Some Hydrodynamic instabilities

By Laurent Duchemin

$$
10 \times 1 \mathrm{~h}
$$

Have a look at the National Committee for Fluid Mechanics Films : http://web.mit.edu/hml/ncfmf.html

A more advanced course on hydrodynamic instabilities:
http://basilisk.fr/sandbox/easystab/M2DET/Instabilities.md

1. Introduction (1)
2. Introduction (2)
3. Rayleigh-Taylor Instability and water waves (1)
4. Rayleigh-Taylor Instability and water waves (2)
5. Rayleigh-Taylor Instability and water waves (3)
6. Rayleigh-Bénard convection (1)
7. Rayleigh-Bénard convection (2)
8. Open flows (1) [Optimal growth? (1)]
9. Open flows (2) [Optimal growth? (2)]
10. Open flows (3) [Optimal growth? (3)]

Figure 1. Cirrus clouds developing in a jet stream over Saudi Arabia and the Red Sea. The picture was taken from the Space Shuttle (NASA).

Figure 2. An example of the Kelvin-Helmholtz shear instability.

Figure 3. Rayleigh-Taylor Instability in a thin viscous film (Experiment: Christophe Clanet)

Figure 4. Rayleigh-Plateau instability on a thin rod

Figure 5. Stretching of a millimetric liquid ligament (Lionel Vincent, PhD Thesis, 2013).

Figure 6. Instability of a premixed flame in a Hele-Shaw cell (Basile Radisson, PhD Thesis, 2019)

Figure 7. An initial condition for the flame front is imposed with a profiled steel plate at the top

Figure 8. Short-time dynamics

A system is linearly stable if it is stable regarding "small" perturbations.
BUT it can be unstable regarding "large" perturbations.

Figure 9. Rayleigh-Bénard instability with a melting boundary.

Fundamental concepts

Navier-Stokes equations

$$
\begin{aligned}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} & =-\frac{1}{\rho} \boldsymbol{\nabla} p+\nu \Delta \boldsymbol{v}+\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

where $\boldsymbol{v}=u(x, y, z, t) \boldsymbol{e}_{\boldsymbol{x}}+v(x, y, z, t) \boldsymbol{e}_{\boldsymbol{y}}+w(x, y, z, t) \boldsymbol{e}_{\boldsymbol{z}}$,
$p(x, y, z, t)$ is the pressure,
ρ the density,
$\nu=\mu / \rho$ the kinematic viscosity,
f an external force,
$\nabla=\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right]$, and $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ in cartesian coordinates.

+ BOUNDARY CONDITIONS

Basic state and small perturbation

We suppose that there exists a stationary state $\left(\boldsymbol{v}_{0}, p_{0}\right)$, called the basic state, solution of the Navier-Stokes equations (case $f=0$):

$$
\begin{aligned}
\left(\boldsymbol{v}_{\mathbf{0}} \cdot \boldsymbol{\nabla}\right) \boldsymbol{v}_{\mathbf{0}} & =-\frac{1}{\rho} \boldsymbol{\nabla} p_{0}+\nu \Delta \boldsymbol{v}_{\mathbf{0}} \\
\nabla \cdot \boldsymbol{v}_{\mathbf{0}} & =0
\end{aligned}
$$

+ Must satisfy boundary conditions.
In a linear stability analysis, we study the dynamics of a small perturbation $\left(\boldsymbol{v}^{\prime}, p^{\prime}\right)$ around the basic state.

Hypothesis: $\rho=C^{\text {ste }}$.
We look for a solution in the form : $\boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}+\varepsilon \boldsymbol{v}^{\prime}, p=p_{0}+\varepsilon p^{\prime}$, where $\varepsilon \ll 1$.
Plugging these expressions into Navier-Stokes equations, we get :

$$
\begin{aligned}
\varepsilon \frac{\partial \boldsymbol{v}^{\prime}}{\partial t}+\varepsilon\left(\boldsymbol{v}^{\prime} \cdot \boldsymbol{\nabla}\right) \boldsymbol{v}_{\mathbf{0}}+\varepsilon\left(\boldsymbol{v}_{\mathbf{0}} \cdot \boldsymbol{\nabla}\right) \boldsymbol{v}^{\prime}+\varepsilon^{2}\left(\boldsymbol{v}^{\prime} \cdot \boldsymbol{\nabla}\right) \boldsymbol{v}^{\prime} & =-\frac{\varepsilon}{\rho} \boldsymbol{\nabla} p^{\prime}+\varepsilon \nu \Delta \boldsymbol{v}^{\prime} \\
\varepsilon \boldsymbol{\nabla} \cdot \boldsymbol{v}^{\prime} & =0
\end{aligned}
$$

Basic state and small perturbation

$$
\begin{aligned}
\varepsilon \frac{\partial \boldsymbol{v}^{\prime}}{\partial t}+\varepsilon\left(\boldsymbol{v}^{\prime} \cdot \boldsymbol{\nabla}\right) \boldsymbol{v}_{\mathbf{0}}+\varepsilon\left(\boldsymbol{v}_{\mathbf{0}} \cdot \nabla\right) \boldsymbol{v}^{\prime}+\varepsilon^{2}\left(\boldsymbol{v}^{\prime} \cdot \boldsymbol{\nabla}\right) \boldsymbol{v}^{\prime} & =-\frac{\varepsilon}{\rho} \nabla p^{\prime}+\varepsilon \nu \Delta \boldsymbol{v}^{\prime} \\
\varepsilon \boldsymbol{\nabla} \cdot \boldsymbol{v}^{\prime} & =0
\end{aligned}
$$

Linearizing the equations for $\varepsilon \rightarrow 0$, we get :

$$
\begin{aligned}
\frac{\partial \boldsymbol{v}^{\prime}}{\partial t}+\left(\boldsymbol{v}^{\prime} \cdot \boldsymbol{\nabla}\right) \boldsymbol{v}_{\mathbf{0}}+\left(\boldsymbol{v}_{\mathbf{0}} \cdot \boldsymbol{\nabla}\right) \boldsymbol{v}^{\prime} & =-\frac{1}{\rho} \boldsymbol{\nabla} p^{\prime}+\nu \Delta \boldsymbol{v}^{\prime} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v}^{\prime} & =0
\end{aligned}
$$

The solution of these equations is defined up to a multiplicative prefactor.
If such a solution increases in time, the basic state is said to be linearly unstable, otherwise it is linearly stable. The linear system can be written :

$$
\frac{\partial \boldsymbol{X}}{\partial t}=\mathcal{D}[\boldsymbol{X}]
$$

where \mathcal{D} is a differential operator and
\boldsymbol{X} is a vector of 4 unknown functions $u^{\prime}(x, y, z, t), v^{\prime}(x, y, z, t), w^{\prime}(x, y, z, t), p^{\prime}(x, y, z, t)$

Example: 2D Poiseuille flow

Figure 10. Poiseuille flow between two plates, driven by a constant pressure gradient Have a look at http://basilisk.fr/sandbox/easystab/poiseuille_uvp.m

The parallel flow solution of the Navier-Stokes equations reads :

$$
u(y)=-\frac{a h^{2}}{2 \rho \nu}\left(1-\left(\frac{y}{h}\right)^{2}\right), \quad v=0, \quad w=0
$$

where $a=\frac{\partial p}{\partial x}<0$.

Example: 2D Poiseuille flow

Navier-Stokes equations

$$
\begin{aligned}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} & =-\frac{1}{\rho} \boldsymbol{\nabla} p+\nu \Delta \boldsymbol{v} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

with $u=v=w=0$ in $y=-h$ and $y=h$.
The parallel flow solution reads :

$$
u(y)=-\frac{a h^{2}}{2 \rho \nu}\left(1-\left(\frac{y}{h}\right)^{2}\right), \quad v=0, \quad w=0
$$

where $a=\frac{\partial p}{\partial x}<0$.

Example: 2D Poiseuille flow

$$
u(y)=-\frac{a h^{2}}{2 \rho \nu}\left(1-\left(\frac{y}{h}\right)^{2}\right), \quad v=0, \quad w=0, \quad a=\frac{\partial p}{\partial x}<0
$$

Maximum velocity : $U_{0}=u(y=0)=-\frac{a h^{2}}{2 \rho \nu}$. Pressure : $P_{0}(x)=p_{\text {ref }}+a x$
Dimensionless equations : we choose U_{0} as a characteristic velocity, h as a characteristic length, and ρU_{0}^{2} as a characteristic pressure.

$$
\begin{aligned}
{[x, y, z]=h\left[x^{\star}, y^{\star}, z^{\star}\right],[u, v, w] } & =U_{0}\left[u^{\star}, v^{\star}, w^{\star}\right], t=\frac{h t^{\star}}{U_{0}}, p=p^{\star} \rho U_{0}^{2} \\
\frac{\partial \boldsymbol{v}^{\star}}{\partial t^{\star}}+\left(\boldsymbol{v}^{\star} \cdot \nabla^{\star}\right) \boldsymbol{v}^{\star} & =-\nabla^{\star} p^{\star}+\frac{1}{\operatorname{Re}} \Delta^{\star} \boldsymbol{v}^{\star} \\
\boldsymbol{\nabla}^{\star} \cdot \boldsymbol{v}^{\star} & =0
\end{aligned}
$$

with $u^{\star}=v^{\star}=w^{\star}=0$ in $y^{\star}=-1$ and $y^{\star}=1, \operatorname{Re}=\frac{U_{0} h}{\nu}$, and $a^{\star}=\frac{a h}{\rho U_{0}^{2}}=-\frac{2 \rho \nu U_{0}}{h^{2}} \frac{h}{\rho U_{0}^{2}}=-\frac{2}{\operatorname{Re}}$. Parallel flow solution : $\boldsymbol{v}_{0}=\left(1-y^{\star^{2}}\right) e_{x} \equiv U(y) e_{x}$

