and strain field 

behaves like 1 2/r   near the crack tip, terms in the J integral behaves like 1 /   on the circular path and 

ds d  , so  cancels out and you have an integral in   only.   After some calculation, you will recover 

(2.7) with . J     

It is important to note that (2.7) assumes that the material is linearly elastic all the way to the 

crack tip, which cannot be possibly true in practical situations.  In general, if there are nonlinear effects, 

then  
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To see this, let us return to the anti-plane shear problem in lecture 1.  Note that the actual K field at the 

crack tip is modified by the presence of the nonlinear zone, so one possibility is 21
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the modified stress intensity factor due to the existence of the process zone. This is incorrect.  We can 

check by using the exact solution (given by eq. (29) in lecture 1) to evaluate the J integral for any path (a 

circular one for convenience) inside the annulus region. Note that if we neglected all the higher order 

singularity terms in the series and keeping only the non-singular terms + the K field, we will find  
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This is because the remaining non-singular terms cannot contribute to the J integral since these terms 

and their products with any other terms in the series (including the K term) are bounded as r goes to 

zero.  Using the path independence of J and shrinking the radius of the integration path to zero gives 

2.27).   On the other hand, if the entire series is used, terms like 3 2/r   and 1 2/r  can cross multiply giving 

rise to terms with 1/r which leads to non-trivial contributions to J.   If you carried out the calculation 

using these series, you should find: 
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where 
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Recall that the pure elastic KIII is
Applied
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only if 0   (there is no nonlinear zone).   Equation (2.30a) shows that there are two contribution to the 

J integral due to the existence of the non-linear zone, the first one is due to the change in stress 

intensity factor which is order , the second one is of the same order in  and is due to the interaction 

of the higher order singular terms and the non-singular terms.   

The discussions above introduce an important concept in mechanics:  configuration force.   That is, 

we can think of the J integral as a force (force/per unit length) due to a change in position of the crack (a 

simple example of a configuration force is the action of gravity on a mass).   A beautiful example of 

energy release rate as a configuration force is a 900 peel test (see Fig. 4c below) where the peel arm 

consisting of a stiff sheet (so we can neglect the deformation of the sheet at the place where the load F 

is applied), see Figure 4c below.  The energy release rate is equal to the peel force per unit width.  

 

Figure 4c  Schematic of a 90o peel test: A thin elastic sheet of width w (not shown, in out of plane 

direction) is glued to the surface of a flat rigid substrate and peel at a steady rate v in the direction 



perpendicular to the substrate.  The peel force F is actually the total load applied to the sheet divided by 

w, so it has units of energy/area (the same as energy release rate).   

Examples using J integral to compute energy releaser rate in elastic specimens 

1. A thin strip (plane stress) with length L and height h clamped at the upper and lower edges with 

vertical displacement   applied.  Crack length = a. 

 

 
Figure 4d Schematic of a Mode I strip specimen held in rigid grip subjected to prescribed 

separation. 

 

To evaluate the J integral of the sample in Fig.4d, we use a path consisting of 5 paths indicated by I, II , III 

IV and V above.   On paths II and V, integral is zero since 1 0n   and the vertical displacement is 

independent of position (horizontal displacement = 0 due to clamp boundary condition).   Since traction 

= 0 on paths III and IV, J integral is 
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where we have made use of symmetry.   Note in general 3W  is the strain energy density evaluated on 

III.  It is not zero in general and will vary along the path, depending on the length of the crack a  (think of 

a very short crack, e.g. a << h).    On path I, we have 
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where W is the strain energy evaluated on this path and in general is a function of position along I.    

Thus, the energy release rate is: 
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If the crack length a >> h, then 3 0W  , we have 
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If in addition, L a h  , we move the path I into the specimen to avoid the complicated fields due to 

the free surface.    As long as path I is sufficiently far away from the edge and the crack tip, the 

horizontal displacement as well as its derivative in the horizontal direction is zero (since the upper and 

lower edge of the strip is clamped).   Since 2 0n   and 11 11 0,u    on I, the traction term in the J 

integral on this new path is still zero and the J integral is still equal to the integral of the strain energy 

density W along the new path.    To compute 1W  on this path, we note that the out of plane stresses are 

zero for a plane stress sample, also 
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Substituting (2.31d) into (2.31c) gives the energy release rate, i.e., 
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Example 2:   Lap-joint test (see Kendall, J. Phys. D: Appl. Phys., vol 8, 1975) 

 

This example is motivated by a recent discussion with Alba Marcellan.   The lap-joint test is a widely used 

test to determine the failure strength of adhesives.   In this test, two planar slabs are glued together by a 

thin adhesive and a force F is applied to pull them apart, as shown in Kendall’s figures below: 

 

  

Figures 4e (on left) and 4f (on right) are taken from Kendall’s paper (Kendall, J. Phys. D: Appl. Phys., vol 

8, 1975).  The two arrows in Figure 4f show the direction of the force F.   The top and bottom slabs have 

thicknesses d1 and d2 respectively.   The slabs has length 1L  and 2L  respectively.    The lab joint has 

length L.  The out of plane width of the slabs are identical and is denoted by b.  The material of the slabs 

is assumed to be identical with Young’s modulus E.  Figure 4f is an example of an incomplete free body 

diagram - the specimen is not in equilibrium since there is an unbalance moment or torque (anti-

clockwise) of magnitude  1 2 2F d d /  .    This torque must be balanced by the loading system and will 



cause rotation of the specimen.   Kendall’s analysis (and the analysis below) assumes that the bending 

energy associated with this rotation is small in comparison with the stretching energy.    

Before proceeding with our analysis, it should be noted that the Lap-joint test is not a true 

fracture test since it has no pre-existing crack.  The edges of the joints are stress concentrators where 

crack or cracks can initiate but there is no guarantee that once initiated, these cracks will grow along the 

joint.  In fact, a crack can initiate near the joint edge and fracture the slabs instead of running along the 

joint.   In addition, there is no reason why cracks have to propagate symmetrically, as shown in Fig. 4f.   

After this brief detour, let’s determine the energy release rate of the specimen in Figure 4f using 

the J integral.  In fact, we consider the slightly more general situation3, shown in Figure 4g below.  

 

Figure 4g.   Schematics of specimen dimension and path to evaluate J integral 

 Because of the traction free boundary condition, the J integral evaluate along paths 2 and 4 are 

exactly zero.  On path 5, the only non-vanishing component of the traction is 11 1F / bd   (this assumes 

that the difference in length between the slab and the joint is much greater than the thickness of the 

slab so that the stress state on this path is that of simple tension).   On path 5, 2 0n  ,  

1 11 11n u ,      ,    2
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E
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On path III, 2 0n   and the shear stress 12  is zero by symmetry, so the J integral is  
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 Kendall’s derivation implicitly assumes that (1) the crack length a is very long in comparison with the thickness of 

the slab, (2) the length of the slab is very long in comparison with the slab thickness.    



where 3W  denote the strain energy evaluated on path 3.  The quantities 11  and 11 in (2.32) can be 

determined if the uncracked joint length 2L a  is much greater than the slab thicknesses.  In this case 

the stress state on path 3 is that of uniaxial tension.    Specifically, from force balance, the only non-

vanishing stress on path 3 is: 
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As a result, 3 11 11
1

2
W    on path 3, and using 1 1 11 11u , / E   , we have 
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Finally, on path 1 (traction free), we have, 
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 The energy release rate   is given by 1 3 5J J J   .   In particular, for   1 22L a max(h ,h )   
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  (2.32f) 

For short cracks, 1W  is not zero and is difficult to compute.   However, if a is sufficiently long then 

5 0W  ; for this case the last term in (2.32f) can be set to zero, and the energy release rate given by 

(2.32f) .   After some simple algebra, it is  
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Crack growth occurs when the applied force F satisfies the fracture condition ICG  .   This gives the 

critical force for crack growth: 
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This result is identical to the expression of critical force given by Kendall.   Note that if the crack is short, 

then (2.32f) implies that the applied energy release rate is lower than given by (2.32g) (since 1 0W   ), so 

a larger force is needed to grow the crack.      

 



Cohesive zone Model: an introduction 

 SSY enables one to rationalize the divergence in stress and strain fields.  However, in order to 

determine the RHS of the equation,   

 c cK K J G     

it is necessary to model the fracture processes. In older literature it is common to introduce a 

characteristic length scale directly ahead of the crack tip and imposed a fracture criterion such as a 

critical strain or critical stress criterion at this length.  A more systematic way is to use a cohesive zone 

model to describe the separation process directly ahead of the crack tip.   In the following we consider 

the more general case of an interface between two different solids, although the focus of these lectures 

is on cracks in homogeneous solids.  Since its introduction by Barenblatt in 1962 [5], cohesive zone 

models have been used to study a wide variety of physical phenomenon, for example, crack growth 

along a prescribed plane in elastic-plastic and viscoelastic materials, adhesive contact of non-conforming 

surfaces, frictional sliding and earthquakes, sintering of polymeric particles, crazing in polymer glass, 

adhesion, fiber bridging and debonding in composite materials and stability of interfaces. 

 The number of research papers using cohesive zone models to study different physical 

phenomenon has been increasing rapidly in the past ten years.   However, far less attention has been 

paid to understanding cohesive models from the point of view of constitutive modeling.  For example, 

there have been very few discussions on the deficiencies and limitations of cohesive zone models 

currently used in the literature. The concept of interfacial displacement or displacement discontinuity in 

the continuum description is often misunderstood.  For example, it is often assumed that the interface 

displacements that enter the constitutive model are identical to the experimental interfacial separations, 

whereas in reality these two quantities can differ significantly.   In this lecture, I attempt to explain these 

fundamental concepts.   For a more detail discussion on this subject, see reference [11]. 

2  Constitutive Relation or Cohesive zone model 

2.1 Continuum ‘Point’ on an Interface 

 The existence of a constitutive relation requires the concept of a continuum ‘point’.  A 

continuum ‘point’ is a region of the interface between the solids with characteristic dimension P in the 

plane of the interface.  It may include a thin layer of the adjacent solids of characteristic size H in a 

direction normal to the interface.  The size of P and H must be negligible comparable to all relevant 

geometric dimensions L in the continuum problem.  Figure 5 shows a region of a solid that include a 

planar interface that may undergo opening or slip.   The ‘point’ is assumed to include many microscopic 

features (see Fig. 6 for an example).   These microscopic features may include molecular chain scission 

or pull-out in polymers, asperities that deform and fracture in frictional sliding, micro-void formation, 

growth and coalescence of these voids in metals and elastomers, drawing and formation of craze fibrils 

in polymer glasses, slipping at the fiber/matrix interface, breaking of fibers and fiber pull-out in a fiber-

reinforced composites.   Smaller features can also be represented by the ‘point’, e.g. intermolecular or 

interatomic interactions such as Van der Waals, hydrogen and ionic bonding.  In general, these micro-



nano-mechanical elements have a wide range of characteristic sizes (m, h) and a continuum point may 

include many of these mechanisms.  For example, ,m h Ǻ for interatomic interactions, nm for 

craze fibrils and dislocations, m m or higher for voids, h m for crazes and h mm  for fiber pull-

out.   Thus, for the continuum description to be legitimate, a hierarchy of size scales is implicit, such that 

,L P m h  .  In addition, over a wide range of length scales, the constitutive relation must be 

independent of the size of the continuum point.    

 In Barenblatt’s theory, separation of two surfaces is opposed by interatomic or intermolecular 

forces so that the traction across the cohesive zone is the gradient of an interatomic potential.  In this 

case, ,m h Ǻ, and the value of fracture toughness approaches twice the surface energy.  For most 

material systems this theory is too simplistic, since, even in nearly ideal-brittle materials such as glass 

and mica, the fracture toughness is much higher than twice the surface energy.   This is because for 

most materials, the interatomic forces required for separation are much higher than those required to 

initiate some form of damage (e.g. cavitation, plastic flow, or crazing).  Therefore, the material invariably 

suffers some form of inelastic deformation near the crack tip, resulting in much greater energy 

dissipation.  Even in the few cases where fracture toughness does indeed equal twice the surface 

energy, as in separation of carefully-prepared elastomers, the cohesive stress is much smaller than 

would be expected on the basis of intermolecular interactions between continuous bodies.  This fact is 

typical; the characteristic stress (displacement) to separate the interface is much smaller (larger) than 

predicted on the basis of intermolecular forces.  

Consider, for example, the fracture of rubber.  Based on the typical number of chains ( 
18 210 / m ) that across a fracture plane and the energy needed to break a chemical bond (  400kJ/mole), 

the surface energy should be about 1 2  J/m2.  Experimental values of fracture energies, however, 

range from 10 to 1000J/m2 [6].  The stress needed to completely separate the interface is on the order 

of GPa, which is at least 4 orders of magnitude higher than the small strain elastic modulus (E  1MPa) 

of a typical elastomer.    Crack growth can occur by at least two mechanisms: in the first, the highly 

stretched polymer chains directly ahead of the crack tip break.  As pointed out by Lake and Thomas [6], 

since all the bonds in a chain are stretched to their breaking point, when one of the bonds breaks, the 

entire chain relaxes to zero load and all of the stored elastic energy in the chain is lost4.  The energy 

dissipation is thus proportional to number of bonds in a chain between crosslinks.  For long chains, the 

characteristic interfacial displacement required to separate the interface is on the order of microns.  

Cracks can also grow by linking of microvoids ahead of the crack tip.  In elastomers, a typical stress for 

rapid growth of micro-voids is on the order of (E  1MPa), much smaller than the stress required to 

break bonds.  In addition, blunting of the crack tip suggests that the effective size and the thickness of 

the cohesive zone can be much greater than atomic dimensions.  The same issue also exists in metallic 

systems, where the theoretical cohesive stress based on intermolecular potential is typically much 

higher than the yield stress.   Thus, the plastic zone engulfing the crack tip will continue to grow in size 

until strain hardening eventually produce a high enough stress to break bonds.   For crazes in glassy 
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 Lake and Thomas did not give any details on the mechanism of energy loss.    

m 



polymer, the thickness of the cohesive zone is typically on the order of microns.  The thickness of the 

continuum ‘point’ in the bridging zone of fiber-reinforced composites can be on the order of millimeters.   

2.2 Definition of interfacial displacements 

 The discussion above shows that the thickness H of an interface continuum ‘point’ can be much 

larger than m,h , which are characteristic length scales of the microstructure.  The following question 

naturally arises, what is an appropriate definition of interfacial displacement?  The insert in Figure 5 

shows two material points separated by a distance H h  on opposite sides of a planar interface.  Let 

u


 be the separation between these two material points with component u1 normal to the interface and 

components u2 and u3 in its plane.  Let 0u


 be the separation that would be predicted between these two 

points based on bulk deformation of the solids if subjected to the same remote state of stress.  Then, we 

define the displacement 0u u  
  

 as the interface displacement of the cohesive zone and components 

1  as the normal and 2 3,   as the slip displacements.  That is, the cohesive zone displacements are the 

excess relative over that which would be predicted by the bulk deformation of the solids.  (We pick H to 

be sufficiently large compared to h but still sufficiently small compared to L so that stresses and strains 

locally are homogeneous prior to introduction of the interface and so that the displacements, so 

defined, are independent of the choice of H.  For the special case where the interface deformation is 

highly localized, such as that of a craze, H can be taken to be h.) 

 

 

Figure 5.   Schematic drawing of a continuum point.  L is a characteristic length scale of the continuum 

problem (e.g. specimen size, crack length, etc).  P and H denote the size scale of the continuum point.  

The continuum stress and strains fields are approximately homogeneous over the length scales P and H.   

 This definition implies that the opening or slip displacements observed in the laboratory can be 

substantially different than the opening or slip displacements used in the cohesive model. As an 

example, consider crazes, which are planar crack-like defects in glassy polymers [7].  However, unlike 

cracks, crazes are load-bearing, since their surfaces are bridged by many fine fibrils with diameters 

ranges from 5 to 30 nms (see Fig 6).  As the craze grows in thickness this fibril structure may break 

H 

P 

L 



down, leading to large voids which eventually grow to become cracks of a critical size.  Experiments have 

conclusively demonstrated that crazes in air increase in thickness by drawing material from a thin 

( )nm , strain softened layer at the craze-bulk interface into the fibrils.   Since the fibril structure 

cannot withstand shear, 2 3 0   .  As a result, the direction of the tensile stress is always normal to 

the craze surface and the craze thickens primarily in the direction of its fibrils.   

 

 

Figure 6:  An example of the micro-structures inside a craze.  P, H denote the size of the continuum 

point.   

To illustrate the procedure of computing the interfacial displacement 1  for a craze, consider 

Fig. 7a,b where a comparison is made between the normal displacement of two material points induced 

by the bulk deformation of the polymer (elastic or inelastic) and the final deformation of the same 

material points after the craze has formed.  The separation of these two points before deformation is 

denoted by oH .  The separation of these points after the craze has formed is H.   Let o  be the density 

of the homogenously deformed bulk material in Fig. 7a, and let   be the density of the craze and bulk 

material in Fig. 7b.  In general,   is a function of the distance along the y axis (the y direction is 

perpendicular to the craze interface), and the planar interface is the xz-plane.   Since one can reasonably 

assume that there is no excess lateral strain due to crazing, we have 
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by mass conservation, where   is the average density of the crazed material. The interface 

displacement is, by definition, 

1 oH H         (2.33b) 

Substituting (2.33a) into (2.33b), we have   
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For crazes, the craze-bulk interface is very sharp ( 10 )nm  so a convenient choice is to select the 

material points so that H h , where h is the visible thickness of the craze (e.g. in a transmission 

electron micrograph).  The interface displacement is  
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     (2.33d) 

where c  is the average mass density in the craze5.  The above definition of 1  is independent of the 

distance oH of the two material points, as long as oH  is large enough to include all the details of 

fibrillation.  This definition is the same as an early expression of Kramer [6]. For crazes in Polystyrene, 

/ 0.2c o    so that the continuum normal displacement is about 80% of the visible craze thickness. 

 

 

Figure 7.   (7a)  Continuum point before crazing occurs.  The craze material is highlighted by the dotted 

lines.  (7b) After crazing, the material inside the box highlighted in Fig.(7a) increases its thickness to h 

and becomes less dense.  The two black dots denote two points A, B before and after crazing.   

 In a very different application, we point out that there is some ambiguity in the published 

literature on the appropriate definition of interface displacement to model crack bridging in fiber 

reinforced composites.  For example, the continuum opening displacement in crack bridging models is 

the additional displacement of a remote material point of a cracked composite (i.e., the matrix is fully 

cracked) over that which would result in an uncracked composite under the same loading. This 

procedure is entirely consistent with our definition of interfacial displacement.  
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 Since the effective Young’s modulus of the crazed material Ec is less than that of the bulk polymer, E, we should 

include the difference in elastic deformation, a factor of  1 1

cch E E
 

  in (2.33b), where c  is the crazing 

stress.  However, since c /E is on the order of 10
-3

, this factor is much smaller than the RHS of (2.33b), and so it is 

neglected.  
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 Many cohesive zone models have an initial hardening branch, that is, the interfacial 

displacements are non-zero for any applied traction, no matter how small.   A very simple example of a 

linear hardening model is to consider a thin layer of soft elastic material of uniform thickness h perfectly 

bonded between two identical homogeneous, isotropic, linear elastic plates with Young’s modulus E and 

Poisson’s ratio v.   For simplicity, let us consider a plane stress problem (e.g. a thin sheet of material 

between two identical plates). Let LE and 
L

v  denote the Young’s modulus and Poisson’s ratio of the 

layer.   If h is much smaller than the crack tip radius, this layer can be treated as a cohesive zone.  In the 

absence of the layer, the two points A, B (see Fig. 7a,b) displace by the amount of  

  /
o

H E ,        (2.34a) 

where   is the normal stress applied at distances far from the layer (see Fig. 8)    Assuming that the 

lateral contraction of the soft layer is the same as that of the two large identical plates,  the 

displacement of A, B, in the presence of the layer is 
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By definition, the excess displacement or opening interface displacement  is the difference between 

(2.34b) and (2.34a), that is, 
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Note that the result is independent of o
H and the interface displacement vanishes if the two materials 

are identical.  This hypothetical model has a linear ‘hardening’ branch where the interface displacement 

δ is directly proportional to the normal traction .   In a more realistic model, the hardening branch is 

usually followed by a softening branch, where   decreases with increasing . The behavior of the 

softening branch depends on the failure characteristic of the layer.  For example, it the layer fails in a 

brittle way (e.g. by the propagation of a single crack), then softening occurs very rapidly.  However if the 

layer fails by cavitation6, then the range of   where softening occurs can be very large.   

 As demonstrated by the above example, our definition of interfacial displacement implies that 

inter-atomic models of interface cohesion or decohesion should have no linear hardening branch since 

the linear elastic behavior of the continuum point is indistinguishable from the bulk behavior.   
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 Cavitation is more likely to occur if the layer were loaded in plane strain and LE E , 0.5L  , 

for example, if the plates were blocks of glass and the layer were replaced by a thin sheet of rubber or soft elastic 
gel.   



  

Figure 8.   A thin elastic layer sandwiched between two linearly elastic plates.  

2.3 Variables in cohesive zone model 

The primary mechanical variables of interest are the normal traction 1T  (traction component in 

the direction normal to the interface), the shear tractions 2T , 3T  and the interface displacement vector

 1 2 3, ,   


 defined above. To define these displacements and tractions we need first to define a 

cohesive plane.  A full mechanical description could conceivably include other deformation variables such 

as the relative rotation of the two surfaces and the in-plane strain in the two solids.  For example, the 

nucleation and growth of micro-voids ahead of the crack tip can be significantly affected by the in-plane 

strain, especially if crack blunting occurs since void nucleation and growth are known to be very 

sensitive to stress triaxiality.   

A reasonable general constitutive model for the interface or cohesive zone model can be written 

in the form of a relation as follows: 

 ( ), ( ),T t t t t      


G 0F      (2.35a) 

In the above F is a vector function which depends on the history of the displacement vector 

that is related to the traction vector 1 2 3
( , , )T T T T


through the vector relation  

  ,T 


G 0F        (2.35b)     

2.4 Definition of cohesive zone, cohesive zone tip and Crack tip 

 The cohesive zone, cohesive zone front and crack front can be defined in a formal way.  At any 

time t, the cohesive zone consists of all points on the interface such that 0  


.  A cohesive zone 

 
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front is the boundary points (in general a space curve) between two adjacent regions on the interface 

where at least one of the interface displacements goes from identically zero in one region to having non-

zero values in the other.   This definition allows for multiple cohesive zone fronts within a cohesive zone 

and its boundaries.  For example, it is possible to have part of the cohesive zone deform in the pure 

opening mode (or in a pure sliding mode), whereas the rest of the cohesive zone deforms in both 

opening and sliding mode.  In general, true cohesive zone front(s) exist only for constitutive models that 

allow 0i   for some i and for some nonzero traction histories.  In the absence of crack healing or 

internal fluid pressure, we define a crack zone as the part of the interface that belongs to a cohesive 

zone; however, material points in this region can bear no load for the current and all possible future 

configurations, that is 0T 


 for all t t  .  A crack front is defined as the boundary points between a 

crack zone and a cohesive zone.  We will illustrate these ideas shortly with some simple examples.      

 Although it is possible to construct examples where the displacement normal to the interface is 

negative (e.g. a soft interface layer under compression), it is common to enforce 1 0   at all times.  In 

this work, we will adopted the convention that contact occurs when 1 0  , and friction force must be 

taken into account if 1 0T  .  In cohesive zone models, preexisting cracks or cracks that are artificially 

introduced into the interface which do not satisfy a fracture criterion consistent with the cohesive zone 

model, cannot be considered as part of the interface and hence cannot be described by the model.   

Descriptions of these cracks must be captured by boundary conditions.  We will call these types of cracks 

preexisting cracks.  

 Figure 9 shows some simple examples where 2 3 2 3
0T T      , that is, the interface is 

constrained to open in the direction of its normal.   The cohesive zone tip and the crack tip are well 

defined for the cohesive zone model in Fig. 9a.   At the cohesive zone tip, the normal traction 
1T T  is 

exactly
0 0  .   Crack tips are defined by the condition

c  . 
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Figure 9    (a) A cohesive zone model where cohesive zone tips and crack tips are well defined.   (b) A 

cohesive zone model where neither the cohesive zone tips nor crack tips exist.   

2.5 Constitutive Relation based on Potential Function 

A simple and widely used constitutive relation is the reversible cohesive zone model introduced 

by Needleman [8].   Let a displacement  1 2 3, ,   


be imposed on a continuum point.  Denote the 

resulting traction on this point by  1 2 3, ,T T T T


.  The work done by the cohesive traction per unit area 

from a


 to b


 is  

b

a

T d











 .        (2.36) 

This integral is path dependent unless T


 is the gradient of a potential or work function ( )


, i.e., 

 , /i i iT             (2.37) 

Equation (7) is the fundamental equation governing the work function approach. The work function, 

( )


=constant represents a family of surfaces in the space of cohesive opening displacements. 

Geometrically, eq (7) states that the traction vector is normal to these equi-potential surfaces.       

 An example of such a work function in two dimensions (i.e., 3 0  ) is [8]: 
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 

  (2.38a),  

where 2 1/q W W .   1W  is the energy needed to separate a unit area of the interface in pure tension 

(commonly referred to as the Intrinsic work of adhesion) and 2W  is the energy needed to fail the 

interface in pure shear and 
*  (i=1,2)i  are material parameters that represent characteristic opening 

distances over which the cohesive tractions act.     Using (2.37), the traction vector is  

2

1 2
* * 2

1 2
( )1 1

1 * 2
1

1 (1 )
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W
T e q e


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    (2.38b) 
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    (2.38c) 



A one-dimensional work function 1( )   can be extended to the three dimensional case by defining 

 1 2 3, , ( )e      where 
2 2 2

1 2 3( )e        and 0   is a material constant.    

 Since the failure of the interface is defined by its inability to support traction, (2.38b) and (2.38c) 

imply that the interface fails if any one of the following conditions is satisfied: 

i) 1          (2.39a)  

ii) 1 0   and 2         (2.39b) 

 

Note that except for a set of measure zero, i.e., if the interface were loaded in pure shear, failure in shear 

must be accompanied by failure in tension.    

 Equations (2.38a,b,c) illustrate three features of cohesive models that are widely used:  

(a) The traction vanishes as 0 
 

 (Initial hardening, cohesive front not defined),  

(b) Non-zero traction for all finite 


 (crack front not well-defined).  Note that the traction vanishes 

much faster than 
1 
as   , 

(c) The work to fail a unit area of the interface is always 1W  , independent of the loading direction.  The 

only exception is when the interface is loaded in pure shear.  In this case the work is 2W .  In the 

following we examine each of these features in detail.   

2.6 Hardening vs Rigid models 

Cohesive zone models in which the traction vanish smoothly as 0 
 

 will be defined as hardening 

models.   In hardening models, cohesive zone fronts cannot exist in any finite structures under load (see 

definition of cohesive zone front earlier).  In a finite element model, hardening cohesive zone models 

can lead to softening of bulk behavior.   Another interesting but less well known result is that material 

interpenetration will always occur if a hardening cohesive zone model is used to study the growth of a 

preexisting crack loaded in Mode I.   It should be noted that material interpenetration is penalized in 

Needleman’s model by the term  in (2.38b).   By making 
*
1  very small, very large 

normal compressive traction results as  become negative.   

Thus, a cohesive zone model with a hardening branch has the unpleasant features: 

1. material softening 

2. material interpenetration  

 

*
1 1 1exp( / )  

1



Cohesive zone fronts are well defined in “Rigid” cohesive models such as the classical Dugdale-

Barenblatt (DB) model which was used to model plane stress Mode I fracture of mild steel.  This model 

can be extended to include shear deformation.  The potential associated with the generalized Dugdale-

Barenblatt (GDB) model is 

 1 2 3o o o         ,     (2.40) 

where ,o o   are the critical cohesive stresses to open and slip the interface respectively.  To prevent 

material interpenetration, the potential function is defined in the half space 1  > 0.    According to (2.37), 

interface displacements can occur if  

 1 oT        > 0     (2.41a) 

 i oT       0i  (+), 0i  (  ) , 2,3i   (2.41b) 

In analogy with classical plasticity, the planes 1 oT    and i oT    can be viewed as a “yield” surface 

in traction space 1 2 3( , , )T T T .   A traction vector that is inside the yield surface cannot cause interfacial 

displacement.  Note that the origin 0 
 

 is a point of where the traction vector is not uniquely defined.    

Also, the GDB model yield surface is not smooth, it has corners at the vertices of the rectangle defined 

by the intersections of the lines in (2.41a,b). 

 Specifically, a “Rigid” cohesive model must formally satisfy the condition 

 
0

lim 0T
 

 


.       (2.42) 

The notation 0 


 implies that the limit is taken with 0  


.  Note that 
0

limT
 
 


 does not exist in 

the usual mathematical sense since the traction vector is not a continuous function of the interface 

displacement vector at zero.   In this work, the existence of 
0

limT
 
 


 means that the traction vector will 

approach a unique value given any smooth path approaching the origin in displacement space with 

0  , although each path will, in general, produce a different limit.  We further assume that this limit 

depends only on the tangent of the path as it approaches 0  ; in other words, the limiting value of 

traction is the same for all smooth curves entering 0  with the same slope.  The resulting potential 

surface defined by this limiting process in stress space is called a “yield” surface, in analogy with classical 

plasticity.  For a perfectly rigid cohesive zone model, the traction vector must lie inside or on the yield 

surface.  The interface displacement vector is identically zero for any traction vector inside the yield 

surface.  Plastic flow is equivalent to the motion of the interface.  Equation (2.37) implies that interface 

motion in a rigid cohesive zone model is possible if and only if the traction vector is normal to equi-

potential surfaces in displacement space.   

For example, if the potential function is given by: 

1



 
2 2 2

1 2 3( )A          0       (2.43) 

where A and   are positive constants.   For non-trivial displacement, the traction is 

  1 2 32 2 2
1 2 3

, ,
( )

A
T   

   


 


      (2.44) 

This model is perfectly rigid since the limit of T


as 0 
 

 is in general a non-zero vector (see below).  

Furthermore, (2.44) implies that 

 
12 2 2 2 2

1 2 3( ) 1A T A T T
         (2.45) 

Equation (2.45) implies that the yield surface is an ellipsoid of revolution with semi-axis A and A  .  

For the special case of 1  , the yield surface is a sphere of radius A.   A path in displacement space 

corresponds to a path on the yield surface.  For example, consider a straight line path 2 1 3 1,a b      

in displacement space, where a, b are positive numbers.  The image of this path on the yield surface can 

be obtained using (2.45).  For this special case, the path in stress space collapses to a single point on the 

yield surface, i.e.,  
2 2

1, ,
1 ( )

A
T a b

a b
 




 


.  Thus, the interface continues to deform under this 

constant traction, in analogy with a rigid plastic material.     

 It is possible to construct rigid models in which the yield surface evolves with interface motion.  

For example, consider  

  2 2 2
1 2 3 1 2 3( ) , ,               (2.46) 

where   is a smooth function of its arguments. In particular,  0,0,0 0A    .  For this case, the 

initial yield surface is still given by (2.45), but subsequent yield surfaces are determined by the behavior 

of  .   As an example, consider  

 
2 2

1 2 3( )2 2 2
1 2 3( )e                 (2.47) 

Equation (2.47) implies that the yield surface shrinks with interfacial motion.  It can be verified easily 

that the traction decreases with the size of the yield surface and that failure of the interface occurs 

when the yield surface shrinks to the point 0 
 

.    

It is well known that the interface fracture toughness of most bimaterial systems is dependent 

on the applied phase angle.  Potential functions that has bounded energy as   


  (see paragraph 

after equation 2.39b) in general cannot predict such dependence, unless the material outside the 



cohesive zone undergoes inelastic deformation.   In this case, the size of the plastic zone depends on 

both the cohesive model and the plastic flow rule.   As a result, the energy dissipated as the crack 

advances depends on the loading direction, even though the intrinsic work to separate the interface 

does not.   This approach has been pursued by Tvergaard and Hutchinson [9,10].   However, there are 

physical systems where inelastic deformation is primarily confined to a thin layer of material along 

interfaces, for example, friction sliding and shear deformation zone in polymers.   Furthermore, there is 

no intrinsic reason which suggests that the work to fail an interface must be independent of the loading 

direction.  

It is possible to construct potentials with bounded energy that has directional interfacial fracture 

energies.    For example, consider the potential 
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where   is defined by tanh /I IIW W  .     In (18), the displacements are normalized by some 

appropriate characteristic length 
, i.e., /i i    .    Note  

 1 2( 0, ) IIW          (2.49a) 

 1 2( , 0) (tanh )I II IW W W           (2.49b)  

For proportional loading in displacement space, i.e., if 1    and 2    along the line 1 2/ b   , 

then  
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b
W

b


 

 
       

 
    (2.50) 

The tractions are: 
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   (2.51b) 

Equations (2.51a,b) imply that if 1    and 2    along the line 1 2/ b   , the magnitude of the 

traction vanishes like 1/ ,T 


. where 
2 2

1 2    .   In general, the work to fail a unit area of the 

interface depends on the rate for which 1    and 2   .  For example, if 2
1 2   and 2  

, then 



 1 2( , ) IW           (2.52) 

We now show that the traction associated with potentials which allow directional fracture 

energies must decay as 
1 

 as   .  To demonstrate this result, we employ a polar description of 

the work function, i.e., ( , )    , where 2 2
1 2     and 

1
2 1tan ( / )   .  In polar 

coordinates, the tractions are  

/T    ,  
1

T
 





    (2.53)    

( , )T T  is related to 1 2( , )T T  by usual vector transformation: 

 1 2cos sinT T T    ,  1 2sin cosT T T       (2.54) 

The displacement ( , )    is related to 1 2( , )   by a similar expression.  The requirement that the 

fracture toughness depends on the loading direction implies that  , ( )G      .  Therefore, a 

necessary condition for the work function to have different interfacial energies for different loading 

directions is / 0dG d  .   If this is the case, then (2.53) implies that T  must vary as 
1 
 as   .   

Another way to understand this result is to note that the work done by the traction from a


 to b


 is  

 ( )
a

a

ab R RT d T d


 


   




.     (2.55) 

Let a


 and b


 lie on a very large circle with radius .  Since ( )G   is a non-constant function, ab  

cannot be zero.  Since a


 and b


 lie on a circular path, 0Rd   and d d   .  This implies that 

b

a

ab T d





     .  Thus, for bounded non-zero values of ab , 1/T   as    .    Also, the first 

equation in (2.53) implies that T  must decay faster than 1/  as    .    This result, together with 

(24), shows that 1 2,T T  vanishes as 1/  as    .   

Why don’t we use this type of potentials?  The problem is that potentials with directional 

dependent interface energies always violate steady state crack growth under small scale yielding (SSY) 

conditions.  To see this, consider a semi-infinite plane strain crack lying along the negative real axis.   The 

material is assumed to be homogeneous, isotropic and linearly elastic with Young’s modulus E.  The SSY 

boundary condition is  

 ( , ) ( ) ( )
2 2

I III II
ij ij ij

K K
r f f

r r
   

 
    .   (2.56) 



where ( , )r   is a polar coordinate system at the crack tip, ( )I
ijf   and ( )II

ijf   are universal 

dimensionless functions describing the angular variation of the stresses. To satisfy SSY, the stresses due 

to the cohesive zone must be small compared to the applied field (2.56) as r   .   SSY and steady 

state crack growth implies that interfacial displacement in the far field must be given by 

 1 /IK x E     and  2 /IIK x E        as  x     (2.57) 

On the other hand, our previous analysis shows that T  is proportional to 
2 2

1 21/    as

2 2
1 2    .  According to (2.57), T  must vary as 1/ x  as x   .  This would mean that the 

normal cohesive traction is the same order of magnitude as the applied stresses at infinity – a 

contradiction to the assumption of SSY. 

 Thus, potentials defined in the half space 1 0   with direction-dependent interfacial energies 

are inconsistent with SSY.   This is a very undesirable feature given the fundamental importance of the 

separation of length scales represented by SSY in fracture.  To develop cohesive zone models capable of 

predicting mixed mode failure in elastic materials, at least two other choices are possible.  The first is to 

supplement the work function approach with the concept of failure surface in displacement space, as 

discussed below.  The second is to consider non-potential constitutive models.    

Two Examples: 

Let us consider a pre-exist Mode I plane strain crack in a sample.   We assume that the material 

directly ahead of the crack tip can be modeled by a rigid cohesive zone model (see Figure 10 below) so 

that the cohesive zone tip exists and it lies inside the specimen.     

 

Figure 10a,b:  A Rigid cohesive model for a Mode I Crack. 



The path of the J integral C (red dotted line) in figure 10a  is deformed in such a way so that it just 

encloses the cohesive zone (note C is an open path, it does not pass the cohesive zone).    
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where cL  is the length of the cohesive zone (determined by requiring bounded stresses at the cohesive 

zone tip) and  

     2 1 2 2 1 20 0u x ,x u x ,x       

In particular,
2
I
*

K
J

E
 , in fact, the K field may not have any region of dominance if the cohesive zone size is 

large compared with the crack length or other relevant specimen dimensions.   Note the area under the 

  vs   curve in Fig. 10b is GIC and crack initiation occurs when the crack opening displacement tip  at 

the tip reaches the critical opening displacement c .     

 A simple example is the Dugdale-Barenblatt model.  In mode I, this model states that  

   0c          0c     

The solution of a preexisting Mode I crack in an infinite plane strain/stress body loaded under remote 

tension 22 1 2( x , x )     can be found in a review article by Rice [2].  The crack lies occupies

 1 2 0x a,a ,x   .    The opening displacement is found to be [2]:  
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where R is the size of the cohesive zone (determined by the requirement of bounded stress at the 

cohesive zone tip) and is given by 
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For small scale yielding where R/a << 1, the size of cohesive zone is:  
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Note that as the applied tension reaches the cohesive stress, the cohesive zone length goes to infinity.   

As shown in the example above, the path independence of the J integral tells us that 0 tipJ   ,   Using 

(2.58), the J integral computed using the elastic fields outside the cohesive zone is 
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The K field in the absence of process zone is IK a   .  A comparison with (2.61) shows that  

 2 *J K / E         (2.62) 

Equality occurs only where the cohesive zone size becomes vanishingly small, that is: 
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As explained earlier, the fact that 2 *
IJ K / E  implies the existence of high order singularity terms 

outside the process zone which for the Dugdale model can be directly verified by computing the stress 

field directly ahead of the cohesive zone tip.   Also, note that the stresses are bounded everywhere, so 

the first derivation in this lecture for energy release rate no longer works.  Figure 11 below shows a 

comparison of the cohesive (plastic) zone model and the SSY result where plastic (cohesive) zone size 

goes to zero.   For sufficiently large process zone, LEFM overestimates the stress needed to initiate 

fracture.  

 

Figure 11:  Figure 22 from J. Rice in [2] (see lecture 1), page 266. 
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