Dispersion in random velocity fields

Porous media
Turbulent flows
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Figure 2. Overall schematic of experimental equipment.
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Figure 5. Sample raw data for step response experiment. R is recorded
reading.

Dispersion in porous media

Longitudinal and lateral dispersion in packed beds:
Effect of column length and particle size distribution,
Han et al.,AIChE J., 31,277 (1985)
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Figure 11. Longitudinal dispersivity values from various experiments.



For a random walk of N steps of size d,
what is the average distance traveled <r>?
What is the mean square root distance traveled /<r2>?

Consider the dispersion in a porous medium as a random walk
What is the effective diffusion coefficient as a function of the
pore size d and the average velocity U ?



Dispersion in turbulent flows

A turbulent jet at Re = 2000
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LF Richardson, Atmospheric diffusion
shown on a distance-neighbor graph,
Proc. Roy. Soc. 1926

Dispersion of pairs of particles in
turbulent flows
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Fluctuation energy spectra in turbulent flows

"o

— ug : - .
N - ; ) P 3 *aw
o/ se ". > oF
. f’
- : e
! . ‘7‘
ol AR o2
_ g_‘v

"

-
w

=%

A \
[ A - &
A ) P -
[\ o
Yy
’ " ] -~
“t ‘l‘ 'r . ” y
"f .4 . A Y
8 } 3 - 3
AN v -
. 7
r o J P %
> .
_ Ay £ : - “ ’
- - r - .
’ < 5
L) e 5 ’ y . A &
’. L4 .
: . b T <g; ¢
3
2 5 . $ " Ea o » y
(o

At very large Re, fluctuations are
isotropic and independent of the
large scale structure




Velocity fluctuations at different length scales

at lengthscale |, velocity fluctuation u(l)

kinetic energy per unit mass E. ~ u2 (l)

Characteristic time T r~

Rate of kinetic energy transfer € ~ ~

Kolmogorov’s scaling law u(l) ~ [1/31/3



Fluctuation energy spectra and Kolmogorov’s scaling laws
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Measurement in a tidal channel
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Re =3 |08
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Direct numerical simulation

€ : rate of kinetic energy transfer



Considering the transport in a turbulent velocity field as a
random walk, derive a scaling relation for the dispersion
coefficient of two fluid elements initially separated by a
distance |

| is within the inertial range of the turbulent flow described
by the Kolmogorov scaling laws

U(l) N 11/361/3

D ~ 1 u(l) ~ 1433



A short summary

In fluids, diffusion is not efficient except at small scales (when Pe << [)
Within solids, there is no other transport phenomenon

In fluids, at Pe>> |, convection is dominant, but diffusion cannot be ignored

Transport is accelerated by the creation of thin boundary layers (and enhanced gradients)
Effective fluxes are given by Nusselt or Sherwood numbers

We get scaling laws for Nu or Sh as a function of Pe, Re and Pr

The scaling exponents depend on the particular velocity profile

Thermal convection is specific because heat and momentum transport are strongly coupled
Thermal convection is essentially governed by the Rayleigh nhumber

Radiative heat transfer is governed by Stefan’s law
Emissivity = absorptivity
View factors take into account the geometry of radiative surfaces



