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Outline 

• Crack surface roughness development 

• Crack front waves 

• Crack branching 

• Tape peeling 
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Dynamic crack evolution 
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Surface roughening 

Mirror Mist Hackle 

Branch 

Ravi-Chandar and Knauss, Int J Fract, 1984 



Ravi-Chandar,  CENTER FOR MECHANICS OF SOLIDS, STRUCTURES AND MATERIALS 5/46 

Dynamic crack front evolution 

Mirror Mist Hackle 

Branch 

Ravi-Chandar and Knauss, Int J Fract, 1984 
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Microcracking model for dynamic fracture 

Ravi-Chandar and Knauss, Int J Fract, 1984 – Homalite - 100 
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Surface roughening and limiting speed 

• Microcracking, instability  

– R-C and Knauss, IJF, 1984, R-C and Yang, JMPS, 1996  

• Dynamic instability and microbranching  

– Sharon and Fineberg, PRL, 1996 

• Crack twisting – mode III perturbations 

– Hull, J Mat Sci, 1997  

• Microcracking, roughening 

– Bonamy and coworkers, 2010,… 

Lp 
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Surface roughening - PMMA 

 

Ravi-Chandar and Yang, J Mech Phys Solids, 1997 – PMMA 
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Formation of conic marks 

a  

100 mm 

b 

 

5 mm 

Smekal, 1953 
Ravi-Chandar and Yang, J Mech Phys Solids, 1997 ; Ravi-Chandar, Int J Fract, 1998  – PMMA 
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‘Plane’ of the microcracks - microbranches 

Ravi-Chandar and Yang, J Mech Phys Solids, 1997 – PMMA 
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Nucleus of the conic 

Ravi-Chandar, Int J Fract, 1998  – PMMA 



Ravi-Chandar,  CENTER FOR MECHANICS OF SOLIDS, STRUCTURES AND MATERIALS 12/46 

Statistics of conic marks - 1 
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Ravi-Chandar and Yang, J Mech Phys Solids, 1997 – PMMA 
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Statistics of conic marks - 2 

Scheibert, Guerra, Celarie, Dalmas and Bonamy, PRL, 2010 
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Speed of microcracks? 

• Assume that microcracks grow with the same speed 

– If microcrack speeds are  of equal, then the shape of the 
conic is independent of the speed (R-C and Yang, 1997) 

– Dalmas et al (IJF, 2013) show this by examining the 
detailed shapes of conics 

• How fast do the microcracks grow? 

– It is not really possible to examine this experimentally. To 
be determined by other means!  

– This is still an open issue 

• Can we simulate this? – just the kinematics! 
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Nucleation and growth model: Flaw Nuclei 

• Nucleation is by cavity growth  

• Spacing and density are governed by the stress level  

• Measured densities are in the range of 500 to 2500 
nuclei per mm2. 

 

Ravi-Chandar and Yang, J Mech Phys Solids, 1997 

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



Ravi-Chandar,  CENTER FOR MECHANICS OF SOLIDS, STRUCTURES AND MATERIALS 16/46 

nucleus 

active crack front 

dn, nucleation distance 

s, spacing between nuclei 

Nucleation and growth model: Nucleation 

• When the stress at a flaw nucleus reaches a critical value, the 
nucleus becomes an active microcrack; calculation of this 
requires detailed knowledge of the flaw dimensions and the 
detailed stress field in its vicinity.  

• Here we assume that when an active crack front approaches 
a nucleus to within a critical nucleation distance, dn the flaw 
is nucleated into a microcrack. 

Ravi-Chandar and Yang, J Mech Phys Solids, 1997 
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Nucleation and growth model: Growth 

• Constant microcrack speed 

– all active microcracks grow with the same speed 
regardless of the density of microcracks 

• Constant energy flux 

– microcrack speed depends on the number of active 
microcracks and the available energy 

Ravi-Chandar and Yang, J Mech Phys Solids, 1997 
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Constant microcrack speed 

Ravi-Chandar and Yang, J Mech Phys Solids, 1997 
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Constant power input 
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Comments… 

• Differences in density of conic marks between 
different types of PMMA need to be reconciled 

– Bonamy et al have one to two orders of magnitude lower 
conic marks per unit area 

• Quantitative modeling of the deformation within 
the fracture process zone – cavitation, crack 
initiation, growth, coalescence,… 

• Continuum modeling based on heterogeneity? 

– Line models and quantitative calibration/comparison  

– Crack front waves 
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Crack front waves – a quick summary 

Morrissey and Rice, JMPS, 2000 

0

ˆ ( , ) ˆˆ( , ) ( , )
G k

P k A k
G


 


 

0( , ) ( , )A z t a z t v t 

               … obtained from perturbation 
solution of Willis and Movchan; has a 
simple zero corresponding to a 
propagating mode with speed Cf ; this is 
the crack front wave.  

ˆ( , )P k 

f 0.96 0.97 RC C
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Source 

Wallner lines 

Field,  J Contemporary Physics, 1971 
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Wallner lines 

 

Photographs: Jill Glass, Sandia National Laboratories 
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Mode III perturbations 

Bonamy and Ravi-Chandar, 2003 
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25 

Specimen P 

v= 890 m/s 

f = 5 MHz 

10 mm 
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26 

Specimen AC 

v= 440 m/s 

f = 5 MHz 

12.7 mm 
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27 

Specimen AI 

v= 440 m/s 

f = 20 MHz 

10 mm 
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Crack-ultrasonic pulse interaction 
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Results of Fineberg et al 
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Summary on crack fronts   

• Theory predicts that they exist 
– Important in roughness generation; bulk waves can also 

deliver energy to the cracks and cause roughness, but 
these CF waves are more effective. 

– Difficult to distinguish from Wallner lines 

• Small amplitude plane wave perturbation 
– Perfectly linear response to mode III perturbations 

– Responds to wavelength of input, speed of crack – no 
inherent characteristic length! 

– No persistent interaction between different pulses 

– No persistence when perturbation is removed 

• Need larger amplitude perturbations? 
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Dynamic crack branching 
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Crack branching 
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Microcracking model for dynamic fracture 

Ravi-Chandar and Knauss, Int J Fract, 1984 – Homalite - 100 
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Control of surface roughening and branching 

Ravi-Chandar and Knauss, IJF, 1984 
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Fracture mechanics 

Lp 

Inner Problem: Are the details of the failure 
mechanisms and fracture processes important only in 
determining the fracture energy, G? 

Outer Problem: Knowledge of constitutive laws and 
balance equations is adequate to calculate the energy 
release rate, G 
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Crack branching analysis 

• Stress field based 

– Yoffe (1951): v~0.65 CR 

• Energy-based 

– Eshelby (1970) 

– Freund (1972):  v~0.53 CR 

– Adda-Bedia et al. (2005, 2007) 
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Energy balance calculations of Adda-Bedia et al 

0( , ) ( ) ( ,0), , ,p p pK t v k v K t p I II III 

  0( , ) ( ) , ', ( ,0)p l pl l

l

K t v k v H v v K tl  

Adda-Bedia et al. 2005, 2007,… 

Not all the Hpl are available, but H33  

was calculated by Adda-Bedia et al, 
corresponding to the mode III 
problem. 

  0

33( , ) ( ) , ', ( ,0)III III IIIK t v k v H v v K tl 

  
2

0

33

1
( ) , ( ,0)

2
IIIG g v H v K tl

m
  

   ;G v G v  G  G

0.39 ; 0.22(39.6 ); 0sv C vl   



Ravi-Chandar,  CENTER FOR MECHANICS OF SOLIDS, STRUCTURES AND MATERIALS 39/46 

In-plane modes 

Adda-Bedia et al. 2005, 2007,… 
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H11 and H21 are not available, but 
Adda-Bedia argues that in the limit of 
zero crack speed, these should behave 
similarly to H33, corresponding to the 
mode III problem. 

0.518 ; 0.13(23.4 ); 0Rv C vl   

            influences the critical speed, 
but not the branching angle 

 vG
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Dynamic lifting of a tape 

• Inextensible, flexible tape with tension T, mass per unit length r   

•                … transverse deflection 

•                … transverse velocity 

•                … slope (assumed small) 

,
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Expect piecewise linear solutions: 

 

 

 

In the absence of adhesion in the string, you can show that 

If       is prescribed, then 
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Burridge and Keller, 1978, Freund, 1990, Duomochel et al, 2008,… 
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Dynamic peeling of a tape with adhesion 

Now let us consider adhesion of the tape to the substrate with an adhesive 
energy G 

,
w w

w w
t x

 
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 ( , )w x t

T

l st s
Expect piecewise linear solutions: 

 

 

But another equation is needed to determine  

This is derived from energy balance: dynamic energy release rate 
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Dynamic peeling of a tape with adhesion 
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Let us peel quasi-statically:  

 

 

 

 

At this point, the peel front 
encounters a weak patch; let us fix d  

 

 

Quasi-statically, crack will extend 
until 

 

Peeling front encountering a weak patch 
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However, the crack will propagate 
dynamically 
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But, the crack will advance 
dynamically, at a speed 

A kink wave will propagate towards 
the fixed end in the peeled portion of 
the tape  

Dynamic peeling front encountering a weak patch 
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Next, we consider reflection from the 
fixed end of the kink wave 

 

 

This will arrive at the location                  
at   

Dynamic peeling front encountering a weak patch 

1l

c

s c

t 

x 

c

al



t

ax l
 1 /at l l s  

1l

d 2qsw
1 1,w w

s

0,r rw w

c

   1 1kink: 0r rw w c w w    

1
1 1 1

2

1r qs qs

s
w w w w

c

G 
       

G 

The peel front arrests and everything 
becomes quiescent! 

2
1

1

qs

a al l l
G

 
G



Ravi-Chandar,  CENTER FOR MECHANICS OF SOLIDS, STRUCTURES AND MATERIALS 46/46 

Extensions to this one-d problem 

• Continue loading at x = 0; must consider multiple 
reflections 

• Introduce speed dependence to the energy G(v) 

• Consider flexibility – straightforward extension to 
the bending problem 

• Consider extensible strings – more complex due to 
the presence of longitudinal and transverse waves 


