Some Hydrodynamic instabilities
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Have a look at the National Committee for Fluid Mechanics Films :

http: //web.mit.edu/hml/ncfmf.html

A more advanced course on hydrodynamic instabilities :

http://basilisk.fr/sandbox/easystab/M2DET/Instabilities.md
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. Introduction (1)

Introduction (2)

Rayleigh—Taylor Instability and water waves (1)
Rayleigh—Taylor Instability and water waves (2)
Rayleigh—Taylor Instability and water waves (3)
Rayleigh-Bénard convection (1)
Rayleigh-Bénard convection (2)

Open flows (1) [Optimal growth? (1)]

. Open flows (2) [Optimal growth? (2)]

. Open flows (3) [Optimal growth? (3)]
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Figure 1. Cirrus clouds developing in a jet stream over Saudi Arabia and the Red Sea. The picture was
taken from the Space Shuttle (NASA).
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Figure 2. An example of the Kelvin—Helmholtz shear instability.



Figure 3. Rayleigh—Taylor Instability in a thin viscous film (Experiment : Christophe Clanet)




Figure 4. Rayleigh—Plateau instability on a thin rod




Figure 5. Stretching of a millimetric liquid ligament (Lionel Vincent, PhD Thesis, 2013).
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Figure 6. Instability of a premixed flame in a Hele—Shaw cell (Basile Radisson, PhD Thesis, 2019)



Figure 7. An initial condition for the flame front is imposed with a profiled steel plate at the top



Figure 8. Short-time dynamics



A system is linearly stable if it is stable regarding “small” perturbations.

BUT it can be unstable regarding “large” perturbations.

Figure 9. Rayleigh—Bénard instability with a melting boundary.
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Navier—Stokes equations

ov 1
—+4+(v- Vv = ——Vp+rvAv+
: (v-V)v p p+rvAv+ f

Vv =0

where v=u(z,y, z,t)ex+v(z,y,2,t)ey +w(x,y, 2, t)es,
p(x,y,z,t) is the pressure,

p the density,

v =/ p the kinematic viscosity,

f an external force,
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+ BOUNDARY CONDITIONS

in cartesian coordinates.



Basic state and small perturbation

We suppose that there exists a stationary state (vq, po), called the basic state, solution of the
Navier—Stokes equations (case f = 0):

1
('U() . V)'UO = —;Vpo + vAvg
V. Vo = 0

+ Must satisfy boundary conditions.

In a linear stability analysis, we study the dynamics of a small perturbation (v’, p’) around the
basic state.

Hypothesis : p = Cste,
We look for a solution in the form : v =wvg + cv’, p=po +ep’, where ¢ < 1.
Plugging these expressions into Navier—Stokes equations, we get :
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+e(v' - V)vg+e(vg: V)v' +e%(v’- Vv = —%Vp’%—stv'

eV-v/ =0



Basic state and small perturbation

saavt, +e(v' - V)vg+e(vg: V)v' +e%(v’- Vv’ = —%Vp’—l—suAv'
eV-v' = 0
Linearizing the equations for £ — 0, we get :
a;t, + (v’ V)vg + (vo-V)v' = —%Vp’+ vAv’
Vv =0

The solution of these equations is defined up to a multiplicative prefactor.

If such a solution increases in time, the basic state is said to be linearly unstable, otherwise it is
linearly stable. The linear system can be written :

oxX _

- =DIX],

where D is a differential operator and

X is a vector of 4 unknown functions u/(x, y, z,t),v'(z,y, 2, t),w (z,y, z,t), p'(x,y, 2, 1)



Example : 2D Poiseuille flow

y=| No-slip wall

Parabolic velocity profile

y=-I No-slip wall

Figure 10. Poiseuille flow between two plates, driven by a constant pressure gradient

Have a look at http://basilisk.fr/sandbox/easystab/poiseuille uvp.m

The parallel flow solution of the Navier—Stokes equations reads :
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where a = 9p < 0.
ox



Example : 2D Poiseuille flow

Navier—Stokes equations

%—l— (v-V)v = —%VP—FVA'U

Vv =0

with u=v=w=0in y=—h and y=Ah.

The parallel flow solution reads :

1)
where a = 22 < 0.
ox



Example : 2D Poiseuille flow

u(y):—a—m(l—(%Y), v=0, w =0, a:%<0

Maximum velocity : Uy=u(y=0)= —5 Pressure : Py(x) = pret+ ax

Dimensionless equations : we choose Uj as a characteristic velocity, h as a characteristic length,
and pU¢ as a characteristic pressure.

*
I:aj7 y? Z] :h [x*7 y*7 Z*:I7 [u7v7w] — UO [u*7 U*7 w*:l7t: l;’]to 7p:p*pUO2
ov* 1
at* _|_(,U*.V*)v* — _V*p*_‘_%A*,v*
V*v* = 0
. L L A L L __Uoh __ah _ 2pvlo L__i
with v *=v*=w*"=01in y*=—1 and y*=1, Re= . and a*—pUg =~ L= Re

Parallel flow solution : v = (1 — y* e, = U(y)es



