
TP Vibration
Dans ce TP on va caractériser les vibrations (flexion dynamique) d’objets élancés.

1. Modes propres de vibration d’un réglet métallique et d’un cylindre
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L’ORIGINE DU SON:

anches d’une clarinette ou d’un orgue            poutres encastrées à une extrémité

La vibration d’une anche fine
est à l’origine du son de nom-
breux instruments à vent tels
que la clarinette ou l’orgue.
Dans le cas d’une boı̂te à
musique, c’est la vibration
des poutres encastrée à une
extrémité. La géométrie a un
impact sur la fréquence du
son émis, que nous étudierons
dans cette partie.

1.1. Schéma de la configuration expérimentale I - réglet

Un réglet métallique encastré entre les deux parties du mors constitue un prototype très simple pour
étudier les fréquences de résonance des modes propres d’une poutre élancée (h� L) en fonction de
la longueur L. Il suffit pour cela de faire avancer progressivement le
réglet entre les mors pour changer L.

Le réglet est simplement encastré sur une base stable de grande masse
(simplement en plaçant le réglet entre deux parties plates de la base
et en resserrant les vis). On mettra le réglet en vibration en appuyant
fortement avec un doigt et en relâchant brusquement. Vous êtres libres
d’améliorer la technique de stimulation pour produire un meilleur son
de vibration ! Ceci parce que la mesure de l’oscillation du réglet se
fera justement par enregistrement à l’aide d’un microphone des ondes
sonores produites dans l’air par la vibration du réglet.

AUDACITY

Le signal sonore sera enregistré à l’aide de la carte son de l’ordinateur et d’un logiciel d’enregistrement
et d’analyse des signaux Audacity. Utilisez le bouton rouge pour enregistrer le son. Nous vous
suggérons de faire plusieurs enregistrements en séquence. Après avoir arrêté l’enregistrement, vous
pouvez sélectionner avec un curseur la partie de l’enregistrement que vous voulez analyser. Utilisez
l’option Analyze/Plot Spectrum pour obtenir une analyse Fourier de l’enregistrement.

La forme aplatie du réglet et la nature peu dissipative du métal permettent à la fois des oscillations
durables de forte amplitude et la production efficace d’ondes sonores (même si peu audibles, les intenses
variations de pression sont bien enregistrés par un microphone ordinaire).

• Avant de commencer la manipulation, estimer le module d’Young du métal en question à l’aide
d’une mesure de flexion statique.

• Après avoir optimisé les conditions de stimulation et d’enregistrement sur une longueur de réglet

1



TP Vibration

d’environ 10 cm, procéder à un enregistrement systématique pour une dizaine de longueurs
différentes. En utilisant les outils d’analyse de Fourier inclus dans le logiciel fourni, identifier dans
les spectres de puissance les fréquences des premiers modes propres du réglet.

• Vérifier l’accord avec la théorie : êtes-vous en mesure d’identifier tous les pics observés ?

• Déterminer pour chaque longueur autant de fréquences propres que possible et vérifier si leur
dépendance de la longueur de la poutre est en accord avec le lois théorique (voir annexe théorique):

f0 ' 0.161

√
E

ρ

h

L2
.

.

1.2. Schéma de la configuration expérimentale II - cylindre vide

AUDACITY

Nous allons maintenant nous intéresser à une géométrie
différente, celle d’un cylindre en cuivre. La vibration d’un
cylindre vide est équivalente au premier mode de résonance
d’une onde de flexion avec une longueur d’onde équivalente à
la longueur linéaire de la circonférence λ = 2πR, et donc :

ω0 ∼
cf
λ
∼

√
E

ρ

h

R2
,

où nous avons utilisé cf =
√
E/ρ(h/λ) pour la vitesse de

propagation des ondes de flexion de longueur d’onde λ, E
le module d’Young, ρ la densité du matériau, h la largeur, R
le rayon du cylindre, E = 110Gpa et ρ = 8830kg/m3 (voir
annexe théorique).

• Vous devez tester cette relation de proportionnalité en frappant le cylindre pour mesurer la fréquence
de vibration.

• Répétez l’exercice pour des cylindres avec géométries différentes.

La mesure de l’oscillation du cylindre se fera par enregistrement - à l’aide d’un microphone (comme
pour le règlet) - des ondes sonores produites dans l’air par la vibration du cylindre.
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2. Verres chantants

Avez-vous déjà essayé de faire chanter vos verres à vin en
frottant délicatement le bord du verre de vos doigts ? Et avez été
capable de produire des sons différents selon que votre verre soit
plus ou moins rempli ?

Bien que ce phénomène soit utilisé depuis des siècles, le pre-
mier papier qui en discute la physique n’a été publié qu’en 1982
(A. P. French, (1982) In Vino Veritas: A study of winglass acous-
tics, Am. J. Phys 51(8)). Dans ce TP, vous tenterez de compren-
dre comment la fréquence de vibration du verre dépend de son
taux de remplissage.

source: Scientific American

source: W
ikipedia

Verrillon par percussion, (illustration par

Franchino Gafori dans Theorica musicae, Milan

(1492)) et par frottement (source Du merveilleux

caché dans le quotidien).

2.1. La vibration d’un verre

Nous considérerons d’abord un verre vide, les paramètres sont spécifiés dans l’illustration (voir l’annexe
théorique pour la dérivation de la loi d’échelle).

La fréquence de résonance ω0 du verre vide est:

ω0 ∼

√
Ev
ρv

h

R2
.

• Vous devez tester cette relation de proportionnalité après per-
cussion du verre vide pour mesurer la fréquence de vibration
(comme avant, utilisez Audacity).

• Répétez l’exercice pour les trois verres cylindriques.

Si le verre est rempli d’eau, l’énergie cinétique doit être corrigée
et l’expression de la fréquence devient (voir l’annexe théorique):

ω0 ∼

√
EvH

h3

R3

ρvRHh+ ρwR2H3
w/H

2
,

où ρv et ρw sont les densités du verre et de l’eau respectivement.

• Mesurer la fréquence du son émise par le verre après percussion ou par friction en fonction de son
remplissage et du liquide utilisé. Répétez l’exercice pour les trois verres.

• Essayez aussi de mesurer le temps d’atténuation du son après une percussion.

• Remplacer l’eau par de la glycérine et des granulés (deux tailles de billes). Comment cela
change-t-il vos résultats ?
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Annexe théorique

Déformée d’une poutre encastrée, chargée à son extrémité

Dans une section d’abscisse x, le moment fléchissant résultant de la force F est:

M(x) = −F (L− x)

Ce moment est aussi donné par la loi de HookeM = EI/R ' EId2y/dx2 (dans la limite des faibles
pentes), avec I = bh3/12 pour une poutre de section rectangulaire.

Figure 1. Flexion d’une poutre encastrée, chargée à son extrémité.

Reste à résoudre l’équation différentielle:

EI
d2y

dx2
= −F (L− x)

avec comme contions au limites, y(0) = 0, y′(0) = 0 (pente nulle à l’origine). On obtient ainsi:

y(x) = −δ
2

(x/L)2(3− x/L) avec δ =
FL3

3EI
= 4

FL3

Eh3b

Modes propres de vibration de flexion d’une poutre

Comment trouver l’équation de propagation d’une onde flexion le long d’une poutre ? C’est un peu
calculatoire, mais pas de panique, il s’agit juste d’un bilan des forces est des moments autour d’une
tranche dx de la poutre (Fig. 2).

Figure 2. Bilan des forces et des moments autour d’une tranche dx de la poutre vibrante.

L’équilibre des forces se traduit par:
ρhb dx a = dT

En toute rigueur l’accélération a n’est pas nécessairement verticale et la force T ne correspond pas
exactement à un effort tranchant. Nous supposerons néanmoins que les déflexions de la poutre (et
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donc la pente locale) sont faibles si bien que le déplacement du centre de masse de l’élément dx est
essentiellement vertical ainsi que T. L’équilibre des forces se traduit alors par:

ρhb
∂2y

∂t2
=
∂T

∂x

écrivons l’équilibre des moments autour du centre de masse:

−M+M+ dM+ T dx/2 + (T + dT )dx/2 = dJ
∂2θ

∂t2

où dJ = ρbh3dx/12 est le moment d’inertie de l’élément dx autour de son centre de masse et θ la pente
de la tangente à la poutre. Dans la limite des faibles pentes, on a θ = ∂y/∂x. L’équilibre des moments
se traduit ainsi par:

∂M
∂x

+ T =
1

12
ρbh3

∂3y

∂t2 ∂x
.

Pour se débarrasser de la force T , nous pouvons combiner les deux expressions après avoir dérivé la
dernière pour faire apparaı̂tre ∂T/∂x:

∂2M
∂x2

+ ρhb
∂2y

∂t2
=

1

12
ρbh3

∂4y

∂t2 ∂x2
.

Si la longueur caractéristique selon x vaut λ� h, l’ordre de grandeur du dernier terme est ρhb(h/λ)2∂2y/∂t2.
Nous avons donc un facteur d’ordre (h/λ)2 avec le terme d’accélération. L’accélération angulaire est
donc négligeable, ce qui conduit à:

ρhb
∂2y

∂t2
+
∂2M
∂x2

= 0.

Reste à prendre en compte l’équation de la flexion d’une poutre (dans la limite de faible pente):

M = EI
∂2y

∂x2
.

Nous obtenons l’équation d’onde:
∂4y

∂x4
+
ρhb

EI

∂2y

∂t2

dont nous pouvons chercher des solutions de la forme y(x, t) = Y (x)eiωt.
Cela revient à résoudre:

d4Y

dx4
− k4Y = 0 avec k =

(
ρhb

EI
ω2

)1/4

.

Pour cela, on cherche les racines du polynôme caractéristique r4 = k4 qui sont ±k, ±ik. Les solutions
sont donc de la forme Y (x) = a1e

kx + a2e
kx + a3e

ikx + a4e
−ikx. Toutes les combinaisons linéaires de

ces solutions sont également solution et il est plus commode de les écrire de la manière suivante:

Y (x) = a sin(kx) + b cos(kx) + c sinh(kx) + d cosh(kx)

Les constantes a, b, c, d sont à déterminer à partir des conditions aux limites. Dans le cas d’une poutre
encastrée à son extrémité, ces conditions s’écrivent:
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TP Vibration

• Y (0) = b+ d = 0
(pas de déplacement au niveau de l’encastrement)

• Y ′(0) = k(a+ c) = 0
(angle nul à l’encastrement)

• M(L) ∼ Y ′′(L) = k2(−a sin(kL)− b cos(kL) + c sinh(kL) + d cosh(kL)) = 0
(moment nul à l’extrémité libre)

• T (L) ∼M′(L) ∼ Y ′′′(L) = k3(−a cos(kL) + b sin(kL) + c cosh(kL) + d sinh(kL) = 0
(pas d’effort tranchant à l’extrémité libre)

Nous cherchons donc les solutions du système linéaire suivant:
0 1 0 1
1 0 1 0

− sin(kL) − cos(kL) sinh(kL) cosh(kL)
− cos(kL) sin(kL) cosh(kL) sinh(kL)



a
b
c
d

 =


0
0
0
0


On cherche les modes propres de vibration qui sont indépendants de l’amplitude des oscillations,
c’est-à-dire des solutions où les constantes a, b, c et d sont proportionnelles à une constante arbitraire.
Ceci n’est possible que si le déterminant de la matrice est nul. Passons les calculs, le déterminant vaut
2 cosh(kL) cos(kL) + 2. La nombre d’onde propre k doit donc vérifier:

cosh(kL) cos(kL) = −1

Une manière simple de visualiser les solutions consiste à tracer cos(x) et −1/ cosh(x) et de regarder
quand les deux courbent s’interceptent (Fig. 3).

Figure 3. Détermination graphique des solutions de cosh(kL) cos(kL) = −1.

Le mode fondamental correspond à k0L = 1.875, le mode suivant à k1L = 4.695 et les modes d’ordre
supérieurs sont donnés par kiL ' (2i+ 1)π/2. Nous pouvons en déduire l’expression des fréquences
propres de vibrations:

fi =
1

2π

(
EI

ρhb

)1/2

k2i .
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Au final, si on prend I = h3b/12, nous obtenons pour le mode fondamental:

f0 =
1.8752

2π
√

12

h

L2

(
E

ρ

)1/2

' 0.161
h

L2

(
E

ρ

)1/2

.

Les fréquences propres suivantes sont données par f1 = 6.27f0, f2 = 17.55f0, f3 = 34.39f0, f4 =
56.85f0...
En réinjectant les valeurs de ki dans les solutions, on peut retrouver les formes des différents modes. Le
mode fondamental et les 3 premiers modes suivants sont représentés figure 4. Le fait que les différents
modes ne soient pas des multiples rationnels du mode fondamental est à l’origine du son particulier des
boı̂tes à musiques ou des carillons.

Fondamental

1er harmonique

2nd harmonique

3e harmonique

Figure 4. Premiers modes de vibration d’une poutre encastrée.

La vibration d’un verre

En imposant l’équivalence entre l’énergie élastique totale et
l’énergie cinétique totale, nous pouvons déterminer la fréquence
de vibration ω0 du système.
Nous considérerons d’abord un verre vide (les paramètres sont
spécifiés dans l’illustration). Le champ de déplacement est à tout
point perpendiculaire à l’épaisseur du verre, comme c’est le cas
pour une poutre. Comme les variations caractéristiques se font
sur des distances d’ordre R � h, on est bien dans le cas des
poutres élancées, où le mouvement transverse est associé à de la
flexion plutôt qu’à du cisaillement. En outre comme l’amplitude
des déplacements u est faible par rapport à l’épaisseur, on peut
négliger l’extension et considérer uniquement l’énergie de flexion.
La déformation de circonference d’un cercle à une ellipse se fera
donc à périmétre constant.
La déformation dans la coque est:

ε ∼ h∆
1

R
, ∆

1

R
= (

1

Rdéf
− 1

R
).
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Comme nous travaillons dans la limite u/R � 1, nous estimons le rayon de courbure (passant de
R à Rdéf :

Rdéf ∼ R± u =⇒ 1

Rdéf
∼ 1

R
(1± u

R
) =⇒ ∆

1

R
∼ u

R2
.

Nous notons que le déplacement d’un point sur le bord du verre à tout instant (une oscillation sinusoı̈dale)
est:

u(t) = u0
z

H
cos(ωt).

L’énergie élastique du verre est U v
el ∼ Evε

2Ω (Ω est le volume):

U v
el ∼

∫ 2π

0

∫ H

0

Ev

(
h

R2
u0
z

H

)2

hRdθdz ∼
∫ H

0

Ev
h3

R3
u20

( z
H

)2
dz ∼ Ev

Hh3

R3
u20,

où l’on considère une période d’oscillation. L’énergie cinétique stockée du verre est U v
cin ∼ v2mv, où

v ∼ du/dt ∼ u0ω
z
H

et mv ∼ ρvΩ, c’est-à-dire:

U v
cin ∼

∫ H

0

(
ωu0

z

H

)2
ρvRhdz ∼ ρvω

2u20RhH.

La fréquence de résonance ω0 du verre vide (le premier mode) est donc:

U v
el ∼ U v

cin =⇒ ω0 ∼

√
Ev
ρv

h

R2
.

Si le verre est rempli d’eau jusqu’à Hw, l’énergie cinétique doit être corrigée pour tenir compte du
mouvement du contenant:

U total
cin = U v

cin + Uw
cin

Uw
cin ∼

∫ Hw

0

(
ωu0

z

H

)2
ρwR

2dz ∼ ρwω
2u20R

2H3
w/H

2,

où ρw est le densités de l’eau. La fréquence de résonance ω0 du verre+eau est donc:

U v
el ∼ U v

cin + Uw
cin =⇒ ω0 ∼

√
EvH

h3

R3

ρvRHh+ ρwR2H3
w/H

2
.

8


	Modes propres de vibration d’un réglet métallique et d'un cylindre 
	Schéma de la configuration expérimentale I - réglet
	Schéma de la configuration expérimentale II - cylindre vide

	Verres chantants
	La vibration d'un verre


