
Transport phenomena
133è promotion

Thermal regulation of starlings

1. Justify the range of wavelengths used to measure the surface temperature of birds.
The electromagnetic emission of a body at temperature T has a maximum at wavelength

λM (m) = 2.88×10−3/T (Wien’s displacement law). Around room temperature (300K), the maxi-
mum of emission is at a wavelength of 10 µm within the range of sensitivity of the camera. Using
this range of wavelengths optimizes the intensity of the signal from a body at 300 K.

2. The infrared camera measures the electromagnetic flux emitted by a surface. Given the range
of wavelengths in which the camera sensor operates, how should one modify Stefan’s law to convert
the measured flux into a temperature (the explicit calculation is not required, but only its analytical
form) ? Is the temperature variation of the measured flux identical to the variation in Stefan’s law ?

The electromagnetic flux measured by the camera Jm is the integral of the flux emitted in the
range λ1, λ2 (assuming a flat response of the camera sensor in this range, and a constant emissivity
ε) :

Jm =

∫ λ2

λ1

2πhc2

λ5
εdλ

exp(hc/λkBT ) − 1

If we use the reduced variable ζ = λkBT/hc, we get :

Jm =
2πε(kBT )4

h3c2

∫ ζ2

ζ1

dζ

ζ5 exp(1/ζ) − 1

We get the same dependence on temperature as Stefan’s law, but with a smaller numerical
factor, since we integrate only on a finite range of wavelengths and not on the whole spectrum.
However when the temperature changes, if λ1 and λ2 keep the same value, the integration limits
ζ1 and ζ2 change and the temperature dependence is not strictly the same as Stefan’s law. If
the temperature variations remain small compared to the absolute temperature, we still have a
proportionality between the measured power and T 4.

3. The temperature of the wind tunnel walls is equal to 20◦ C and we consider that air is at
the same temperature. The emissivity ε of birds is estimated to be 0.95. Neglecting the radiation
from ambiant air and ignoring any view factors between the surface of birds and the tunnel walls,
estimate the radiative heat flux for each of the parts A, B, C and the total flux exchanged on the
bird.

The heat flux emitted by the bird’s surface is given by Stefan’s law : εσT 4
s . The flux of heat

emitted by the walls of the wind tunnel is σT 4
a . Since the absorptivity is equal to the emissivity

the flux of heat absorbed by the bird is εσT 4
a . Assuming that the view factor is equal to 1 (the

bird is completely enclosed in the wind tunnel) we get the net flux of heat from the bird :

jR = εσ(T 4
s − T 4

a )

Taking Ta = 293 K, σ = 5.67 × 10−8 W.m−2.K−4, we get the following radiative fluxes (jRi
per unit surface, JRi integrated on the surface) for the different parts of the bird :

— legs : jRA = 39 W.m−2, JRA = jRASA = 0, 03 W
— brachial part of wings : jRB = 30 W.m−2, JRB = jRBSB = 0, 25 W
— everything else : jRC = 16, 5 W.m−2, JRC = jRCSC = 0, 66 W
And the total amount of heat exchanged by radiation per unit time is JR = 0, 94W.
4. Give an order of magnitude of the dimensionless parameters relevant for the air flow around

birds and for the heat transfer. The velocity of the air flow is taken as U = 10 m/s.
The total area of the wings is 330 cm2 (taking into account the upper and lower sides). We

can consider them as a rectangle of area W ×L = 4L2. We have then 4L2 ≈ 160 cm2 and L2 ≈ 40
cm2 , hence L ≈ 6, 5 cm the characteristic length for the flow field.
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The relevant dimensionless number for the flow is the Reynolds number computed with L,
Re = UL/ν. With U = 10 m/s and ν = 1, 5 × 10−5 m2/s, Re ≈ 4 × 104.

For heat transfer the relevant dimensionless number is the Peclet number Pe = RePr. For air,
the Prandtl number Pr is equal to 0,7 and the order of magnitude of the Peclet number is 3×104.

For the legs, the relevant lengthscale is the average diameter DP which is 3 mm. The corres-
ponding Reynolds number is RP ≈ 2000 and the Peclet number PeP is around 1500Th.

5. Is it necessary to take into account the transfer by pure diffusion ?
The Peclet number is much larger than 1 for the wings, body and legs as well. Heat transport

par convection is then dominant over the transport by pure diffusion. However, in a situation
where a transport boundary layer exists, we should take into account the diffusive flux through
the boundary layer to compute the heat flux.

6. Using a dimensional analysis of the heat transport equation, give an expression for the local
heat flux on the surface of the bird for the parts B and C, considered as flat plates and for the legs
as well.

Since the Reynolds number is much larger than 1 for all parts of the bird, the flow around
the bird is a boundary layer type flow. Assuming that the flow remains laminar in the boundary
layer, the thickness of this layer δ(x) varies as

√
νx/U , x being the distance from the leading edge

of the wings of the stagnation point on front of the legs. Within the boundary layer, the velocity
profile is linear : ux(y) ≈ Uy/δ(x) where y is the coordinate normal to the surface. In steady state
(∂tT = 0) and in the boundary layer approximation (∂xxT � ∂yyT ) the transport equation for
heat is :

ux
∂T

∂x
= U

y

δ(x)

∂T

∂x
= κ

∂2T

∂y2

Evaluating both sides of the equation at y = δT (x) where δT (x) is the thickness of the thermal
boundary layer, we get :

δ3T ∼ κ

U
xδ(x) =

κ

ν

(νx
U

)3/2
and :

δT ∼ Pr−1/3δ(x).

The local heat flux at position x on the bird surface (y = 0) is :

J(x) = λ

(
∂T

∂y

)
y=0

≈ λ
δT

δT (x)
= λ

δTPr1/3

δ(x)
.

7. Give an expression in scaling law for the Nusselt number on parts B and C and for the legs.
The heat flux integrated over the length L in the streamwise direction is :

Jtotal = λδTPr1/3
∫ L

0

δ(x)−1dx = λδTPr1/3
(
UL

ν

)1/2

With pure diffusion, the heat flux integrated over the length L would be Jdif ∼ λδT/L× L =
λδT . The Nusselt number Nu is the ratio Jtotal/Jdif and we have :

Nu = Pr1/3Re
1/2
L

For the legs, the derivation is exactly similar but the relevant characteristic lengthscale is the

diameter DP , instead of L and we have Nu = Pr1/3Re
1/2
DP

.
8. Estimate the total heat flux due to the air flow around the bird. Physiologists have noted that

birds increase their heat transfer by moving the legs away from the body and dragging them into
air. What is the specific contribution of legs to the heat flux ?

For air, Pr = 0, 7 and Pr1/3 = 0, 9.
For the different parts of the bird we have :
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— legs : ReP ≈ 2000 and the Nusselt number NuA is on the order 40.The total heat flux is
then :

JCA = SA NuA JdifA ∼ SA NuA
λδTA
DP

≈ 1, 8W

— brachial part of wings : surface 80 cm2 = 2 ×40 cm2. If we keep the same aspect ratio of 4,
we have L2 = 10 cm2 and L ≈ 3 cm. ReL ≈ 2 × 104 and NuB ≈ 130. The total heat flux
is :

JCB = SB NuB
λ δTB
L

≈ 4, 8W

— everything else : surface 400 cm2, we have L2 = 100 cm2 andL ≈ 10 cm. ReL ≈ 6 × 104

and NuC ≈ 220. The total heat flux is :

JCC = SC NuC
λ δTC
L

≈ 6, 6W

Adding the contributions from the three parts we get an amount of heat exchanged per unit
time on the order of 13 W, the legs contributing for 15%.

9. What is the dominant mechanism of heat transfer : radiation or convection by the flow ?
The heat transfer by convection is an order of magnitude larger than the transfer by radiation.
10. S. Ward and colleagues estimated, by an independent method, the metabolic power of star-

lings in flight. This power increases linearly with flight speed U from 8 W at 6 m/s to 13 W at
14 m/s. How does this power compare with the heat flux estimated in the simple model developed
above ?

At 10 m/s, the metabolic power would be 8+5×4/8 = 10, 5 W. We find a total amount of heat
exchange on the order of 14W (convection+radiation) which is larger than this value. The heat
flux has to be smaller than the metabolic power, since this power accounts also for the mechanical
energy used for propulsion. Our simple model overestimates the heat flux but we find the correct
order of magnitude.
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