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Transport phenomena

1. From mass to heat and viscous stress transport
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momentum:
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2. Solving transport equations
2.1 Homogenization of a cocktail
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2.2 Measuring a diffusion coefficient ?

Y-junction in a microfluidic chip
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exact solution ?



we consider o0, < W
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Analogy boundary layer in fluids




2.3 Measuring a diffusion coefficient ?
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Solution of the form T'(z,t) = Re (Ty + T (z)e**) ?
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