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OUTLINE 

•  Preliminaries 

•  Part A: crack propagation in mixed-mode I+II 

•  Part B: crack propagation in mixed-mode I+III  

•  Conclusion 
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PRELIMINARIES 

•  The stress intensity factors 

•  The energy-release-rate and its relation to the 
stress intensity factors 

•  Griffith’s and Irwin’s crack propagation criteria 
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Asymptotic analysis of the stresses near the tip 
of a crack in a 2D elastic body : 

The stress intensity factors 
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Plane strain case: 
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Mode I  
Plane shear Opening of the crack 

Mode II 

( 0)IK >
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Antiplane case: 
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Mode III 
Antiplane shear 
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: elastic potential energy 
: potential energy of prescribed external forces 

: partial derivative with respect to the crack 
length under constant loading 

/∂ ∂l

The energy-release-rate and its relation to the 
stress intensity factors 

Definition of the energy-release-rate     :  G
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Irwin’s formula: 

This formula assumes that the crack is extended 
along its original direction (no kink!) 
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Sketch of the proof: 

Reasoning in two steps : 

1) Application of Betti’s theorem to two successive  
stages of crack propagation 
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(1) (2)
0

1lim .
2l

G ds
lδ δ

+→ Γ
= − ∫ T u

(1)T : traction vector, state (1): length of the crack 
(2)u : displacement, state (2): length of the crack 

2) Calculation of this integral at the lowest order in     , 
tractions and displacements being replaced by their 
asymptotic expressions 

lδ

l lδ+

l



13 

Griffith’s and Irwin’s crack propagation criteria 
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PART A: CRACK PROPAGATION 
IN MIXED MODE I+II 

•  Two experimental examples 

•  The stress intensity factors just after the kink 

•  Irwin’s extended formula 

•  Propagation criteria in mode I+II 
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Two experimental examples 

Example 1 
(Ayatollahi): 

Inclined crack in 
3-point bending 
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Example 2 (Yang and Ravi-Chandar): 

Oscillations of the crack path in a heated strip 
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The stress intensity factors just after the kink 

Geometric situation: 
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( ),I IIK K≡K

( )* *,I IIK K≡*K

: SIF just before the kink. 

: SIF just after the kink. 

Arguments based on scale changes (Karihaloo, Sumi, 
Leblond, Leguillon) 
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The SIF just after the kink depend on the geometry and 
the loading only through the SIF just before the kink 
and the kink angle. 
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Calculation of the functions            based on 
Muskhelishvili’s formalism (Wu, Karihaloo, 
Sumi, Amestoy and Leblond) 

, ( )p qF α

(Amestoy’s thesis) 
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Irwin’s extended formula 

Reasoning based on the continuity of the total 
potential energy              with respect to the crack 
extension length     at          , and on its 
differentiability for           (Ichikawa and Tanaka) 
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For           ,              ,               since                    , so 
that one recovers Irwin’s usual formula. 
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One must now predict 

•  the intensity of the loading promoting  
propagation of the crack (like in pure mode I); 

•  the kink angle. 

Propagation criteria in mode I+II 
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Prediction of the kink angle 

Experimental observation : a kink occurs as soon 
as             .   0IIK ≠

Coupled to the hypothesis that the propagation path is 
regular after the initial kink, this observation suffices 
to fix the value of the kink angle:  

•  After the initial kink (         ), the path is smooth            
(no kink) so that                .   

0s >
( ) 0IIK s =
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•  Taking the limit           , one concludes that 0s +→

*
, ,( ) ( ) 0II II I I II II IIK F K F Kα α= + =

Comparison with « Griffith’s criterion »               : max/G α

If the criteria              and                coincided, the 
following identity would hold : 

* 0IIK = max/G α

(Goldstein and Salganik’s principle of local symmetry)  
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The calculation of the 6-th order expansion of the 
functions (Amestoy and Leblond) shows that this 
identity does not hold. Therefore the two criteria are 
distinct, although numerically very close. 

Prediction of the intensity of the loading promoting 
propagation 

•  After the kink, pure mode I 

•  In the limit             : 

 

( )I IcK s K=
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PART B: CRACK PROPAGATION 
IN MIXED-MODE I+III 

•  Basic 3D fracture mechanics 

•  Some experimental examples 

•  Pons and Karma’s numerical simulations 

•  « Continuous propagation »: helical instability of 
the crack front 
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Basic 3D fracture mechanics 

•  The main term of the stress expansion is obtained 
by simply adding the plane strain and antiplane 
solutions (Leblond and Torlai) 

Local SIF ( ), ( ), ( )I II IIIK s K s K s
(    : curvilinear length along the crack front) s
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where          is given, for a geometrically smooth 
propagation of the crack, by a local Irwin formula : 

( )G s
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= + +

( ) ( ) ( )R Crack front
U W G s a s dsδ δ− = −∫

•  Under constant loading, the variation of the total 
potential energy             induced by a small 
crack advance           is given, to first order, by 

RU W−
( )a sδ



28 

Some experimental examples 

•  In all cases the crack evolves toward a situation 
of pure mode I by rotating about its direction of 
propagation. 

•  Propagation of the crack front occurs either at all 
points of this front (« continuous propagation ») 
or at discrete locations only (« discontinuous 
propagation »). 
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Palaniswamy and Knauss (pure mode III):  

Formation of 
« platelets » 
starting from 
behind the front 
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Sommer (mode I+III, combined tension+torsion of 
glass tubes):  

Formation of « lances » or « facets » collectively 
building a « factory roof » 
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Schematic geometry of factory roof: 

•  Existence of « type A » (favored) and « type 
B » (unfavored) facets 

•  Type B facets are shorter than type A ones, and often 
even totally absent (discontinuous propagation) 
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Pollard and Aydin (geological material): 
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Pons and Karma’s numerical simulations 

These simulations, based on a « phase-field » model, 
reproduce both the instability of coplanar propagation 
in mode I+III and the gradual « coarsening » of facets.  
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The model used is approximately equivalent to enforce 

•  a Griffith-type condition 

•  Goldstein and Salganik’s principle of local 
symmetry 

all along the crack front.  

The simulations therefore suggest that a theoretical 
explanation of crack front instability in mode I+III (for 
continuous propagation) might be found by using this 
double criterion. 

( ) .G s R Cst= =

( ) 0IIK s =
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« Continuous propagation »: helical instability of 
the crack front 

(Leblond, Karma and Lazarus) 

Continuous propagation is assumed. The theoretical 
analysis is based on: 

•  formulae (Movchan, Willis, Gao, Rice) providing 
the exact expression of the stress intensity factors 
to first order in the in-plane and out-of-plane 
perturbations of the crack; 

•  Griffith’s criterion and Goldstein and Salganik’s 
principle of local symmetry. 
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Geometrical configurations: 

Initial situation Perturbed situation 
Perturbed front: elliptic helix with size growing 
exponentially with the distance of propagation. 
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In-plane and out-of-plane perturbations of the crack: 
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Application of the double criterion: 

•  Principle of local symmetry 
 

0

04
2 (2 3 )

y III

x I

A K ka
A K kaν ν

= −
− + −

This equation defines the elliptic shape of the 
projection of the crack front onto the plane        . Oxy

(these expressions apply to the position          of 
the front and must be multiplied by        if          ). 

0x =
0x ≠/x ae
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•  Griffith’s criterion 
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A non-trivial solution (mode of bifurcation) exists 
when              is larger than some threshold                  . 0 0

III IK K/ 0 0
cr( )III IK K/
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Calculation of the threshold                  : 0 0
cr( )III IK K/
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This theoretical threshold is considerably higher 
than that observed experimentally. Possible 
explanations: 

•  Large effect of imperfections below the 
bifurcation threshold 

•  Deviations from coplanarity of a different type 
(discontinuous propagation) 
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CONCLUSION 

•  The problem of crack kinking in mode I+II (2D 
problem) is now well understood and may be 
considered as settled. 

•  In contrast much remains to be done on the problem 
of formation of inclined fracture facets in mode I+III 
(3D problem). 



44 

MANY THANKS FOR YOUR KIND 
AND PATIENT ATTENTION! 


