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Outline

 Crack surface roughness development
e Crack front waves

« Crack branching

« Tape peeling
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Dynamic crack evolution
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Surface roughening
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Dynamlc crack front evolutlon
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Microcracking model for dynamic fracture
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Surface roughening and limiting speed

e Microcracking, instability
— R-C and Knauss, IJF, 1984, R-C and Yang, JMPS, 1996
« Dynamic instability and microbranching
— Sharon and Fineberg, PRL, 1996
 Crack twisting — mode III perturbations
— Hull, J Mat Sci, 1997
e Microcracking, roughening
— Bonamy and coworkers, 2010,...




Surface roughening - PMMA




Formation of conic marks
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‘Plane’ of the microcracks - microbranches

Ravi-Chandar and Yang, J Mech Phys Solids, 1997 — PMMA
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Nucleus of the conic
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Statistics of conic marks - 1
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Statistics of conic marks - 2
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Speed of microcracks?

« Assume that microcracks grow with the same speed

— If microcrack speeds are of equal, then the shape of the
conic is independent of the speed (R-C and Yang, 1997)

— Dalmas et al (IJF, 2013) show this by examining the
detailed shapes of conics

« How fast do the microcracks grow?

— It is not really possible to examine this experimentally. To
be determined by other means!

— This is still an open issue

« Can we simulate this? — just the kinematics!
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Nucleation and growth model: Flaw Nuclei

Nucleation is by cavity growth
Spacing and density are governed by the stress level

Measured densities are in the range of 500 to 2500
nuclei per mm?.
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Nucleation and growth model: Nucleation

« When the stress at a flaw nucleus reaches a critical value, the
nucleus becomes an active microcrack; calculation of this
requires detailed knowledge of the flaw dimensions and the
detailed stress field in its vicinity.

« Here we assume that when an active crack front approaches
a nucleus to within a critical nucleation distance, d, the flaw
is nucleated into a microcrack.

N active crack front

(]

nucleus

d,, nucleation distance

s, spacing between nuclei




Nucleation and growth model: Growth

» Constant microcrack speed

— all active microcracks grow with the same speed
regardless of the density of microcracks

« Constant energy flux

— microcrack speed depends on the number of active
microcracks and the available energy

Ravi-Chandar and Yang, J Mech Phys Solids, 1997
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Constant microcrack speed
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Constant power input
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Comments...

 Differences in density of conic marks between
different types of PMMA need to be reconciled

— Bonamy et al have one to two orders of magnitude lower
conic marks per unit area

« Quantitative modeling of the deformation within
the fracture process zone — cavitation, crack
initiation, growth, coalescence,...

« Continuum modeling based on heterogeneity?
— Line models and quantitative calibration/comparison
— Crack front waves
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Crack front waves — a quick summary
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Wallner lines

Source

Field, J Contemporary Physics, 1971

THE UNIVERSITY OF

Ravi-Chandar, CENTER FOR MECHANICS OF SOLIDS, STRUCTURES AND MATERIA



.-

— - — - A —————— e ———

- W Sbd WL i
[R———— A et




Mode III perturbations
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Results of Fineberg et al
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Summary on crack fronts

« Theory predicts that they exist

— Important in roughness generation; bulk waves can also
deliver energy to the cracks and cause roughness, but
these CF waves are more effective.

— Difficult to distinguish from Wallner lines

« Small amplitude plane wave perturbation
— Perfectly linear response to mode III perturbations

— Responds to wavelength of input, speed of crack — no
inherent characteristic length!

— No persistent interaction between different pulses
— No persistence when perturbation is removed

« Need larger amplitude perturbations?
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Dynamic crack branching
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Crack branching
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Microcracking model for dynamic fracture
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Control of surface roughening and branching
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Fracture mechanics

Outer Problem: Knowledge of constitutive laws and
balance equations is adequate to calculate the energy
release rate, G

Inner Problem: Are the details of the failure
mechanisms and fracture processes important only in
determining the fracture energy, I'?
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Crack branching analysis

Stress field based

— Yofte (1951): v~0.65 C,
Energy-based

— Eshelby (1970)

— Freund (1972): v~0.53 Cp

— Adda-Bedia et al. (2005, 2007)
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Energy balance calculations of Adda-Bedia et al
K, (t,v) =k, (V)KO(t,0), p= I, 11,111

KO v) =Dk (V)H , (4,v',Vv)K/(t,0)

Not all the H,, are available, but H,,
was calculated by Adda-Bedia et al,
corresponding to the mode III
problem.

Ko (6, V) = Ky (V) Hgs (4,V4,V) K, (8, 0)

1 , 2 e
6= g (Ha (v )KREO)
G'=T(V);G=T(v) §: i B .
v=0.39C_; 1 = 0.22(39.6°):v' = 0 N

Adda-Bedia et al. 2005, 2007,...




In-plane modes

, 1 N o 2 ’ . ,
G = Zy[g (V)( (A V) K (t,O)) +g“(v)(H21(/1,v)K,,(t,O))]

G'=I'(V');G=T(v)

H,, and H,, are not available, but
Adda-Bedia argues that in the limit of 0.50}
zero crack speed, these should behave
similarly to H,,, corresponding to the

mode III problem. *j‘?

v=0.518C; A =0.13(23.4°);v' =0 030}

I (V) influences the critical speed, 0.2%_'0- e
but not the branching angle F(v)/T(0) 1

Adda-Bedia et al. 2005, 2007,...
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Dynamic lifting of a tape

« Inextensible, flexible tape with tension T, mass per unit length p
. W(X,t) ...transverse deflection
. W(X,t) ...transverse velocity

. W(X,t) ... slope (assumed small)

1
L==(pW —Tw"?
>(p )
2 2
= c’ 0 v2v_ 2 \;V =0 c=./T/p---speed of transverse waves
OX ot
: .. : . ads
Expect piecewise linear solutions: = E
aW’—8W:>SW'+W—O ) )
ot ox N fo=f(s")-f(s)

In the absence of adhesion in the string, you can show that S = *C
If W is prescribed, then W =FW/¢

Burridge and Keller, 1978, Freund, 1990, Duomochel et al, 2008,...
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Dynamic peeling of a tape with adhesion

Now let us consider adhesion of the tape to the substrate with an adhesive
energy [’

Consider pulling one end of a semi-
infinite tape at a constant speed, W.
As a result, a peel front moves with a
speed S

Expect piecewise linear solutions:
ow ow . .
= =S W + W =0
ot  OX

But another equation is needed to determine S

This is derived from energy balance: dynamic energy release rate

6=L(s)-L(s") =5 ([w]-[#]re)

)
G=lw (1—S—Zj
2 C
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Dynamic peeling of a tape with adhesion

Impose Griffith condition: G =T

.2
G :IW’2 El—s—zjzl“
2 C

S-2 WZ/CZ

Normalized Slope

jN
L T R T R B

rrrrrrrrrrrrrrrrrrrrrrrr

0.2 0.4 0.6 0.8
Normalized Velocity




Peeling front encountering a weak patch

r I, 0<x<l
T, <D, L<x<ow

Let us peel quasi-statically:

Wyoe =—+/2I,/T; W, =0

d =120, /T
At this point, the peel front s T
encounters a weak patch; let us fix d — ia_ — =2
I
W | > | Wi | = /2T, /T | S

--equilibrium crack length

Quasi-statically, crack will extend

until _ 2F T Howevgr, the crack will propagate

Wy dynamically

1gs
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)

Dynamic peeling front encountering a weak patch

F:{ r, 0O<x<l c./

[ <I, | <X<w T —

Wi, Wy
But, the crack will advance h
dynamically, ataspeed S ...
A kink wave will propagate towards } ~ct ,’
the fixed end in the peeled portion of  _ —>1S
the tape ,

crack tip: sw; + W, =0
kink: (W, —W,)—c(w —w,)=0
C dynamic energy release rate
$<cC oW, (W, —w; )(2—w, /1w, ) =821, /T

t

Y

w, 1+0,/T| |s T,/T,-1
X P - =

qus 2 Fg/rl C_F2/F1+1
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Dynamic peeling front encountering a weak patch

Next, we consider reflection from the
fixed end of the kink wave

kink: (Wi, =W, )+c(w —w;)=0

This will arrive at the location X = |,

at t=&=(1, 1)/

: _ /
W, =0,w,

W W(l——j W, £<W'
C

1gs T 1gs
2

The peel front arrests and everything

becomes quiescent!

I Iy > | P

a 1 a
I
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Extensions to this one-d problem

Continue loading at x = 0; must consider multiple
reflections

Introduce speed dependence to the energy I'(v)

Consider flexibility — straightforward extension to
the bending problem

Consider extensible strings — more complex due to
the presence of longitudinal and transverse waves
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