
Lubrification

Notes de cours: Chapitre 6.

À retenir:

Si u1 � u2, u3, on peut résoudre l’équation de Stokes en ne considérant que ∆u1. Les
autres composantes de la vitesse interviennent néanmoins dans la conservation du débit.

1 Écrasement/décollement d’une couche liquide

1.1 Toucher le fond

On considère un disque épais de rayon R qui tombe horizontalement dans un fluide visqueux
à une vitesse V (Fig. 1). Lorsqu’il est en plein milieu du fluide (loin du fond), nous avons vu
que la force de trâınée exercée par le fluide s’écrivait comme F∞ ∼ ηRV .
Comment évolue cette force lorsque la distance h le séparant du fond devient petite? Le
solide va-t-il toucher le fond? Osborne Reynolds fut l’un des premiers à décrire ce type
d’écoulements en 1886.

 

  

Figure 1: Atterrissage d’un disque dans un fluide visqueux.

On se place dans la limite h � R. Déplacer le disque verticalement chasse le fluide par les
côtés et cet écoulement engendre des contraintes sur le disque que nous cherchons à évaluer.

Quel est le lien entre la vitesse verticale V et la vitesse moyenne radiale U(r)?
À quelle condition l’écoulement est-il à bas nombre de Reynolds?

Déterminer en loi d’échelle le gradient de pression du fluide écrasé par le disque lorqu’on
oublie l’effet de la pression hydrostatique (pression du fluide constante autour du cylindre).
Quelle est la condition pour négliger l’effet de la gravité sur la pression?

Déterminer une expression de la force que subit la plaque.
Si le cylindre tombe sous l’effet de son propre poids, finit-il par toucher le fond?
Que se passe-t-il dans une situation réelle?

Intégrer les équations du mouvement à la lumière des estimations en loi d’échelle (c’est à dire
en éliminant les termes négligeables dans l’équation de Navier-Stokes).

Équation de Navier-Stokes en coordonnées cylindriques page suivante.



Équation de Navier-Stokes en coordonnées cylindriques:
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où les opérateurs gradient et laplacien ont pour expression :
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1.2 Décollement

Inversons à présent le problème et considérons le décollement de deux plaques séparées par
une mince couche de fluide visqueux. Dans certaines situations, des digitations ou même des
bulles apparaissent (Fig. 2).

Expliquer qualitativement ces comportements.
Estimer une vitesse critique au-delà de laquelle on s’attend à observer de la cavitation.

a b

Figure 2: Séparation de deux plaques collées par un fluide visqueux. (a) Vitesse modérée
(R.Welsh, MIT). (b) Vitesse rapide (A.Chiche,C.Creton, ESPCI).

2 Nivellement d’un film de peinture

Lorsqu’on peint une surface avec un pinceau, la couche frâıchement déposée est striée (ou
plein de petits picots si on utilise un rouleau). Cet effet n’est généralement pas désiré, mais
heureusement la couche tend à se lisser spontanément si elle n’a pas séché entre-temps. Au
contraire, certains artistes (Pierre Soulages par exemple) mettent à profit la texture de la
couche sur leurs tableaux. Dans ce cas ils choisiront une peinture dont l’autolissage est plus
long que le temps de séchage. Nous proposons ici d’estimer ce temps de lissage.
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Figure 3: Gauche: L’artiste Pierre Soulages à l’œuvre dans son atelier. On remarquera les
stries sur la couche de peinture. Droite: Visite présidentielle du Musée Soulages à Rodez.
F. Hollande serait-il en train d’estimer le temps de lissage de la peinture utilisée par l’artiste?

2.1 Temps de lissage

Considérons la configuration simplifiée d’un film d’épaisseur moyenne h0 texturé de stries
régulières de longueur d’onde λ et d’amplitude A(t) (Fig. 4). Nous nous placerons dans
la limite A � h0 � λ et nous supposerons que les stries ont un profil sinusöıdal h(x) =
h0 +A cos(kx), avec k = 2π/λ.

Figure 4: Film visqueux texturé de stries régulières.

Quels sont les ingrédients physiques responsables de l’auto-lissage?
Quels sont au contraire, les freins possibles à ce lissage?
Compte-tenu des hypothèses, comment se comparent ux et uz?
Dans quelle condition l’écoulement est-il à bas nombre de Reynolds?

Dans l’hypothèse de lubrification, quelle est la distribution de pression p(x, z) dans le film?
Déterminer en loi d’échelle, le gradient de pression ∂p/∂x. En déduire une estimation en loi
d’échelle de la vitesse ux.

Reste à utiliser la conservation du débit.
Si on considère un élément compris entre x et x + dx, quel est le lien entre la variation de
hauteur ∂h/∂t et le débit linéique q =

∫ h
0 vx(z)dz?

En exprimant cette dernière relation en loi d’échelle, estimer le temps de lissage τ . Applica-
tion numérique: η ∼ 1 Pa.s, h0 ∼ 100µm, λ ∼ 500µm, γ ∼ 20 mN/m, .
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2.2 Peinture au plafond (option)

Inversons le problème et considérons le cas d’une couche fine uniforme déposée sur le plafond.
L’expérience montre que si la peinture ne sèche pas assez rapidement, la couche se déstabilise
et un motif régulier de gouttes apparâıt (Fig. 5). Vous pouvez d’ailleurs observer ce même
type de motif sur le plafond de votre salle de bains après la condensation d’un film de vapeur.

Figure 5: Destabilisation d’un film liquide déposé sur une plaque que l’on a retournée.

Pour étudier une instabilité, la procédure classique consiste à considérer une perturbation
sinusöıdale de l’état de base et d’estimer le taux de croissance de cette perturbation. En
d’autres termes, cela consiste à reprendre le calcul précédent en replaçant g par −g.

Qu’est qui déstabilise la couche? Est-ce que quelque chose tend au contraire à la stabiliser?
Tous les modes de perturbation vont-il s’amplifier?
Quel est le mode qui s’amplifie le plus rapidement?

Pour ceux qui veulent faire le calcul complet...

Dans la première situation (stries qui s’estompent), le calcul complet conduit à un temps de
relaxation exponentielle:

τ =
3η

h30ρg

1

k2(1 + k2`2c)

Dans la seconde situation (instabilité d’un film suspendu), le même calcul où g est inversée
nous donne le taux de croissance:

σ = k2(1− k2`2c)
h30ρg

3η
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