
Bifurcation Analysis of the Eckhaus Instability 

L.S. Tuckerman 

The Eckhaus instability [1] is the only purely two-dimensional instability occurring in 

convection [2], Taylor-Couette flow [3], liquid crystals [4], and other pattern-forming 

systems. Despite its widespread occurrence, the Eckhaus instability has not been analyzed in 

bifurcation-theoretic terms. It can be studied analytically by averaging over the "depth" [5], 

leading to the classic one-dimensional Ginzburg-Landau equation: 

(1) 

where A describes a modulation of a roll structure w, i.e. w = A(x,t) eiXcx + c.c. In order to 

perform a bifurcation-theoretic analysis, it is necessary to discretize the spectrum of (1). 

Imposing 2n-periodicity on w, we arrive at the boundary condition: 

A(x + 2n, t) eiXcx = A (x,t) (2) 

Here Xc = qeL/2n, where qe is the critical wavenumber and L is the length of the container. 

All variables have been scaled to L/2n, so that in convection, for instance, 

J.! - (L/2n)2 (Ra - Rae) /Rae· 

As is well known, the trivial solution A = 0 loses stability at values J.! = Q2 via 

supercritical pitchfork bifurcations to pure mode states A = ~ J.! - Q2 eiQx. (Although the 

0(2) symmetry of the problem actually leads to "circles" of solutions parametrized by phase 

¢, we can restrict the analysis to ¢ = 0.) Our analysis differs from the classic one in that our 

boundary conditions (2) lead to the requirement that Xc + Q be integer. In the generic case, 

where Xc is neither integer nor half-integer, the allowed wavenumbers Qn can be listed in 

order of appearance of the associated branches An. For example, if Xc = N - 1/4, N integer, 
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we have the allowed wavenumbers Qo = 1/4, Ql = -3/4, Q2 = 5/4, Q3 = -7/4, etc. For It in 

the range Q~ < II < Q~+l' the trivial state has n positive eigenvalues, or unstable directions: 

we say that it has instability index n, as in Fig. 1. 

In [6], we study the stability of the pure mode states by linearizing (1) about An. It 

can be verified that the eigenvalues are: 

Here, boundary condition (2) constrains k to be a (positive) integer. The only possibility for 

instability resides with O"nk+, which is positive for II < link, where: 
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Fig. 1. Bifurcation diagram. Amplitude A of the trivial state, the pure-mode states An, and 
the mixed-mode states as a function of It. Solid and dashed curves represent stable and 
unstable steady states, respectively. Each branch is labeled by its instability index n. 
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When branch An is created at J1. = J1.n ;: Q~, the eigenvalues crnk+ are positive for 

1 ~ k ~ n; by continuity of spectra, An "inherits" these n unstable directions from its parent 

state A = 0 at the moment of bifurcation. Bifurcations of state An take place at J1. = J1.nb at 

which the instability index of An decreases by one. These are pitchfork bifurcations, since 

they break the Dn symmetry of the parent state An. A center manifold reduction shows these 

bifurcations to be subcritical: i.e. the coefficient of the cubic term in the evolution equation 

for the amplitude of the bifurcating eigenvector is positive at the bifurcation. Thus, new 

"mixed-mode" branches exist for J1. > Jlnk as shown in Fig. 1. 
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Fig. 2. Eckhaus parabolas J1.E(Q,k);: 3Q2 - k2/2 and existence parabola J1. := Q2. The 
bifurcations at J1.n and J1.nk are represented by squares and circles, respectively, along the 
vertical lines of allowed wavenumbers Qn. (The typical case shown here has allowed 
wavenumbers Qo = 1/4, QJ = -3/4, Q2 = 5/4, Q3 = -7/4, etc.) The dotted, dashed, and 
solid portions of the lines denote non-existent, unstable, and stable regimes. The dashed 
portion of each Eckhaus parabola is "irrelevant", i.e. falls below the existence parabola. The 
k = 1 parabola separates the stable and unstable regimes, except for branch Ao: for a finite 
geometry, stabilization occurs at J1. = 3Q2 - 1/2 rather than J1. = 3Q2. We emphasize that a 
change in the length L of the container corresponds only to a translation of the vertical lines 
and not to a change of scale. 
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Figure 2 displays all of the primary and secondary bifurcations as intersections of the 

vertical lines Q = Qn with the "existence parabola" Jl = Q2 and the "Eckhaus parabolas" 

JlE(Q,k) == 3Q2 - k2/2. Branch An undergoes n secondary bifurcations: exactly the number 

necessary to render An stable after the final bifurcation at Jlnl = 3Q; - 1/2. This is a crucial 

difference, already noted in [7, 3], between the finite-length and classic infinite-length 

treatment: in the infinite case, where k can be taken arbitrarily close to 0, a branch with 

wavenumber Q will only be stable for Jl > s~p [3Q2 - k2/2] = 3Q2. 

A wide class of wavelength-changing transitions in less symmetric systems, such as 

spherical Couette flow [8] and cylindrical convection [9], can be interpreted as perturbations 

of the "ideal" Eckhaus diagram. The curvature of these domains breaks the translation and 

reflection symmetry, transforming the pitchfork bifurcations of the ideal case to imperfect 

bifurcations. In future work, we will show that the subcritical secondary bifurcations result 

from mode-interactions between pairs of pure-mode branches. 

This research was supported in part by NSF grant DMS-8901767 and by an SRA 
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