TP Vibration

Dans ce TP on va caractériser les vibrations (flexion dynamique) d’objets élancés.

1. Modes propres de vibration d’un réglet métallique et d’un cylindre
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1.1. Schéma de la configuration expérimentale I - réglet

Un réglet métallique encastré entre les deux parties du mors constitue un prototype tres simple pour

étudier les fréquences de résonance des modes propres d’une poutre élancée (h < L) en fonction de
la longueur L. 1l suffit pour cela de faire avancer progressivement le

réglet entre les mors pour changer L.

Le réglet est simplement encastré sur une base stable de grande masse
(simplement en plagant le réglet entre deux parties plates de la base
et en resserrant les vis). On mettra le réglet en vibration en appuyant
fortement avec un doigt et en relachant brusquement. Vous étres libres
d’améliorer la technique de stimulation pour produire un meilleur son

de vibration ! Ceci parce que la mesure de I’oscillation du réglet se b L
fera justement par enregistrement 2 1’aide d’un microphone des ondes N ﬂ
sonores produites dans 1’air par la vibration du réglet. hl:

Le signal sonore sera enregistré a 1’aide de la carte son de 1’ordinateur et d’un logiciel d’enregistrement
et d’analyse des signaux Audacity. Utilisez le bouton rouge pour enregistrer le son. Nous vous
suggérons de faire plusieurs enregistrements en séquence. Apres avoir arrété 1’enregistrement, vous
pouvez sélectionner avec un curseur la partie de I’enregistrement que vous voulez analyser. Utilisez
I’option Analyze/Plot Spectrum pour obtenir une analyse Fourier de 1’enregistrement.

La forme aplatie du réglet et la nature peu dissipative du métal permettent a la fois des oscillations
durables de forte amplitude et la production efficace d’ondes sonores (méme si peu audibles, les intenses
variations de pression sont bien enregistrés par un microphone ordinaire).

* Avant de commencer la manipulation, estimer le module d’ Young du métal en question a 1’aide
d’une mesure de flexion statique.

* Apres avoir optimisé les conditions de stimulation et d’enregistrement sur une longueur de réglet
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d’environ 10 cm, procéder a un enregistrement systématique pour une dizaine de longueurs
différentes. En utilisant les outils d’analyse de Fourier inclus dans le logiciel fourni, identifier dans
les spectres de puissance les fréquences des premiers modes propres du réglet.

» Vérifier ’accord avec la théorie : étes-vous en mesure d’identifier tous les pics observés ?

» Déterminer pour chaque longueur autant de fréquences propres que possible et vérifier si leur
dépendance de la longueur de la poutre est en accord avec le lois théorique (voir annexe théorique):
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1.2. Schéma de la configuration expérimentale II - cylindre vide

N

Nous allons maintenant nous intéresser a une géométrie
différente, celle d’un cylindre en cuivre. La vibration d’un
cylindre vide est équivalente au premier mode de résonance
d’une onde de flexion avec une longueur d’onde équivalente a
la longueur linéaire de la circonférence A = 27 R, et donc :

Cr E h
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) - ou nous avons utilisé ¢; = /E/p(h/A) pour la vitesse de
' - propagation des ondes de flexion de longueur d’onde A, E
| le module d’Young, p la densité du matériau, h la largeur, R

le rayon du cylindre, F = 110Gpa et p = 8830kg/m? (voir
annexe théorique).

* Vous devez tester cette relation de proportionnalité en frappant le cylindre pour mesurer la fréquence
de vibration.

* Répétez I’exercice pour des cylindres avec géométries différentes.

La mesure de I’oscillation du cylindre se fera par enregistrement - a I’aide d’un microphone (comme
pour le reglet) - des ondes sonores produites dans I’air par la vibration du cylindre.



2. Verres chantants

Avez-vous déja essayé de faire chanter vos verres a vin en
frottant délicatement le bord du verre de vos doigts ? Et avez été
capable de produire des sons différents selon que votre verre soit

plus ou moins rempli ?

Bien que ce phénomene soit utilisé depuis des siecles, le pre-
mier papier qui en discute la physique n’a été publié¢ qu’en 1982
(A. P. French, (1982) In Vino Veritas: A study of winglass acous-
tics, Am. J. Phys 51(8)). Dans ce TP, vous tenterez de compren-
dre comment la fréquence de vibration du verre dépend de son

taux de remplissage.

2.1. La vibration d’un verre

N
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Verrillon par percussion, (illustration par
Franchino Gafori dans Theorica musicae, Milan
(1492)) et par frottement (source Du merveilleux

caché dans le quotidien).

Nous considérerons d’abord un verre vide, les parametres sont spécifiés dans 1’illustration (voir I’annexe
théorique pour la dérivation de la loi d’échelle).
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La fréquence de résonance wy du verre vide est:

E, h
Wy ~ | ——==.
’ py R?

* Vous devez tester cette relation de proportionnalité apres per-
cussion du verre vide pour mesurer la fréquence de vibration
(comme avant, utilisez Audacity).

* Répétez I’exercice pour les trois verres cylindriques.

Si le verre est rempli d’eau, I’énergie cinétique doit étre corrigée
et I’expression de la fréquence devient (voir 1I’annexe théorique):

E,HL
poRHh + p,R2H3 [H?

Wy ~

ou p, et p,, sont les densités du verre et de 1’eau respectivement.

* Mesurer la fréquence du son émise par le verre apres percussion ou par friction en fonction de son
remplissage et du liquide utilisé. Répétez I’exercice pour les trois verres.

» Essayez aussi de mesurer le temps d’atténuation du son apres une percussion.

* Remplacer I’eau par de la glycérine et des granulés (deux tailles de billes). Comment cela
change-t-il vos résultats ?
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Annexe théorique
Déformée d’une poutre encastrée, chargée a son extrémité

Dans une section d’abscisse x, le moment fléchissant résultant de la force F’ est:
M(z)=—F(L —x)

Ce moment est aussi donné par la loi de Hooke M = FET/R ~ EId*y/dxz?* (dans la limite des faibles
pentes), avec I = bh®/12 pour une poutre de section rectangulaire.

Figure 1. Flexion d’une poutre encastrée, chargée a son extrémité.

Reste a résoudre I’équation différentielle:

d?y

avec comme contions au limites, y(0) = 0, ¥/(0) = 0 (pente nulle a I’origine). On obtient ainsi:

5 FL?  FIL?
—§(x/L) (3—xz/L) avec o= 3BT _4Eh3b

y(z) =

Modes propres de vibration de flexion d’une poutre

Comment trouver 1’équation de propagation d’une onde flexion le long d’une poutre ? C’est un peu
calculatoire, mais pas de panique, il s’agit juste d’un bilan des forces est des moments autour d’une
tranche dx de la poutre (Fig. 2).

Figure 2. Bilan des forces et des moments autour d’une tranche dz de la poutre vibrante.

L’équilibre des forces se traduit par:
phbdxra = dT

En toute rigueur 1’accélération a n’est pas nécessairement verticale et la force T ne correspond pas
exactement a un effort tranchant. Nous supposerons néanmoins que les déflexions de la poutre (et



donc la pente locale) sont faibles si bien que le déplacement du centre de masse de I’élément dx est
essentiellement vertical ainsi que T. L’équilibre des forces se traduit alors par:

0%y OT
hb — = —
P70 ~ ox
écrivons 1’équilibre des moments autour du centre de masse:
020
—MA+M+dM+Tdz/2+ (T +dT)dx/2 = de

ot d.J = pbh3dx /12 est le moment d’inertie de 1’élément dz autour de son centre de masse et 0 la pente
de la tangente a la poutre. Dans la limite des faibles pentes, on a § = Jy/0x. L’équilibre des moments
se traduit ainsi par:

D3y
ot? oz’
Pour se débarrasser de la force 7', nous pouvons combiner les deux expressions apres avoir dérivé la
derniére pour faire apparaitre 07" /Ox:

9?M Py 1 My
hb —= = — pbh? .
o2 M ar T 1" aren
Si la longueur caractéristique selon  vaut A >> h, I’ordre de grandeur du dernier terme est phb(h/\)20%y /Ot2.

Nous avons donc un facteur d’ordre (h/))? avec le terme d’accélération. L accélération angulaire est
donc négligeable, ce qui conduit a:

1
G T — — 3
+ 12"

2 2
phb % + 88;\2/1 =0.
Reste a prendre en compte 1’équation de la flexion d’une poutre (dans la limite de faible pente):
0%y
M=FEI 92
Nous obtenons I’équation d’onde:
My phd 0%y
ox*  EI Ot?

dont nous pouvons chercher des solutions de la forme y(z,t) = Y (z)e™".
Cela revient a résoudre:

Ay phb \'*
W—kY—O avec k—<ﬁw> .

Pour cela, on cherche les racines du polyndme caractéristique r* = k* qui sont &=k, &=ik. Les solutions
sont donc de la forme Y (x) = a;e*® + ase*® + aze™*® + ase~*. Toutes les combinaisons linéaires de
ces solutions sont également solution et il est plus commode de les écrire de la maniere suivante:

Y (z) = asin(kx) + bcos(kx) + csinh(kz) + d cosh(kz)

Les constantes a, b, ¢, d sont a déterminer a partir des conditions aux limites. Dans le cas d’une poutre
encastrée a son extrémité, ces conditions s’écrivent:
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*Y(0)=b+d=0
(pas de déplacement au niveau de I’encastrement)

*Y'(0)=k(a+c¢)=0
(angle nul a I’encastrement)

e M(L) ~Y"(L) = k*(—asin(kL) — bcos(kL) + csinh(kL) + d cosh(kL)) = 0
(moment nul a I’extrémité libre)

¢ T(L) ~M'(L) ~Y"(L) = k*(—acos(kL) + bsin(kL) + ccosh(kL) + dsinh(kL) = 0
(pas d’effort tranchant a I’extrémité libre)

Nous cherchons donc les solutions du systeme linéaire suivant:

0 1 0 1

1 0 1 0
—sin(kL) —cos(kL) sinh(kL) cosh(kL)
—cos(kL) sin(kL) cosh(kL) sinh(kL)

QO >
oo OO

On cherche les modes propres de vibration qui sont indépendants de I’amplitude des oscillations,
c’est-a-dire des solutions ou les constantes a, b, c et d sont proportionnelles a une constante arbitraire.
Ceci n’est possible que si le déterminant de la matrice est nul. Passons les calculs, le déterminant vaut
2 cosh(kL) cos(kL) + 2. La nombre d’onde propre k doit donc vérifier:

cosh(kL) cos(kL) = —1

Une maniére simple de visualiser les solutions consiste a tracer cos(z) et —1/ cosh(z) et de regarder
quand les deux courbent s’interceptent (Fig. 3).

kL

Figure 3. Détermination graphique des solutions de cosh(kL) cos(kL) = —1.

Le mode fondamental correspond a koL = 1.875, le mode suivant a k; L. = 4.695 et les modes d’ordre
supérieurs sont donnés par k; L ~ (2i + 1)7/2. Nous pouvons en déduire I’expression des fréquences

propres de vibrations:
1 (EI\"Y?
o= o (20) R
21 \ phb

6



Au final, si on prend I = h®b /12, nous obtenons pour le mode fondamental:

f,_ 18T (E>1/2 o161t (E>1/2
"Comvel2\p) T L2\p)

Les fréquences propres suivantes sont données par f; = 6.27fy, fo = 17.55fy, f3 =34.39fy, fi=

56.85 f;...

En réinjectant les valeurs de &; dans les solutions, on peut retrouver les formes des différents modes. Le
mode fondamental et les 3 premiers modes suivants sont représentés figure 4. Le fait que les différents
modes ne soient pas des multiples rationnels du mode fondamental est a I’origine du son particulier des

boites a musiques ou des carillons.

0.02 F

0.01

— Fondamental

— 1er harmonique

-0.01

-0.02 F

—— 2nd harmonique

—— 3e harmonique

Figure 4. Premiers modes de vibration d’une poutre encastrée.

La vibration d’un verre

*D‘
N

En imposant I’équivalence entre 1’énergie é€lastique totale et
I’énergie cinétique totale, nous pouvons déterminer la fréquence
de vibration wy du systeéme.

Nous considérerons d’abord un verre vide (les parametres sont
spécifiés dans I’illustration). Le champ de déplacement est a tout
point perpendiculaire a 1’épaisseur du verre, comme c’est le cas
pour une poutre. Comme les variations caractéristiques se font
sur des distances d’ordre B > h, on est bien dans le cas des
poutres €lancées, ou le mouvement transverse est associé a de la
flexion plutdt qu’a du cisaillement. En outre comme 1’amplitude
des déplacements u est faible par rapport a 1I’épaisseur, on peut
négliger I’extension et considérer uniquement 1’énergie de flexion.
La déformation de circonference d’un cercle a une ellipse se fera
donc a périmétre constant.

La déformation dans la coque est:

1 1 11
~hA—. A —
c 7 Ap(

Res R
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Comme nous travaillons dans la limite /R < 1, nous estimons le rayon de courbure (passant de
RaR,:

1 U 1 U
~—1+—=) = A=~ —.
Rer R< R) R R?

Ry~ Rtu —

Nous notons que le déplacement d’un point sur le bord du verre a tout instant (une oscillation sinusoidale)
est: .
u(t) = up— cos(wt).
(t) = o cos(wt)

L énergie élastique du verre est UY ~ E,£%Q () est le volume):

ot h oz Hoh 2 HP?
v EU P ~ Ev_ 2 (_) ~ Ev_ 2
U, /0 /0 (R2 u0H> hRdOdz /0 7 uy Vi dz J8 ug,

ol I’on considere une période d’oscillation. L’ énergie cinétique stockée du verre est UY,, ~ v?m,, ou
v~ du/dt ~ ugws et m, ~ p,S, ¢’est-a-dire:

H L\ 2
v, ~ / (wuoﬁ> peRhdz ~ pyw?ul RhH.
0

La fréquence de résonance wy du verre vide (le premier mode) est donc:

E, h
py R

v v
el ™ Yein > Wo ~
Si le verre est rempli d’eau jusqu’a H,,, I’énergie cinétique doit étre corrigée pour tenir compte du
mouvement du contenant:
total __ v w
U - Ycin +

Hy 2
U~ [ () pultide ~ pusti RO 1
0

ol p,, est le densités de I’eau. La fréquence de résonance wy du verre+eau est donc:

v v + w v 1233
el cin cin Wo pvR Hh + prZ Hg/ H?2
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