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Engineering at small scale : designing a microchip ?
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convection diffusion reaction
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— course on Microfluidics: Nicolas Bremond

Parsa et al., Lab on a Chip. 8, 2062 (2008)



Engineering at large scale : a solar power plant

Augustin Mouchot, a pioneer Le Monde lllustré (1882)



Engineering at large scale : a solar power plant

Electric g
Grid

.
P Y
™" RN

I Power
v Generator Turbine

Receiver

g. 25) < - </_j‘:_. k.
Y 2 Thermal +eat
@ \\ . /\ Storage System Rejection
o X 3
Heliostatgf"” @@R A0 . N
Collector 3K
Field .

Y |
e Heat Pump/
Tower/ | Exchanger Compressor
Receiver System ‘\/ Control Power
Room Block

Karatairi, MRS Bull. (2018)



And some instabilities

https://youtu.be/nQUHINGTZTY

— course on Instabilities: Laurent Duchemin



Outline: learning from problems

. Diffusion: mixing time of a cocktail, Adding convection
. Simple transport problems #1: measuring a diffusion coefficient

. Simple transport problems #2: contact temperature, melting time
of an ice cube, temperature inside a cave

. Forced convection & boundary layers: wind powered fridge

. Natural convection: designing an igloo

. Convection-induced instabilities: convection cells

. Radiative transfer

. Thermal imaging

. Recap: Solidifying droplet, Penguins feet.



Diffusion in a layered cocktail

Is the configuration stable ?

How long will it take to vanish ?




Diffusion in a layered cocktail

water
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Statistical Physics

4
Uy = gﬂa?’Apgz

numerical estimate:

kgl = 4.10-21J

equilibrium

distribution
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n(2) = ng exp (—kB—f}) — ng exp(—z/\)

with
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Ap ~ 600 kg/m3

a~109m = A~100m!



Random walks

Very simplified model

L, =
Nsteps LEZZE& 5223‘:1 = <x>=0
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Dissipation for each step
_ / 02 kT
viscous drag  6mnalUl ~ kT U~ - = —=D=
T T O6na

numerical estimate:
kT = 41021 n=103Pas a~10°m D ~ 2.10-"09m2/s

homogenization over 10 cm: 5.107s ~ 1.5 year!



Sedimentation
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resin droplets, a ~ 0.3 um

Jean Perrin
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1870-1942

Perfect gas constant
(already known)

R <

Estimates of kT = Nj = —

Les Atomes (1913)



Fluxes

Fick’'s law
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Adding convection

convective flux  Je =cu

diffusive flux ja=—DVc

quantity inside the volume (moles, particules, mass). N = /// c df)
Q

N
evolution in time: d— ///—dQ— //(jc+jd)-ndS+///rdQ
S Q
divergence theorem: // —dQ— // V-(jc+jd)dﬂ+///rdﬂ
Q Q

since (2 is arbitrary: & = -V - (c+ja) +r



Adding convection

source/sink
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Diffusion-convection equation

convective flux

diffusive flux

Jd

je=cu

—DVe

= -V - (cu)+V(DVec)+r
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incompressible flow
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+ Navier & Stokes
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