Cours : Dynamique Non-Linéaire

Laurette TUCKERMAN laurette@pmmh.espci.fr

Symmetry

Reflection Symmetry

y ↑

$$\kappa \left(egin{array}{c} u \ v \end{array}
ight) (x,y) \equiv \left(egin{array}{c} -u \ v \end{array}
ight) (-x,y)$$

Group table for $\{I, \kappa\}$:

$$\begin{array}{c|c} I & \kappa \\ \hline I & I & \kappa \\ \kappa & \kappa & I \end{array}$$

Other reflection operators

$$(\kappa f)(x)\equiv f(-x)$$
 $\kappa a\equiv -a$

Evolution equation: $\dot{a} = g(a)$

System has reflection symmetry \iff *g* is *equivariant* \iff *g* $\kappa = \kappa g$

$$(g\kappa)(a) = (\kappa g)(a) \iff g(-a) = -g(a) \iff g \text{ odd}$$

 $\implies \dot{a} = g_1 a + g_3 a^3 = (g_1 + g_3 a^2) a$
to cubic order \implies pitchfork bif

$$\begin{split} \kappa \left(\begin{array}{c} a \\ s \end{array} \right) &\equiv \left(\begin{array}{c} -a \\ s \end{array} \right) \implies \kappa \left(\begin{array}{c} 0 \\ s \end{array} \right) = \left(\begin{array}{c} 0 \\ s \end{array} \right) & \text{and} \quad \kappa \left(\begin{array}{c} a \\ 0 \end{array} \right) = - \left(\begin{array}{c} a \\ 0 \end{array} \right) \\ & \frac{d}{dt} \left(\begin{array}{c} a \\ s \end{array} \right) = G(a,s) \equiv \left(\begin{array}{c} g \\ h \end{array} \right) (a,s) \\ & \kappa \left(\begin{array}{c} g \\ h \end{array} \right) (a,s) = \left(\begin{array}{c} g \\ h \end{array} \right) (a,s) \\ & \left(\begin{array}{c} -g \\ h \end{array} \right) (a,s) = \left(\begin{array}{c} g \\ h \end{array} \right) (-a,s) \\ & \left(\begin{array}{c} g_{10}a + g_{11}as + g_{30}a^3 + g_{12}as^2 \\ h_{00} + h_{01}s + h_{20}a^2 + h_{02}s^2 + h_{21}a^2s + h_{03}s^3 \end{array} \right) \\ & = \left(\begin{array}{c} (g_{10} + g_{11}s + g_{12}s^2 + g_{30}a^2)a \\ h_{00} + h_{01}s + h_{02}s^2 + h_{03}s^3 + (h_{20} + h_{21}s)a^2 \end{array} \right) \\ & = \left(\begin{array}{c} \tilde{g}(a^2, s)a \\ \tilde{h}(a^2, s) \end{array} \right) = \tilde{g}(a^2, s) \left(\begin{array}{c} a \\ 0 \end{array} \right) + \tilde{h}(a^2, s) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \end{split}$$

invariants: $\tilde{g} = \tilde{g}\kappa$, $\tilde{h} = \tilde{h}\kappa$ equivariant: $(g,h)\kappa = \kappa(g,h)$

Solutions to κ -equivariant systems are not all symmetric. (That is why bifurcation theory is interesting.)

If (a, s) is a solution to a κ -equivariant system then $\kappa(a, s) \equiv (-a, s)$ is also a solution.

Asymmetric solutions (a, s), $a \neq 0$ come in pairs $(\pm a, s)$.

If a κ -equivariant system has a unique solution, then that solution is symmetric.

e.g. linear system, or Navier-Stokes equations at low Re

Linear system G which commutes with κ :

$$Gu = \lambda u$$

 $\kappa Gu = \kappa \lambda u$
 $G\kappa u = \lambda \kappa u$

 $(\lambda, \kappa u)$ is also an eigenpair of G. κu could be a multiple of u:

$$\kappa u = cu$$

 $\kappa^2 u = \kappa cu$
 $u = c^2 u$
 $c = \begin{cases} 1 \implies u \text{ is symmetric} \\ -1 \implies u \text{ is antisymmetric} \end{cases}$

Or else if u and κu are linearly independent, then:

 $u + \kappa u$ is symmetric eigenvector $u - \kappa u$ is antisymmetric eigenvector

Verify equivariance of Navier-Stokes equations

$$(\kappa f)(x) \equiv f(-x) \Longrightarrow \left\{ egin{array}{l} (\kappa f)'(x) = -f'(-x) \ (\kappa f)''(x) = f''(-x) \end{array}
ight.$$

Demonstration:

Let
$$\tilde{f}(x) \equiv (\kappa f)(x) \equiv f(-x)$$

 $\tilde{f}'(x) \equiv \Delta x \xrightarrow{\lim} 0 \frac{\tilde{f}(x + \Delta x) - \tilde{f}(x)}{\Delta x}$
 $= \Delta x \xrightarrow{\lim} 0 \frac{f(-x - \Delta x) - f(-x)}{\Delta x}$
 $= \Delta x \xrightarrow{\lim} 0 \frac{f(-x + \Delta x) - f(-x)}{-\Delta x} = -f'(-x)$

$$\begin{bmatrix} (NS) \begin{pmatrix} u \\ v \end{pmatrix} \end{bmatrix} (x,y) \equiv \begin{pmatrix} -(u\partial_x + v\partial_y)u - \partial_x p + \nu(\partial_x^2 + \partial_y^2)u \\ -(u\partial_x + v\partial_y)v - \partial_y p + \nu(\partial_x^2 + \partial_y^2)v \end{pmatrix} (x,y)$$
$$\begin{bmatrix} \kappa \begin{pmatrix} u \\ v \end{pmatrix} \end{bmatrix} (x,y) \equiv \begin{pmatrix} -u \\ v \end{pmatrix} (-x,y)$$
$$\begin{bmatrix} (NS)\kappa \begin{pmatrix} u \\ v \end{pmatrix} \end{bmatrix} (x,y) \stackrel{?}{=} \begin{bmatrix} \kappa(NS) \begin{pmatrix} u \\ v \end{pmatrix} \end{bmatrix} (x,y)$$
$$\begin{pmatrix} -[-(u\partial_x + v\partial_y)u - \partial_x p + \nu(\partial_x^2 + \partial_y^2)u] \\ -(u\partial_x + v\partial_y)v - \partial_y p + \nu(\partial_x^2 + \partial_y^2)v \end{bmatrix} (-x,y)$$

Boundary conditions & external forces determine if problem is κ -equivariant:

0

x →

y ↑

Not equivalent flows

Rotations and reflections of the plane

Natural representation of O(2) on (x,y) uses z = x + iy

$$egin{array}{rcl} S_{ heta} z &\equiv e^{i heta} z \ \kappa z &\equiv ar z \end{array}$$

$$egin{aligned} \kappa S_{ heta} z &= \kappa(e^{i heta} z) = e^{-i heta} ar z \ S_{ heta} \kappa z &= S_{ heta} ar z = e^{i heta} ar z \ \kappa S_{ heta} z &= S_{- heta} \kappa z \end{aligned}$$

$$egin{aligned} &(S_{ heta_0}w)(
ho, heta)\,\equiv\,w(
ho, heta+ heta_0)\ &(\kappa w)(
ho, heta)\,\equiv\,w(
ho,- heta) \end{aligned}$$

Circle Pitchfork

$$f(z,ar{z}) \;=\; \sum_{m,n} f_{mn} z^m ar{z}^n$$

 $\kappa f(z,ar z) = \overline{f(z,ar z)} = ar f_{mn}ar z^m z^n$ $f(\kappa(z,\bar{z})) = f_{mn}\bar{z}^m z^n$ f real $S_{ heta}f(z,ar{z})=e^{i heta}f(z,ar{z})$ $f(S_{ heta}(z,ar{z}))$ $f=f_{mn}(e^{i heta}z)^m\overline{(e^{i heta}z)}^n$ $=f_{mn}e^{im heta}z^me^{-in heta}ar{z}^n$ $=e^{i heta}f_{mn}z^mar{z}^n$ m - n = 1 or $f_{mn} = 0$ $f(z, \bar{z}) = f_{10}z + f_{21}z^2 \bar{z} + f_{32}z^3 \bar{z}^2 + \cdots$ $= (f_{10} + f_{21}|z|^2 + f_{32}|z|^4 + \cdots)z$ $= \tilde{f}(|z|^2)z$ $|z|^2$ invariant z equivariant

Circle Pitchfork

$$\dot{z} = (\mu - lpha |z|^2) z$$

Circle Pitchfork

$$\dot{z}=(\mu-|z|^2)z$$

Cartesian Form:

$$egin{array}{rll} \dot{x}+i\dot{y}&=&\mu(x+iy)-(x^2+y^2)(x+iy)\ \dot{x}&=&\mu x-(x^2+y^2)x\ \dot{y}&=&\mu y-(x^2+y^2)y \end{array}$$

Polar Form:

$$egin{array}{rcl} (\dot{r}+ir\dot{ heta})e^{i heta}&=&(\mu-r^2)re^{i heta}\ \dot{r}&=&\mu r-r^3\ \dot{ heta}&=&0 \end{array}$$

Subcritical Form:

$$\dot{z}=(\mu+|z|^2)z$$

Stability of origin (use Cartesian coordinates):

$$J(x=0,y=0) = \left(egin{array}{cc} \mu - (3x^2 + y^2) & -2xy \ -2xy & \mu - (x^2 + 3y^2) \end{array}
ight) igg|_{(0,0)} = \left(egin{array}{cc} \mu & 0 \ 0 & \mu \end{array}
ight)$$

double eigenvalue μ .

Stability of states on circle (use polar coordinates):

$$J(r=\sqrt{\mu}, heta)=\left(egin{array}{cc} \mu-3r^2 & 0\ 0 & 0 \end{array}
ight)igg|_{\sqrt{\mu}, heta}=\left(egin{array}{cc} -2\mu & 0\ 0 & 0 \end{array}
ight)$$

eigenvalue -2μ along r and marginal eigenvalue 0 along θ .

$$\frac{dw}{dt}(\theta) = \mathcal{F}(w)(\theta) \qquad \qquad \mathcal{F} \text{ indep of } \theta$$
$$0 = \mathcal{F}(W) \qquad \qquad W \text{ a steady solution on circle}$$

$$0 = \frac{d\mathcal{F}(W)}{d\theta} = \frac{\delta\mathcal{F}}{\delta W} \frac{\partial W}{\partial \theta}$$

Jacobian or Frechet derivative marginal eigenvector

Drift Pitchfork

 $\mu < 0 \qquad 0 \le \mu \le 1 \qquad 1 < \mu$

 $egin{aligned} r &= 0 & r &= \sqrt{\mu} & r &= \sqrt{\mu} \ & heta &= heta_0 & heta &= heta_0 + \zeta t \ \zeta &= 0 & \zeta &= 0 & \zeta &= \pm \sqrt{\mu - 1} \end{aligned}$

Drift Pitchfork

Speed at onset is slow: $\zeta = \sqrt{\mu - \mu_{DP}} = \sqrt{\mu - 1}$

Motion along the circle: group orbit

Symmetry-breaking variable: ζ

Function $W(\theta)$ is even about some θ_0 .

Marginal and bifurcating eigenvectors are odd about $heta_0$

Drifting W is asymmetric in θ .

Jacobian:

$$egin{bmatrix} rac{\partial \dot{r}}{\partial r} & rac{\partial \dot{r}}{\partial \zeta} & rac{\partial \dot{r}}{\partial heta} \ rac{\partial \dot{r}}{\partial r} & rac{\partial \dot{\zeta}}{\partial \zeta} & rac{\partial \dot{\zeta}}{\partial heta} \ rac{\partial \dot{
ho}}{\partial r} & rac{\partial \dot{\zeta}}{\partial \zeta} & rac{\partial \dot{\zeta}}{\partial heta} \ \end{pmatrix} = egin{bmatrix} \mu - 3r^2 & 0 & 0 \ 2r\zeta & r^2 - 1 - 3\zeta^2 & 0 \ 0 & 1 & 0 \ \end{bmatrix}$$

Eigenvalues of diagonal matrix are along the diagonal. Also true for upper or lower diagonal matrices! So eigenvalues are:

State	λ_1 (along r)	λ_2 (along ζ)	λ_3 (along $ heta$)	
General case	$\mu-3r^2$	$r^2-1-3\zeta^2$	0	
$r=\zeta=0$	μ	-1	0	
$r=\sqrt{\mu}, \zeta=0$	-2μ	$\mu-1$	0	
$r=\sqrt{\mu}, \zeta=\pm\sqrt{\mu-1}$	-2μ	$-2(\mu-1)$	0	
$\mu = \mu_{ ext{CP}} = egin{bmatrix} \mu = \mu_{ ext{CP}} = \ 0 & 0 & 0 \ 0 & -1 & 0 \ 0 & 1 & 0 \ \end{pmatrix}$	0	$\mu=\mu_{ ext{DP}}$ $\mathcal{J}=egin{bmatrix} -2&0\ -0&0\ 0&1 \end{bmatrix}$	= 1 $ 0 $ $ 0 $ $ 0 $ $ 0$	
		Jordan l	0 block	

Drift pitchfork in reaction-diffusion equations

From Kness, Tuckerman & Barkley, Phys. Rev. A 46, 5054 (1992).

O(2) and SO(2)

AxisymmetricTaylorvorticesTagg, NonlinearScienceToday 4,1 (1994).

Spiral Taylor vortices

Antonijoan et al., Phys. Fluids 10, 829 (1995).

No requirement of $\kappa f = f \kappa \Longrightarrow f$ complex

$$\dot{z}~=~(\mu+i\omega-(lpha+ieta)|z|^2)z$$

$$(\dot{r}+ri\dot{ heta})e^{i heta}~=~((\mu-lpha r^2)+i(\omega+eta r^2))~r~e^{i heta}$$

$$egin{array}{rl} \dot{r} &=& (\mu - lpha r^2) \; r \ \dot{ heta} &=& \omega + eta r^2 \end{array}$$

Breaking of $SO(2) \Longrightarrow$ motion along θ direction

Hopf bifurcation and O(2) symmetry

Need four-dimensional eigenspace:

 $u(heta,t) = (z_+(t)+z_-(t))e^{i heta}+(ar{z}_+(t)+ar{z}_-(t))e^{-i heta}$

where z_{\pm} are complex amplitudes (i.e. amplitude and phase) of left-going and right-going traveling waves.

At linear order:

$$rac{d}{dt}\left(egin{array}{c} z_+ \ z_- \end{array}
ight)=\left(egin{array}{c} i\omega z_+ \ -i\omega z_- \end{array}
ight)$$

 $u(heta,t) = z_+(0)e^{i(heta+\omega t)} + z_-(0)e^{i(heta-\omega t)} + ar{z}_+(0)e^{-i(heta+\omega t)} + ar{z}_-(0)e^{-i(heta-\omega t)}$

 $z_{\pm}(0)$ arbitrary initial amplitudes.

Addition of nonlinear terms compatible with O(2) symmetry greatly restricts possible equilibria. Appropriate representation of O(2) on (z_+, z_-) :

$$egin{array}{rll} S_{ heta_0}(z_+,z_-) &=& (e^{i heta_0}z_+,e^{i heta_0}z_-) \ \kappa(z_+,z_-) &=& (ar z_-,ar z_+) \end{array}$$

Simplest cubic order equivariant evolution equations:

$$egin{aligned} &rac{d}{dt}\left(egin{aligned} z_+\ z_- \end{aligned}
ight) = \left(egin{aligned} &[\mu+i\omega+a|z_-|^2+b(|z_+|^2+|z_-|^2)]\,z_+\ &[\mu-i\omega+ar a|z_+|^2+ar b(|z_+|^2+|z_-|^2)]\,z_- \end{array}
ight) \end{aligned}$$
Substitute $z_\pm = r_\pm e^{i\phi_\pm}$: $\dot r_\pm \ = \ &(\mu+a_rr_\mp^2+b_r(r_+^2+r_-^2))r_\pm$

$$\dot{\phi}_{\pm} \;=\; \pm (\omega + a_i r_{\mp}^2 + b_i (r_+^2 + r_-^2))$$

Equations do not involve phases ϕ_{\pm} (all phases equivalent).

Solutions with $\dot{r}_{\pm}=0$:

origin: $r_{+} = 0, r_{-} = 0$ ${
m left\ traveling\ waves:} \quad r_+=\sqrt{rac{-\mu}{b_r}},\ r_-=0,$ $\dot{\phi}_+ = \omega - \mu rac{b_i}{b_r}$ $ext{ right traveling waves : } r_+ = 0, \; r_- = \sqrt{rac{-\mu}{b_r}},$ $\dot{\phi}_{-} = -\left(\omega - \mu \frac{b_i}{b}\right)$ $ext{standing waves}: \quad r_+=r_-=\sqrt{rac{-2\mu}{a_r+2b_r}},$ $\dot{\phi}_{\pm}=\pm\left(\omega-2\murac{a_{i}+2b_{i}}{a_{i}+2b_{i}}
ight)$

Standing waves in Rayleigh-Bénard convection in a cylinder with $\Gamma = R/H = 1.47$ and Pr = 1 at at $Ra = 26\,000$. From Borońska & Tuckerman, J. Fluid Mech. 559, 279 (2006).

Travelling wave in Rayleigh-Bénard convection in a cylinder with $\Gamma = R/H = 1.47$ and Pr = 1 at $Ra = 26\,000$. From Borońska & Tuckerman, J. Fluid Mech. 559, 279 (2006).

Thermosolutal convection with $S = -0.1, L = 0.1, Pr = 10, r \equiv Ra/Ra_c = 1.3$.

Standing vs. Travelling Waves

Jacobian in $(r_+, r_-, \phi_+, \phi_-)$ coordinates:

$$\left(egin{array}{cccc} \mu+a_rr_-^2+b_r(r_+^2+r_-^2)+2b_rr_+^2&2(a_r+b_r)r_-r_+&0&0\ 2(a_r+b_r)r_-r_+&\mu+a_rr_+^2+b_r(r_+^2+r_-^2)+2b_rr_-^2&0&0\ 2b_ir_+&2(a_i+b_i)r_-&0&0\ -2(a_i+b_i)r_+&-2b_ir_+&0&0 \end{array}
ight)$$

Block lower-triangular:

$$\begin{pmatrix} A & 0 \\ C & D \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \lambda \begin{pmatrix} X \\ Y \end{pmatrix}$$
$$AX = \lambda X$$
$$CX + DY = \lambda Y \end{pmatrix} \Longrightarrow \begin{cases} X = 0 \\ (\lambda, Y) \text{ eig of } D \end{cases} \text{ or } \begin{cases} (\lambda, X) \text{ eig of } A \\ Y = (\lambda I - D)^{-1}CX \end{cases}$$

Directions ϕ_\pm are neutral. For eigs in r_\pm directions, use

$$egin{pmatrix} a & b \ c & d \ \end{pmatrix} \qquad \qquad \lambda_{\pm} = rac{a+d}{2} \pm \sqrt{\left(rac{a-d}{2}
ight)^2 + bc}$$

Standing vs. Travelling Waves

Stability and branching direction of standing waves (SW) and travelling waves (TW) in (a_r, b_r) parameter plane. Either standing or traveling waves are stable, or neither are stable, depending on nonlinear coefficients a, b. (*Knobloch, Phys. Rev. A* 34, 1538 (1986).)

Standing vs. Travelling Waves

Symmetries of Standing and Travelling Waves

Time translation: $T_{t_0}u(t) \equiv u(t+t_0)$ Group of all time translations: S^1 Symmetry group of homogeneous stationary state: $O(2) \times S^1$.

Travelling wave symmetries:

$$(T_{t_0}S_{\omega t_0}u)(heta,t)\equiv u(heta+\omega t_0,t+t_0)=u(heta,t)$$

Group $\widetilde{SO}(2)$ (isomorphic to SO(2))

Standing wave symmetries (arbitrary symmetry axis at $\theta = 0$)

$$egin{aligned} & (\kappa u)(heta,t) \ \equiv \ u(- heta,t) = u(heta,t) & Z_2 \ & (T_{\pi/\omega}S_\pi u)(heta,t) \ \equiv \ u(heta+\pi,t+\pi/\omega) = u(heta,t) & Z_2^c \end{aligned}$$

Group $Z_2 imes Z_2^c$

Lattice of Isotropy Subgroups

Steady-state mode interactions

Bifurcations to two wavenumbers, m and n.

$$w(
ho, heta)=rac{1}{2}\left(z_m(
ho)e^{im heta}+z_n(
ho)e^{in heta}+ar{z}_m(
ho)e^{-im heta}+ar{z}_n(
ho)e^{-in heta}
ight)$$

$$egin{array}{rll} S_{ heta_0}(z_m,z_n) &=& (e^{im heta_0}\ z_m,e^{in heta_0}\ z_n) \ \kappa(z_m,z_n) &=& (ar z_m,ar z_n) \end{array}$$

$$f(z_m,z_n)=\left(egin{array}{c} f_m\ f_n\end{array}
ight)(z_m,z_n)=\left(egin{array}{c} f_{mpqrs}z_m^p z_n^q ar z_m^r ar z_n^s\ f_{npqrs}z_m^p z_n^q ar z_m^r ar z_n^s\end{array}
ight)$$

 $\kappa f = f \kappa \Longrightarrow f$ real.

$$egin{aligned} S_ heta f(z_m,z_n) &= \left(egin{aligned} e^{im heta} f_{mpqrs} z_m^p z_n^q ar{z}_m^r ar{z}_n^s \ e^{in heta} f_{npqrs} z_m^p z_n^q ar{z}_m^r ar{z}_n^s \end{array}
ight) \ fS_ heta(z_m,z_n) &= \left(egin{aligned} f_{mpqrs} (e^{im heta} z_m)^p (e^{in heta} z_n)^q (e^{-im heta} ar{z}_n)^r (e^{-in heta} ar{z}_n)^s \ f_{npqrs} (e^{im heta} z_m)^p (e^{in heta} z_n)^q (e^{-im heta} ar{z}_m)^r (e^{-in heta} ar{z}_n)^s \end{array}
ight) \end{aligned}$$

 $S_ heta f = f S_ heta \Longrightarrow$

$$egin{aligned} f_{mpqrs} &= 0 ~~\mathrm{or}~~m = mp + nq - mr - ns \ f_{npqrs} &= 0 ~~\mathrm{or}~~n = mp + nq - mr - ns \end{aligned}$$

All invariants are products and sums of:

$$|z_m|^2, |z_n|^2, ext{ and } \Delta \equiv z_m^n ar{z}_n^m + ar{z}_m^n z_n^m$$

All equivariants are sums of:

$$\left(egin{array}{c} z_m \ 0 \end{array}
ight), \left(egin{array}{c} 0 \ z_n \end{array}
ight), \left(egin{array}{c} ar{z}_m^{n-1}z_n^m \ 0 \end{array}
ight), \left(egin{array}{c} 0 \ z_m^nar{z}_n^{m-1} \end{array}
ight)$$

with coefficients which are invariants. Most general equivariant evolution equation is:

$$rac{d}{dt}\left(egin{array}{c} z_m \ z_n \end{array}
ight)=a\left(egin{array}{c} z_m \ 0 \end{array}
ight)+b\left(egin{array}{c} 0 \ z_n \end{array}
ight)+c\left(egin{array}{c} ar z_m^{n-1}z_n^m \ 0 \end{array}
ight)+d\left(egin{array}{c} 0 \ z_m^nar z_n^{m-1} \end{array}
ight)$$

where a, b, c, d are functions of $(|z_m|^2, |z_n|^2, \Delta)$.

Assume m + n - 1 > 3 and truncate to cubic order. The most general set of equivariant equations is independent of m, n:

$$egin{array}{rcl} \dot{z_m} &=& (a_0+a_m|z_m|^2+a_n|z_n|^2)z_m \ \dot{z_n} &=& (b_0+b_m|z_m|^2+b_n|z_n|^2)z_n \end{array}$$

 $a, b \text{ real} \Longrightarrow \text{phases play no role} \Longrightarrow \text{replace } (z_m, z_n) \text{ by } (x_m, x_n).$ Steady states:

$$egin{aligned} x_m &= 0 \quad ext{or} \quad a_0 + a_m x_m^2 + a_n x_n^2 &= 0 \quad ext{and} \ x_n &= 0 \quad ext{or} \quad b_0 + b_m x_m^2 + b_n x_n^2 &= 0 \end{aligned}$$

origin : pure *m* modes : pure *n* modes : mixed modes :

$$egin{aligned} x_m &= 0, \ x_n &= 0 \ x_m^2 &= -a_0/a_m, \ x_n &= 0 \ x_m &= 0, \ x_n^2 &= -b_0/b_n \ x_m^2 &= rac{a_0 b_n - b_0 a_n}{b_m a_n - a_m b_n}, \ x_n^2 &= rac{a_0 b_m - b_0 a_m}{-(b_m a_n - a_m b_n)} \end{aligned}$$

Bifurcation diagram for (x_m, x_n) . $|x| \equiv \sqrt{(x_m^2 + x_n^2)}$ as a function of μ . Solid curves: pure modes. Dashed curve: mixed mode.

Lattice of isotropy subgroups for (m, n) mode interaction.

Example of shear-driven cavity flow

 LC_2

Case (m, n) = (1, 2):

$$egin{array}{rcl} \dot{z_1}&=&c_0ar{z}_1z_2+(a_0+a_1|z_1|^2+a_2|z_2|^2)z_1\ \dot{z_2}&=&d_0z_1^2+(b_0+b_1|z_1|^2+b_2|z_2|^2)z_2 \end{array}$$

Case (m, n) = (1, 3):

$$egin{array}{rll} \dot{z_1}&=&c_0ar{z}_1^2z_3+(a_0+a_1|z_1|^2+a_3|z_3|^2)z_1\ \dot{z_3}&=&d_0z_1^3+(b_0+b_1|z_1|^2+b_3|z_3|^2)z_3 \end{array}$$

 \implies Interesting dynamics like heteroclinic orbits!

Group Table for D_4 , symmetries of a square ($ho\equiv S_{\pi/2}$)

From Mathworld, by Eric Weisstein, Wolfram Research.

e	e	ho	$ ho^2$	$ ho^3$	κ	κho	κho^2	κho^3
e	e	ρ	$ ho^2$	$ ho^3$	κ	κho	κho^2	κho^3
ρ	ho	$ ho^2$	$ ho^3$	e	κho	κho^2	κho^3	κ
$ ho^2$	$ ho^2$	$ ho^3$	e	ho	κho^2	κho^3	κ	κho
$ ho^3$	$ ho^3$	e	ho	$ ho^2$	κho^3	κ	κho	κho^2
κ	κ	κho^3	κho^2	κho	e	$ ho^3$	$ ho^2$	ρ
κho	κho	κ	κho^3	κho^2	ρ	e	$ ho^3$	$ ho^2$
κho^2	κho^2	κho	κ	κho^3	$ ho^2$	ho	e	$ ho^3$
κho^3	κho^3	κho^2	κho	κ	$ ho^3$	$ ho^2$	ho	e

Quotient Groups

One one-element subgroup: $\{e\}$ Five two-element subgroups: $\{e, \rho^2\}, \{e, \kappa\}, \{e, \kappa\rho\}, \{e, \kappa\rho^2\}, \{e, \kappa\rho^3\}$ Two four-element subgroups: $\{e, \rho, \rho^2, \rho^3\}, \{e, \rho^2, \kappa, \kappa \rho^2\}$ $\{e, \rho, \rho^2, \rho^3\}$ is isomorphic to Z_4 $\{e, \rho^2, \kappa, \kappa \rho^2\}$ is isomorphic to $Z_2 \times Z_2$ Normal subgroup: $qnq^{-1} \in N$ for all elements $q \in \Gamma$, $n \in N$ $N \equiv \{e, \rho, \rho^2, \rho^3\}$ is normal subgroup of $\Gamma \equiv D_4$

Can form quotient group Γ/N isomorphic to Z_2