
Transport Phenomena:

6. Natural convection

Take home message:

Thermal expansion coefficient:

Rayleigh number:

Heat transfer coefficient: 

Nusselt number: 

different expressions for other configurations

same formalism for mass transport

(vertical plate, Rex>>1)

1 Self-induced flow along a vertical wall

We consider a vertical hot plate immersed in a colder fluid (Fig. 1). In the vicinity of the plate,
the fluid becomes warmer and therefore less dense. As a first approximation, the variation of
density in proportional to the temperature di!erence, ω = ω0 (1→ ε(T → T→)), where ε is the
(volume) thermal expansion coe”cient. We define the temperature mismatch as ϑ = T →T→.
One usual simplification consist in considering the temperature dependance of ω solely in the
gravity term (Boussinesq approximation). We propose to describe the characteristics of the
rising boundary layer in terms of velocity flow and heat flux.

In contrast with forced convection, fluid flow and heat transfer are deeply intricate. The
flow in the self-induced boundary layer di!ers from the case of forced convection. Describe
qualitatively the distribution of velocity in this boundary layer.
The coupling between viscous flow and buoyancy forces can be interpreted in terms of force
balance. If ϖ(x) is the width of the boundary layer, what is the typical viscous shear force
acting along the wall? What is the buoyancy force acting on the same boundary layer? De-
duce a first relation between U , ϑ and ϖ.
Using the heat equation deduce independent scalings for ϖ and U .

We now need to estimate the heat exchange between the plate and the surrounding air.
Express the heat flux JT , as a scaling law. An important non-dimensional number for natural
convection is the Rayleigh number defined as:

Ra =
εgϑL3

ϱς



How does Nusselt number scales with Ra in the present configuration?

Figure 1: Convection flow along a vertical wall characterized by a boundary layer self-induced
by buoyancy forces.
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1 Human plumes

Figure 1a illustrates the thermal plume emanating from a human body (“schlieren” optical

technique). A quick estimate of the velocity of the plume with ImageJ indicates 0.7m/s.

We would like to verify if the previous scaling laws are consistent with standard physiological

data (a person at rest typically produces 100W of heat for a body area on the order of 1.6m2
).

a b c

Figure 1: a Thermal plume emanating from a human being visualized through the optical

“Schlieren” technique (source: https://youtu.be/1MA-zEUepvs ).

Can we obtain this heat flux from personal experience? Without clothes, we feel thermally

comfortable for an exterior temperature of about 27
→
C (under moderate humidity). If our

skin has a temperature of 37
→
C, what are the corresponding values for the Rayleigh and Nus-

selt numbers? Do we recover a heat flux consistent with physiological data?

If the heat flux remains the same, what temperature would you recommend for the bath of a

baby?



In the illustrated exemple, the person wears a rather thick sweater, a reasonable estimate of

the exterior temperature may be 16
→
C. Using the same value for the heat flux, is it possible

to estimate the temperature at the surface of the clothes? Is the value consistent with IR

imaging (Fig 1b)? Is the plume velocity in agreement with the prediction?

Material constants for air:
ω = 3.4 · 10↑3

K
↑1

, ε = 1.5 · 10↑5
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2
s
↑1

, ϑ = 2 · 10↑5
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2
s
↑1

, ϖ = 0.026Wm
↑1

K
↑1

for water:
ω = 4 · 10↑4

K
↑1

, ε = 1 · 10↑6
m
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s
↑1

, ϑ = 0.14 · 10↑6
m

2
s
↑1

, ϖ = 0.6Wm
↑1

K
↑1

2 Dissolution of a lollipop

How long does it take to dissolve a lollipop in a bath of water? About 200 min, following an

experiment conducted with a lollipop of initial radius R0 = 3 cm (Fig. 2). The dissolution

mechanism relies on a self-induced convective flow. A lollipop is basically composed of sugar.

In contact with water, sugar tends to dissolve and reaches a saturating (mass) concentration

csat in the vicinity of the lollipop. As a consequence, the solution is denser close to the lollipop

than far away, which results in a convective flow.

Figure 2: Successive snapshots of the dissolution of a lollipop in a bath of water (from M.S.

Davies Wykes, Physical Review Fluids, 3, 043801 (2018)).

The liquid density varies linearly with the sugar mass concentration c: ϱ = ϱ0 + c. What

is the analogous of Rayleigh number in the problem? Estimate the mass flux through the

surface of the lollipop.

Using mass conservation, predict the time evolution of the radius of the lollipop R(t) (assum-

ing that the lollipop remains roughly spherical). Estimate the dissolution time of the lollipop

tf . Is the prediction for the time evolution in agreement with the experiment (Fig. 3)?

Numerical data
R0 = 3 cm, csat = 0.3 g/cm3

, lollipop density ϱS = 1.43 g/cm3
, D = 4.3 · 10↑10

m
2
/s (sucrose

in pure water, lower in concentrated sucrose solution), εwater = 10
↑6

m
2
/s (for saturated

sucrose εs = 8 · 10↑4
m

2
/s).
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A  =0.010134 ± 4.78e-06
pow =0.8 ± 0

Figure 3: Evolution of the e!ective radius (estimated from the area of the lollipop in the

pictures A as R = A/ς) as a function of tf → t and fit by a power law.

3 Convective instabilities

3.1 Rayleigh-Bénard instability

Here is an experiment you can try at home: pour a millimetric layer of oil in a frying pan,

sprinkle it with some fine powder such as flour and place it on a hotplate (Fig. 4a). If the heat-

ing temperature is low, nothing happens. However, you should observe the particles moving

beyond a critical temperature and gradually forming cellular patterns (Fig. 4c). A pedagogical

video describing the phenomenon is available on YouTube: https://youtu.be/Eud7uG5JHng

This instability was first described by Rayleigh and Bénard although the exact origin of the

observed patterns have been the subject of scientific debates for almost 50 years.

a b c

Figure 4: a. Liquid layer heated from underneath. b. What does happen to sphere of fluid

of radius R whose vertical position is perturbed by a quantity φz? c. Convection cells in a

millimetric layer of viscous oil (image E. Koschmieder).

We fist consider the situation where the liquid remains still. If the di!erence in temperature

between bottom and top is ↼, what is the temperature profile across the layer of thickness a?
What is the resulting profile in density for a fluid of a thermal expansion coe”cient ω?

Imagine that due to some perturbation, a bubble of fluid of radius R moves by a quantity
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φz (Fig. 4b). We will first assume that the sphere is thermally isolated from the surround-

ing liquid. What is the resulting buoyancy force acting on the sphere? Is this situation stable?

If we ignore inertial e!ects, what term balances this force? Deduce an expression of the ve-

locity of the bubble. Integrate the velocity to obtain the position of the bubble as a function

of time. What is the characteristic convection time for the bubble?

In reality, the bubble can exchange heat with the surrounding fluid. What would be the

di!usion time required to equilibrate the inner temperature of the bubble with the outer

temperature?

In which case is the situation unstable? What is the most unstable situation in terms of

bubble size?
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