

Les contraintes dans un fluide

- Les fluides vus comme des milieux continus
- Lois de conservation

Conservation de la masse

Conservation de la quantité de mouvement et loi de Newton

Les contraintes dans un fluide

• L'équation de Navier-Stokes

- Les fluides vus comme des milieux continus
- Lois de conservation

Conservation de la masse

Conservation de la quantité de mouvement et loi de Newton

Les contraintes dans un fluide

- L'équation de Navier-Stokes
- Nombre de Reynolds et similitude

- Les fluides vus comme des milieux continus
- Lois de conservation

Conservation de la masse

Conservation de la quantité de mouvement et loi de Newton

Les contraintes dans un fluide

- L'équation de Navier-Stokes
- Nombre de Reynolds et similitude
- Approximation des fluides parfaits

Equation d'Euler

Loi de Bernoulli

Les fluides comme milieux continus

Les caractéristiques *microscopiques* déterminent les propriétés *macroscopiques* : masse volumique, compressibilité, viscosité, diffusion de la chaleur, ...

Les fluides comme milieux continus

Les caractéristiques *microscopiques* déterminent les propriétés *macroscopiques* : masse volumique, compressibilité, viscosité, diffusion de la chaleur, ...

On raisonne sur des éléments de volume

- assez petits pour décrire finement les champs de vitesse et de pression
- grands devant les échelles moléculaires

Les fluides comme milieux continus

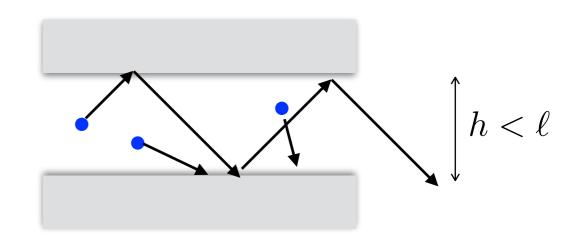
Les caractéristiques *microscopiques* déterminent les propriétés *macroscopiques* : masse volumique, compressibilité, viscosité, diffusion de la chaleur, ...

On raisonne sur des éléments de volume

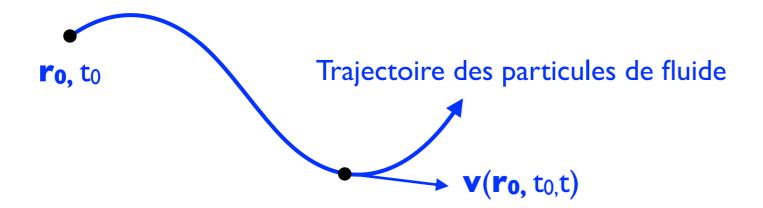
- assez petits pour décrire finement les champs de vitesse et de pression
- grands devant les échelles moléculaires

La transition micro/macro est autour du nanomètre.

Exception :
Gaz raréfiés (régime de Knudsen)

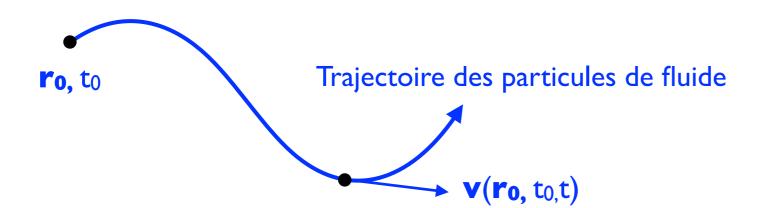


Description des écoulements

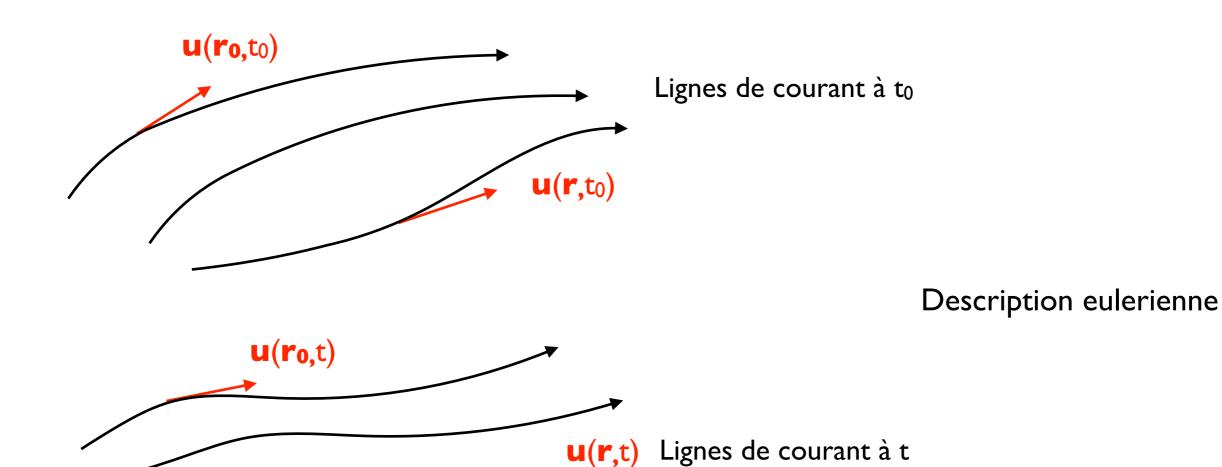


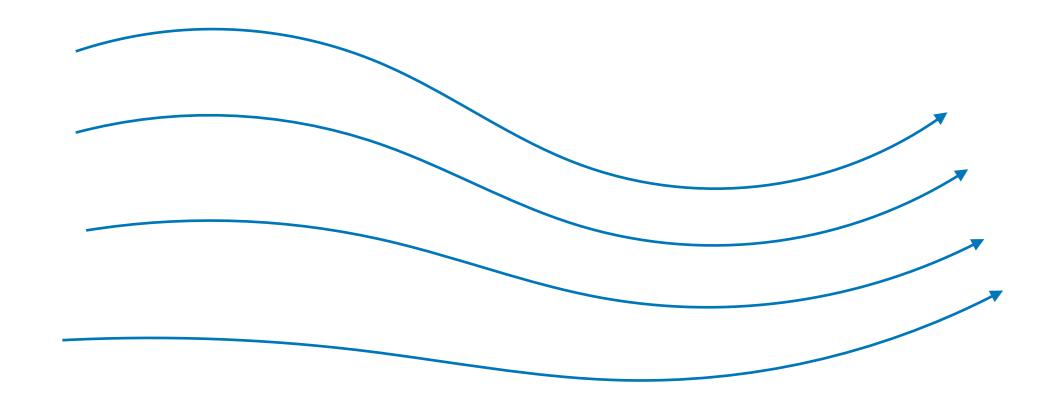
Description lagrangienne

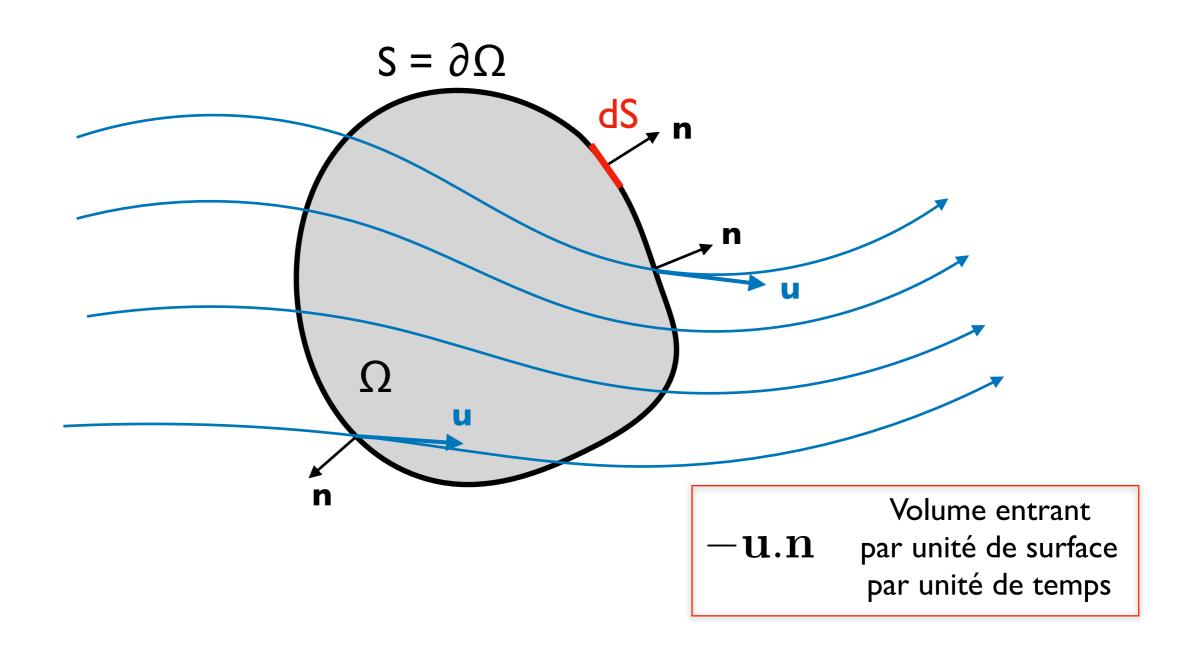
Description des écoulements

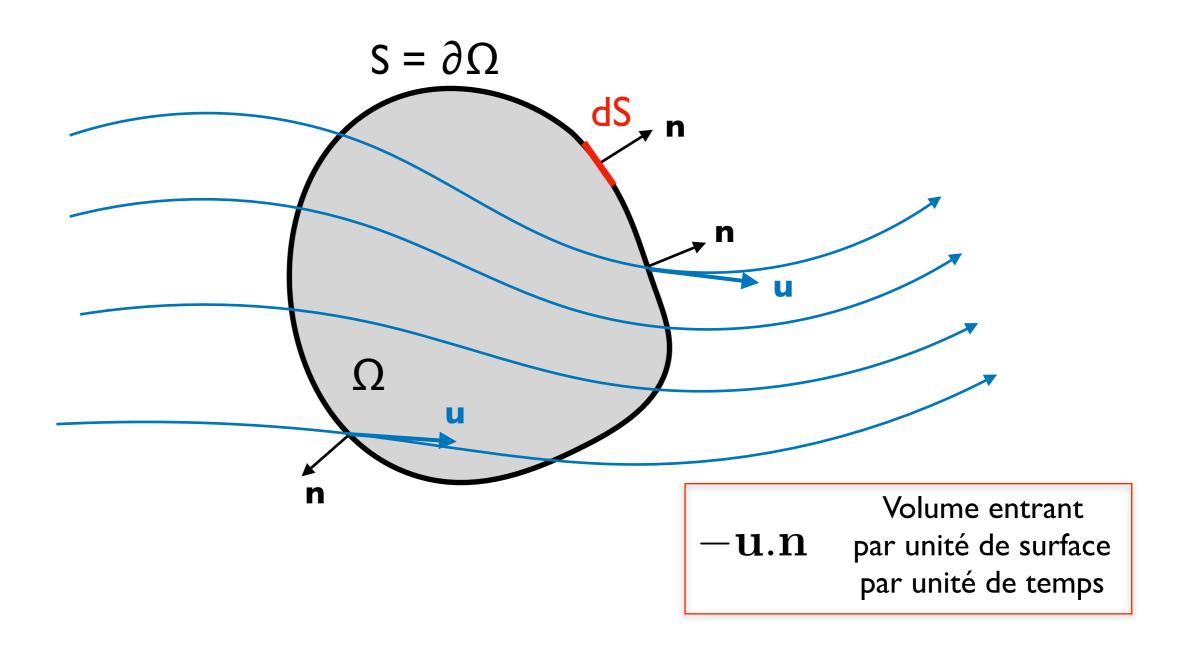


Description lagrangienne

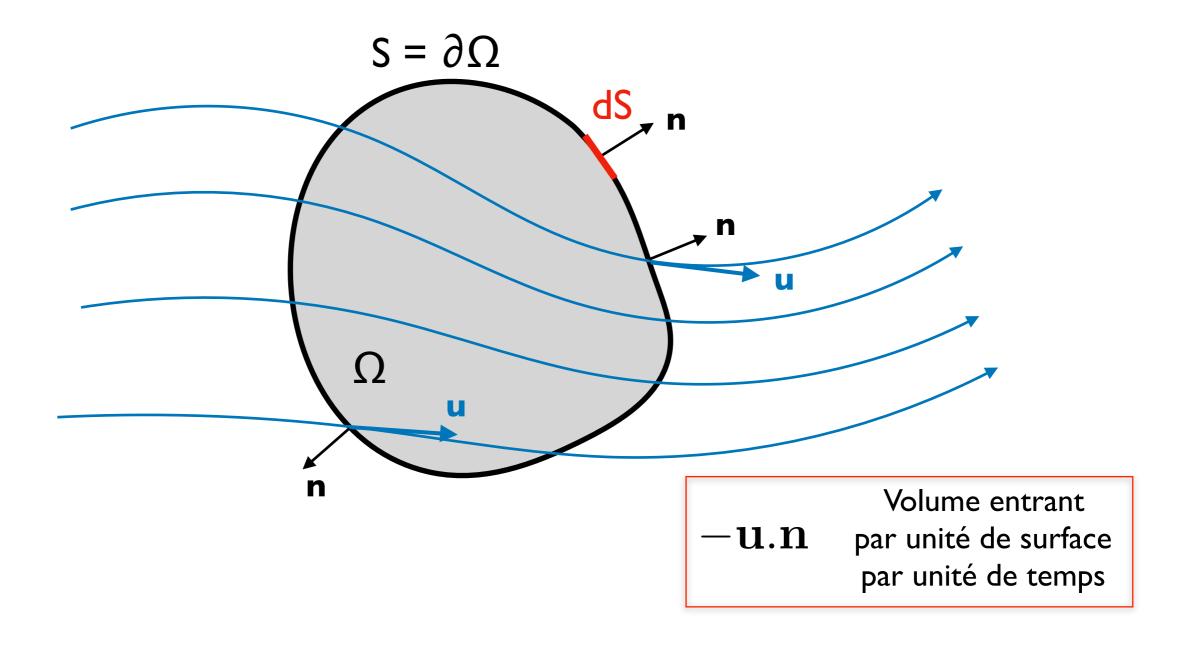








$$-\int_{\partial\Omega}\rho\mathbf{u.n}\,dS+Q$$



$$\int_{\Omega} \frac{\partial \rho}{\partial t} dV = -\int_{\partial \Omega} \rho \mathbf{u}.\mathbf{n} \, dS + Q$$

$$\int_{\Omega} \frac{\partial \rho}{\partial t} dV = -\int_{\partial \Omega} \rho \mathbf{u}.\mathbf{n} \, dS + Q$$

$$\int_{\Omega} \frac{\partial \rho}{\partial t} dV = -\int_{\partial \Omega} \rho \mathbf{u} \cdot \mathbf{n} \, dS + Q$$

$$\int_{\Omega} \frac{\partial \rho}{\partial t} dV + \int_{\Omega} \nabla . (\rho \mathbf{u}) dV = Q$$

$$\nabla . \equiv \text{ divergence}$$

$$\int_{\Omega} \frac{\partial \rho}{\partial t} dV = -\int_{\partial \Omega} \rho \mathbf{u} \cdot \mathbf{n} \, dS + Q$$

$$\int_{\Omega} \frac{\partial \rho}{\partial t} dV + \int_{\Omega} \nabla \cdot (\rho \mathbf{u}) dV = Q$$

En l'absence de source de masse

$$\frac{\partial \rho}{\partial t} + \rho \nabla . \mathbf{u} + \mathbf{u} . \nabla \rho = 0$$
 $\nabla \equiv \text{gradiant}$

$$\int_{\Omega} \frac{\partial \rho}{\partial t} dV = -\int_{\partial \Omega} \rho \mathbf{u} \cdot \mathbf{n} \, dS + Q$$

$$\int_{\Omega} \frac{\partial \rho}{\partial t} dV + \int_{\Omega} \nabla \cdot (\rho \mathbf{u}) dV = Q$$

En l'absence de source de masse

$$\frac{\partial \rho}{\partial t} + \rho \nabla . \mathbf{u} + \mathbf{u} . \nabla \rho = 0$$
 $\nabla \equiv \text{gradiant}$

$$O\tau$$

Si le fluide est « incompressible », masse volumique constante

$$\nabla . \mathbf{u} = 0$$

$$\frac{\delta\rho}{\rho} = \frac{1}{\rho} \frac{\partial\rho}{\partial p} \delta p$$

$$\frac{\delta\rho}{\rho} = \frac{1}{\rho} \frac{\partial\rho}{\partial p} \delta p$$

$$\frac{\delta\rho}{\rho} = \frac{1}{\rho c^2} \delta p$$

c : vitesse du son

$$\frac{\delta\rho}{\rho} = \frac{1}{\rho} \frac{\partial\rho}{\partial p} \delta p$$

$$\frac{\delta\rho}{\rho} = \frac{1}{\rho c^2} \delta p$$

c : vitesse du son

En écoulement dominé par l'inertie du fluide:

$$\delta p \sim \rho u^2$$

$$\frac{\delta\rho}{\rho} \sim \frac{u^2}{c^2} = M^2$$

M : Nombre de Mach

$$\frac{\delta\rho}{\rho} = \frac{1}{\rho} \frac{\partial\rho}{\partial p} \delta p$$

$$\frac{\delta\rho}{\rho} = \frac{1}{\rho c^2} \delta p$$

C: vitesse du son

En écoulement dominé par l'inertie du fluide:

$$\delta p \sim \rho u^2$$

$$\frac{\delta\rho}{\rho} \sim \frac{u^2}{c^2} = M^2$$

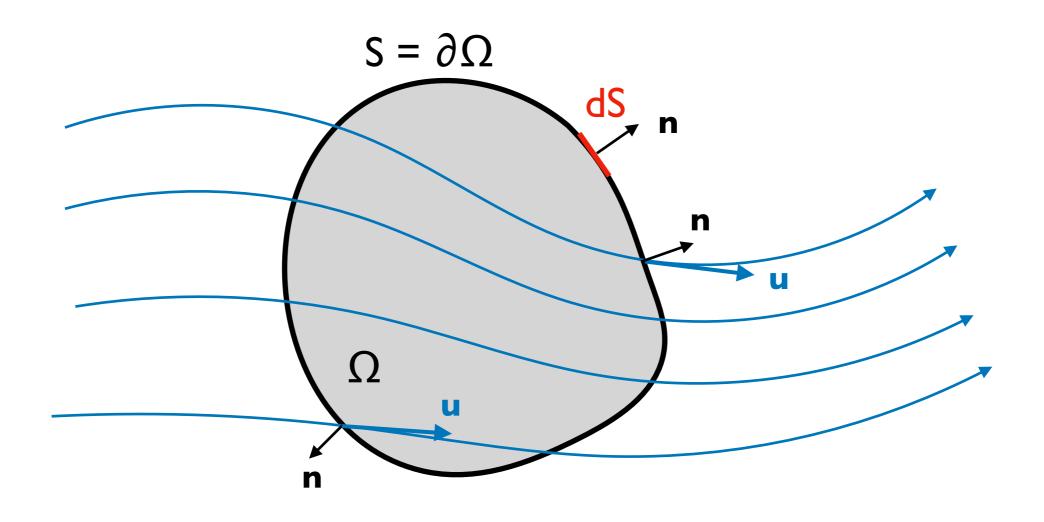
M : Nombre de Mach

 $M\ll 1$ Fluide quasi incompressible

 $M\sim 1 \quad \text{ou} \quad M>1$

Ondes de choc

Conservation de la quantité de mouvement



$$\int_{\Omega} \frac{\partial \rho \mathbf{u}}{\partial t} dV = \int_{\Omega} \rho \mathbf{f} \ dV \ + \int_{\partial \Omega} \underline{\underline{\underline{\sigma}}} \cdot \mathbf{n} \ dS \ - \int_{\partial \Omega} \rho \mathbf{u} \ \mathbf{u} \cdot \mathbf{n} \ dS$$
vecteur scalaire

Conservation de la quantité de mouvement

$$\int_{\Omega} \frac{\partial \rho \mathbf{u}}{\partial t} dV = -\int_{\partial \Omega} \rho \mathbf{u} \ \mathbf{u} \cdot \mathbf{n} \ dS + \int_{\Omega} \rho \mathbf{f} \ dV + \int_{\partial \Omega} \sigma \cdot \mathbf{n} \ dS$$

Théorème de la divergence:

$$\int_{\Omega} \frac{\partial \rho \mathbf{u}}{\partial t} dV + \int_{\Omega} \nabla . \rho \mathbf{u} \mathbf{u} \, dV = \int_{\Omega} \rho \mathbf{f} \, dV + \int_{\Omega} \nabla . \sigma \, dV$$

 $ho \mathbf{u} \mathbf{u}$: Flux de quantité de mouvement,

produit tensoriel \longrightarrow tenseur de composantes $\rho u_i u_j$

Sa divergence :
$$\frac{\partial}{\partial x_j}(\rho u_i u_j) = u_i \frac{\partial \rho u_j}{\partial x_j} + \rho u_j \frac{\partial u_i}{\partial x_j}$$
 (somme sur j)

Conservation de la quantité de mouvement

Pour un volume élémentaire de fluide :

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \frac{\partial \rho}{\partial t} + \mathbf{u} \nabla \cdot \rho \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = \rho \mathbf{f} + \nabla \cdot \sigma$$

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \left(\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} \right) + \rho \mathbf{u} \cdot \nabla \mathbf{u} = \rho \mathbf{f} + \nabla \cdot \sigma$$

$$= \mathbf{0}$$

Conservation de la masse

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = \rho \mathbf{f} + \nabla \cdot \sigma$$

$$m\mathbf{a} = \mathbf{F}$$

Accélération d'un élément de fluide

$$m\mathbf{a} = \mathbf{F}$$

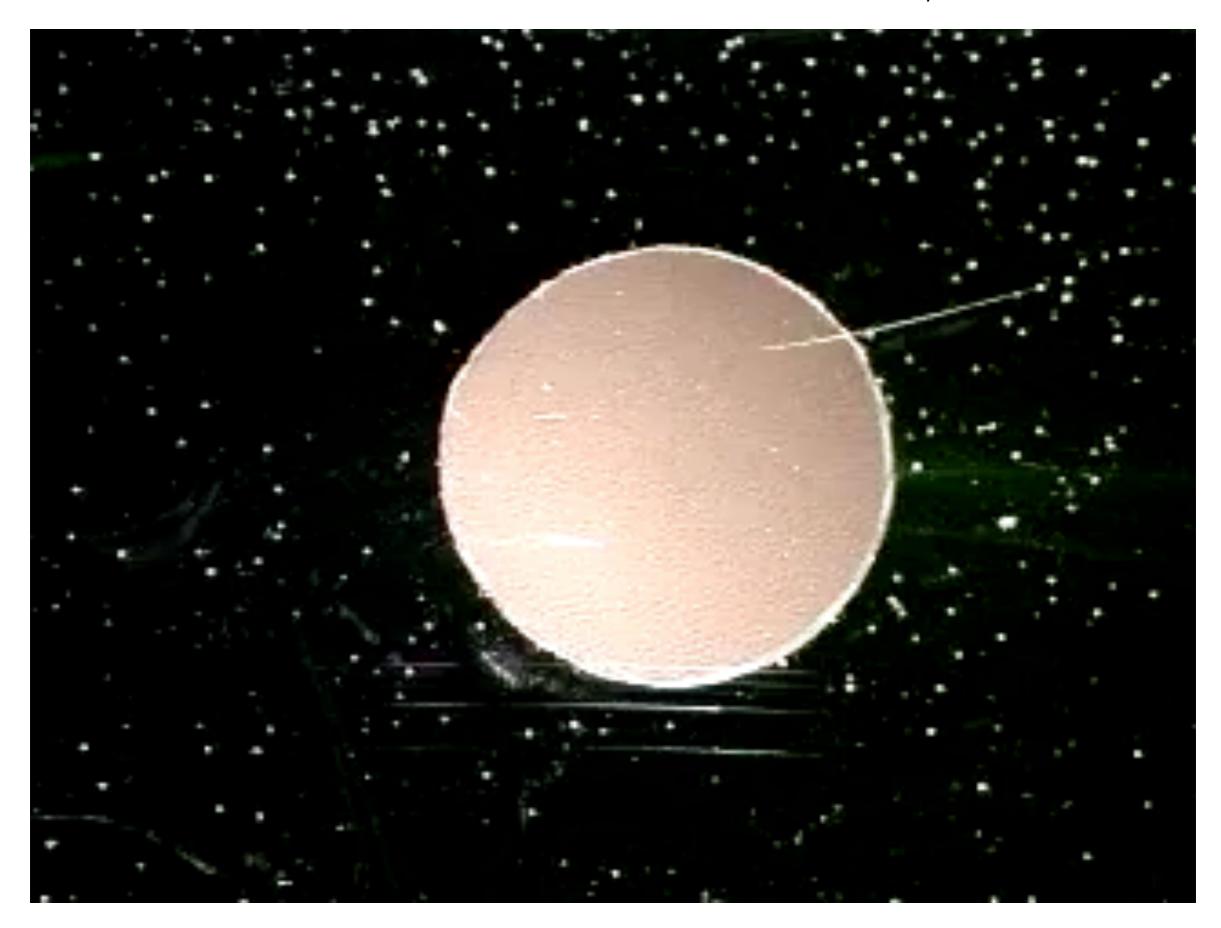
$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = \rho \mathbf{f} + \nabla \cdot \sigma$$

$$\mathbf{a} = \boxed{\frac{\partial \mathbf{u}}{\partial t}} + \boxed{\mathbf{u} \cdot \nabla \mathbf{u}}$$

instationnarité

accélération convective

un écoulement stationnaire où $\mathbf{u}.\nabla\mathbf{u} \neq 0$



Écriture de l'accélération convective

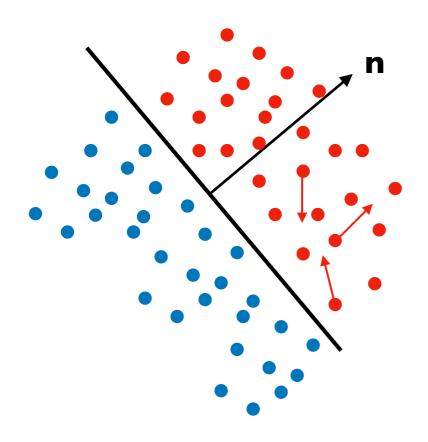
Pour la composante
$$i$$
: $u_j \frac{\partial u_i}{\partial x_j} = \sum_{j=1,3} u_j \frac{\partial u_i}{\partial x_j}$

Pour la composante
$$x$$
: $u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z}$

Variation spatiale de u_x projetée sur la vitesse (u_x, u_y, u_z)

Les contraintes dans un fluide

Dans un fluide à l'équilibre, sans écoulement macroscopique



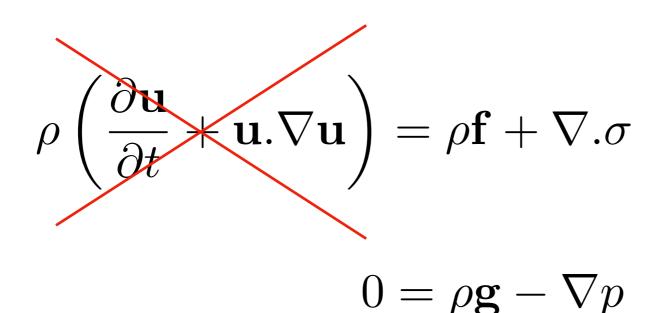
La résultante des interactions entre atomes ou molécules est une pression isotrope

$$\sigma = \begin{pmatrix} -p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -p \end{pmatrix}$$

$$\sigma_{ij} = -p \, \delta ij$$

$$\nabla . \sigma = -\nabla p = \begin{pmatrix} -\frac{\partial p}{\partial x} \\ -\frac{\partial p}{\partial y} \\ -\frac{\partial p}{\partial z} \end{pmatrix}$$

Dans un fluide à l'équilibre, sans écoulement macroscopique



$$p = p_0 - \rho gz$$

Dans un fluide hors d'équilibre thermodynamique, avec écoulement macroscopique

Fluides newtoniens

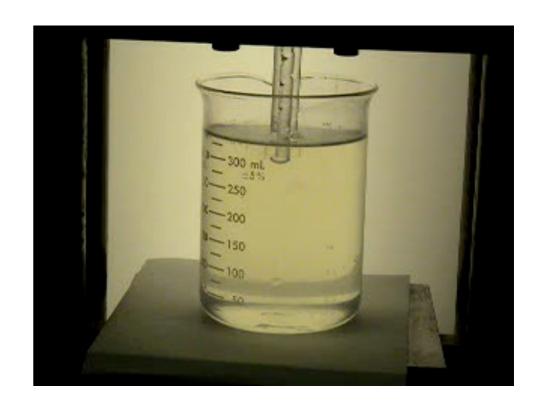
Eau, huile, glycérol, gaz...

Contraintes : fonctions linéaires du gradient de vitesse

Fluide isotrope

Fluides non newtoniens

Solutions de polymères, polymères fondus, suspensions concentrées, pâtes, mousses, cristaux liquides ...



Les contraintes dans un fluide newtonien

Comportement mécanique du fluide caractérisé par une seule quantité :

sa viscosité dynamique η

Contraintes : fonctions linéaires de la partie symétrique du gradient de vitesse

partie symétrique du gradient de vitesse : déformation d'un élément de fluide

partie antisymétrique du gradient de vitesse : rotation en bloc d'un élément de fluide

Les contraintes dans un fluide newtonien

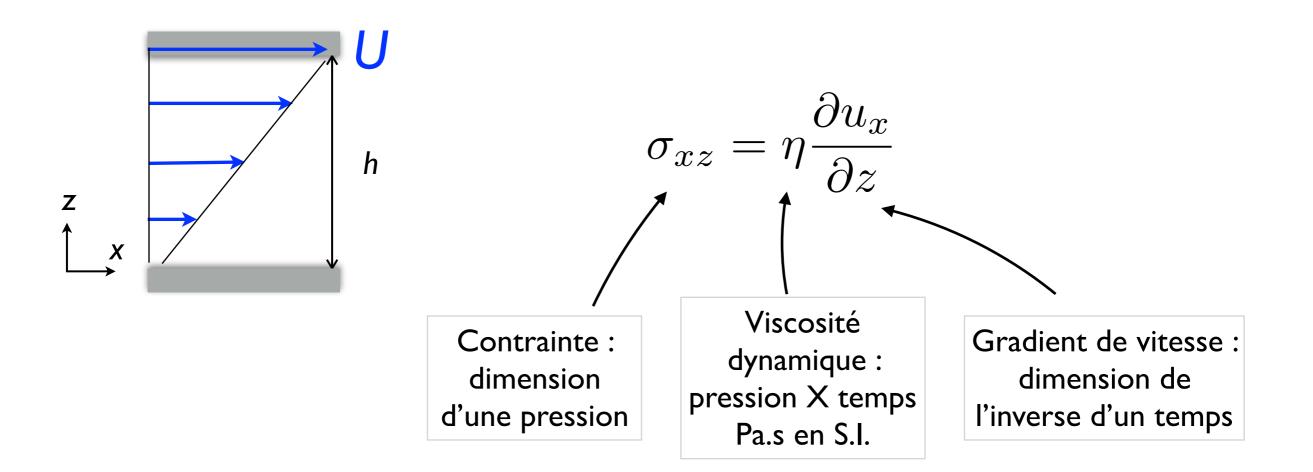
$$\sigma_{ij} = -p \, \delta_{ij} + 2 \, \eta \, e_{ij}$$

$$\underline{\underline{e}} = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$

$$\sigma = \begin{pmatrix} -p + 2\eta \frac{\partial u_x}{\partial x} & \eta \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) & \eta \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) \\ \eta \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) & -p + 2\eta \frac{\partial u_y}{\partial y} & \eta \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right) \\ \eta \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) & \eta \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right) & -p + 2\eta \frac{\partial u_z}{\partial z} \end{pmatrix}$$

$$\nabla . \sigma = -\nabla p + \eta \Delta \mathbf{u}$$

Contrainte de cisaillement visqueux



Ordres de grandeur de viscosités :

eau: 10-3 Pa.s (1 mPoiseuille) glycérine: 1,3 Pa.s

air: 1,8 10-5 Pa.s hélium: 3,3 10-6 Pa.s (4 K)

Dans un fluide newtonien, avec écoulement macroscopique

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = \rho \mathbf{f} + \nabla \cdot \sigma$$
$$\nabla \cdot \sigma = -\nabla \rho + \eta \Delta \mathbf{u}$$

Équation de Navier-Stokes

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \eta \Delta \mathbf{u} + \rho \mathbf{f}$$

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}$$

viscosité cinématique $\, \nu = \eta/\rho \,$

L'équation de Navier-Stokes dans toute sa splendeur (horreur ?)

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right) + f_x$$

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right) + f_y$$

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right) + f_z$$

Comment la simplifier ?

Une analyse dimensionnelle de l'équation de Navier-Stokes

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \eta \Delta \mathbf{u} + \rho \mathbf{f}$$

$$\mathbf{u} \sim U$$

$$\nabla \sim 1/L$$

$$\Delta \sim 1/L^2$$

Échelle de longueur $abla \sim 1/L$ $\Delta \sim 1/L^2$ pertinente qui caractérise la variation spatiale de vitesse

$$\rho \ \mathbf{u}.\nabla \mathbf{u} \sim \rho \ \frac{U^2}{L}$$

Terme inertiel

$$\eta \, \Delta \mathbf{u} \sim \eta \, \frac{U}{L^2}$$

Terme visqueux

$$\frac{\rho \mathbf{u}.\nabla \mathbf{u}}{\eta \Delta \mathbf{u}} \sim \frac{\rho UL}{\eta} = \frac{UL}{\nu}$$

Nombre de Reynolds

Deux dynamiques différentes selon le nombre de Reynolds

 $Re \ll 1$

 $Re \gg 1$

Écoulement dominé par la viscosité

Écoulement dominé par l'inertie

