How are we doing on our set of problems ?

The Alex Thomson problem

how much water vapor is permeating through his clothing ?

using the molar fluxes due to diffusion and convection in a binary mixture, we calculated the molar fraction gradient of water vapor and the flux of water vapor through a goretex membrane

The microchip problem

How do you design precisely a biochemical sensor on a microchip ?

There are two relevant dimensionless parameters $Pe_H=UH/D$, $\lambda=L/H$ In the limit $Pe >> \lambda$ and fast chemical reaction: Dimensionless mass flux (Sherwood number) = 0.5 $Pe_H^{1/3} \lambda^{1/3}$

Transport is determined by the thickness of the concentration boundary layer

Questions remaining : what is the flux in the reaction limited regime ? what is the equilibration time in the transport limited regime ?

The coffee cup problem

If you don't stir the sugar in your coffee, why does it get cold way before it is sweetened ?

How long does it take for the sucrose to diffuse to the top? At least weeks, months for a big cup.

If diffusion in air is the only mechanism, it takes 6 hours to cool down to room temperature we need something else.

The solar heater problem

How many showers can you take per week with a 10 m² solar water heater ?

- The solar constant is 1300 W/m2
- In France, number of hours of sunshine is between 1500 and 3000 (between 17 and 34% of the time)
- The power collected on a 10m² solar heater is on average between 2200 and 4400 W
- remaining questions : how much do we lose by convection and radiation at the collector
- what is the efficiency of the heat exchanger ?
- a single shower : 50 liters at 40°C

amount of heat required (starting from water at 10° C) : 4 10^{3} X 50 X 30 = 6 MJ

The flipper problem

what do cetaceans and solar heaters have in common ?

• what is the efficiency of the heat exchanger in the flippers ?

The microprocessor problem

How do you design the radiator of a 10cm², 50 W microprocessor ?

If we rely only on diffusion in air, we can dissipate 0,2 W

We can increase the flux by adding a series of fins, but there is an optimum length L_m for fins depending on their thickness e and the heat transfer coefficient h. $L_m \sim (e \ \lambda_{aluminum}/h)^{1/2}$

Remaining questions : what is the value of the heat transfer coefficient between fins and air ? what is the flow rate of air required ?

The Maurice Herzog problem

How long can you stand on top of Annapurna without gloves ? (no wind)

The bioheat equation provides an estimate of the temperature distribution in the fingers at steady state

time to reach the steady state?

The Maurice Herzog problem II

How long can you stand on top of Annapurna without gloves ? (with wind)

WIND CHILL FORMULA T - TEMPERATURE (F), V - WIND SPEED (MPH) 35.74 * 0.6215(T) * V [0.4275(T) - 35.75]

estimate the Reynolds number for the flow of air around one finger estimate the Peclet number for heat transport simplify the heat transport equation derive scaling laws for $\delta_v(x)$ and $\delta_T(x)$ estimate the heat flux and the heat transfer coefficient

wind speed U 1 to 10 m/s Physical properties of air : density 1 kg/m³ specific heat 1000 J/kg.K thermal conductivity 0.025 W/m.K kinematic viscosity 1.5 10⁻⁵ m²/s

