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Have a look at the National Committee for Fluid Mechanics Films :

http://web.mit.edu/hml/ncfmf.html

A more advanced course on hydrodynamic instabilities :

http://basilisk.fr/sandbox/easystab/M2DET/Instabilities.md



Outline 2/17

1. Introduction (1)

2. Introduction (2)

3. Rayleigh�Taylor Instability and water waves (1)

4. Rayleigh�Taylor Instability and water waves (2)

5. Rayleigh�Taylor Instability and water waves (3)

6. Rayleigh-Bénard convection (1)

7. Rayleigh-Bénard convection (2)

8. Open flows (1) [Optimal growth? (1)]

9. Open flows (2) [Optimal growth? (2)]

10. Open flows (3) [Optimal growth? (3)]



Figure 1. Cirrus clouds developing in a jet stream over Saudi Arabia and the Red Sea. The picture was
taken from the Space Shuttle (NASA).



Figure 2. An example of the Kelvin�Helmholtz shear instability.



Figure 3. Rayleigh�Taylor Instability in a thin viscous film (Experiment : Christophe Clanet)



Figure 4. Rayleigh�Plateau instability on a thin rod



Figure 5. Stretching of a millimetric liquid ligament (Lionel Vincent, PhD Thesis, 2013).



Figure 6. Instability of a premixed flame in a Hele�Shaw cell (Basile Radisson, PhD Thesis, 2019)



Figure 7. An initial condition for the flame front is imposed with a profiled steel plate at the top



Figure 8. Short-time dynamics



A system is linearly stable if it is stable regarding �small� perturbations.

BUT it can be unstable regarding �large� perturbations.

Figure 9. Rayleigh�Bénard instability with a melting boundary.
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Navier�Stokes equations

@v

@t
+(v �r)v = ¡1
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rp+ ��v+ f

r �v = 0

where v=u(x; y; z; t)ex+ v(x; y; z; t)ey+w(x; y; z; t)ez;

p(x; y; z; t) is the pressure,

� the density,

�= �/� the kinematic viscosity,

f an external force,
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in cartesian coordinates.

+ BOUNDARY CONDITIONS
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We suppose that there exists a stationary state (v0; p0), called the basic state, solution of the
Navier�Stokes equations (case f =0):

(v0 �r)v0 = ¡1
�
rp0+ ��v0

r �v0 = 0

+ Must satisfy boundary conditions.

In a linear stability analysis, we study the dynamics of a small perturbation (v 0; p0) around the
basic state.

Hypothesis : �=Cste:

We look for a solution in the form : v=v0+ "v 0; p= p0+ "p0 , where "� 1.

Plugging these expressions into Navier�Stokes equations, we get :

"
@v 0

@t
+ "(v 0 �r)v0+ "(v0 �r)v 0+ "2(v 0 �r)v 0 = ¡"

�
rp0+ "��v 0

"r �v 0 = 0
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"
@v 0

@t
+ "(v 0 �r)v0+ "(v0 �r)v 0+ "2(v 0 �r)v 0 = ¡"

�
rp0+ "��v 0

"r �v 0 = 0

Linearizing the equations for "! 0, we get :

@v 0

@t
+(v 0 �r)v0+ (v0 �r)v 0 = ¡1

�
rp0+ ��v 0

r �v 0 = 0

The solution of these equations is defined up to a multiplicative prefactor.

If such a solution increases in time, the basic state is said to be linearly unstable, otherwise it is
linearly stable. The linear system can be written :

@X
@t

=D[X];

where D is a differential operator and

X is a vector of 4 unknown functions u0(x; y; z; t); v 0(x; y; z; t); w 0(x; y; z; t); p0(x; y; z; t)
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Figure 10. Poiseuille flow between two plates, driven by a constant pressure gradient

Have a look at http://basilisk.fr/sandbox/easystab/poiseuille_uvp.m

The parallel flow solution of the Navier�Stokes equations reads :

u(y)=¡ah
2

2��

�
1¡

�
y

h

�
2
�
; v=0; w=0;

where a= @p

@x
< 0.
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Navier�Stokes equations

@v

@t
+(v �r)v = ¡1

�
rp+ ��v

r �v = 0

with u= v=w=0 in y=¡h and y=h.

The parallel flow solution reads :

u(y)=¡ah
2
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where a= @p

@x
< 0.
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u(y)=¡ah
2
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; v=0; w=0; a= @p

@x
< 0

Maximum velocity : U0=u(y=0)=¡ah2

2��
. Pressure : P0(x)= pref+ ax

Dimensionless equations : we choose U0 as a characteristic velocity, h as a characteristic length,
and �U0

2 as a characteristic pressure.

[x; y; z] =h [x?; y?; z?]; [u; v; w] =U0 [u?; v?; w?]; t=
ht?

U0
; p= p?�U0

2
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+(v? �r?)v? = ¡r?p?+ 1
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with u?= v?=w?=0 in y?=¡1 and y?=1, Re= U0h
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Parallel flow solution : v0= (1¡ y?
2
)ex�U(y)ex


