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Directed percolation (DP), a universality class of continuous phase transitions, has recently been
established as a possible route to turbulence in subcritical wall-bounded flows. In canonical straight pipe or
planar flows, the transition occurs via discrete large-scale turbulent structures, known as puffs in pipe flow
or bands in planar flows, which either self-replicate or laminarize. However, these processes might not be
universal to all subcritical shear flows. Here, we design a numerical experiment that eliminates discrete
structures in plane Couette flow and show that it follows a different, simpler transition scenario: turbulence
proliferates via expanding fronts and decays via spontaneous creation of laminar zones. We map this phase
transition onto a stochastic one-variable system. The level of turbulent fluctuations dictates whether
moving-front transition is discontinuous, or continuous and within the DP universality class, with profound
implications for other hydrodynamic systems.
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Landau and Liftshitz [1] describe the subcritical tran-
sition to turbulence in shear flows such as pipe and
channels as a first-order transition, driven by the competi-
tion between two states, one laminar and one turbulent. The
stable state invades the metastable state via moving fronts.
Below a critical Reynolds number Rec, laminar flow is the
stable asymptotic state. Above Rec, turbulence is stable and
will expand into laminar flow. Pomeau [2] recognized
that the problem of subcritical transition is richer than this,
since turbulence is a fluctuating state and can spontane-
ously decay to the laminar state, forming laminar gaps
within turbulence, while laminar flow is an absorbing state
that cannot spontaneously become turbulent. The subcriti-
cal transition to turbulence is thus an absorbing state
transition that could be second order and belong to a
universality class of nonequilibrium statistical systems
known as directed percolation (DP) [3,4].
The apparent simplicity of this story is belied by the

multiple-scale structure of transitional turbulence typical
in canonical wall-bounded shear flows. At the scales of
the wall separation, turbulence consists of streamwise
vortices and streaks [5]. At scales an order of magnitude
larger, vortices and streaks organize into discrete coherent
structures, known as puffs in straight pipe flow or oblique
bands in planar flows [6–9]; see Fig. 1(a). To date, all
experimental and numerical studies confirming universal
DP scaling in wall-bounded flows have shown that bands
or puffs control the percolation process [10–15]. This is at
odds with the simpler scenario proposed by Pomeau
based on front motion, metastability, and laminar gap
formation.

Turbulent structures are symbiotically linked to large-
scale mean flows [16–23] which dictate both their char-
acteristic size and interactions [24–27]. Large-scale flow
energizes turbulent structures [23,26,28] and must be
accounted for in theoretical treatments [29–33]. Here, we
realize a numerical experiment in which the large-scale
flow in plane Couette flow (PCF) is controlled to eliminate
the formation of oblique turbulent bands. The resulting
flow will be called band-free PCF. With this setup, we
investigate the transition to turbulence in a hydrodynamic
system without discrete large-scale structures and their
associated mean-turbulent coupling.
We use the pseudospectral code CHANNELFLOW [34] to

carry out direct numerical simulations (DNS) of the three-
dimensional (3D) Navier-Stokes equations governing an
incompressible viscous fluid between two parallel rigid
plates moving at speeds �Uwall. Velocities are nondimen-
sionalized by Uwall, lengths by the half-gap h between the
plates. The Reynolds number is Re ¼ hUwall=ν, where ν
is the kinematic viscosity. Figure 1(a) shows typical
transitional flow containing large-scale oblique turbulent
bands. The large-scale flow (arrows) is most pronounced
at the interfaces separating turbulent and laminar regions
[7,18,19].
The large-scale spanwise velocity is negligible for either

fully laminar or fully turbulent flow, but appreciable along
turbulent bands. By suppressing it, we seek to eliminate
band formation. We introduce streamwise (strm) and span-
wise (span) large-scale cutoff wave numbers ðKstrm; KspanÞ.
For Fourier modes jkstrmj ≤ Kstrm and jkspanj ≤ Kspan, we
set the spanwise velocity to zero while retaining the usual
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momentum equations for streamwise and wall-normal
velocity, including incompressibility. This yields a two-
component, three-dimensional (2C-3D) hydrodynamic
system at large scales. We apply the usual 3D Navier-
Stokes equations at small scales, thereby preserving the
mechanisms producing wall-bounded turbulence [5,35,36].
The numerical procedure is given in the Supplemental
Material [37].
Figure 1(b) displays the flow computed with the cutoff

window ðKstrm; KspanÞ ¼ ð0.24; 0.47Þ, chosen so that
the corresponding wavelengths ðΛstrm;ΛspanÞ ≃ ð26; 13Þ
are smaller than the typical wavelengths ðλstrm; λspanÞ ≃
ð100; 44Þ of the turbulent bands in PCF [7]. The large-scale
flow is streamwise oriented by construction. Our procedure
has the desired effect of eliminating the turbulent bands—
the laminar-turbulent interfaces do not have the well-
defined angles and widths seen in Fig. 1(a).
In order to study spatiotemporal dynamics, we perform

simulations in a long slender domain tilted with respect to
the streamwise direction by θ ¼ 24°, a typical angle at
which bands occur; see Refs. [7,8]. We denote the slender
direction parallel to the bands by x and the long direction
perpendicular to them by z. This geometry has been shown

to capture important features of turbulent bands while
reducing their behavior to quasi-1D dynamics along z
[8,10,18,45,46]. For consistency and comparison, we
use the same domain for band-free PCF, in which we
suppress large-scale spanwise velocity (see Supplemental
Material [37], Sec. IB).
Mean-turbulent interaction.—Prior to comparing the

transition scenarios in PCF and band-free PCF, we focus
on the coupling between turbulence and large-scale
mean flow. We decompose the velocity u ¼ ūþ u0, where
averages ð·Þ are taken over x and time periods during which
turbulent fronts are approximately stationary. The turbulent
kinetic energy Eturb ≡ 1

2
u0 · u0 and the mean streamwise

velocity ūstrm are plotted in Fig. 2.
The significant difference between PCF and band-free

PCF is in the spatial phase relation between Eturb and ūstrm,
seen at y ¼ 0.5 in Figs. 2(b) and 2(d). (Reflected plots
would be obtained at y ¼ −0.5.) Turbulence extracts
energy from the local mean shear, thereby flattening
the profile and reducing ūstrm at y ¼ 0.5. For bands in
PCF, advection by the large-scale flow (arrows) redistrib-
utes momentum and energy from laminar to turbulent
regions [18] (see especially Fig. 6(b) in [28]). It is the
competing mechanisms of mean-flow flattening by turbu-
lence and mean flow fueling nearby turbulence that are
encrypted in the phase relation between ūstrm and Eturb [see
Fig. 2(e)]. When turbulence is excited [Eturb increases, see
Fig. 2(b)], it is first fueled by the large-scale flow. Hence,
ūstrm does not react directly to it and decreases only after a
phase shift, and then vice versa in the refractory region.

FIG. 2. Turbulent kinetic energy Eturb and mean streamwise
velocity ūstrm in (a),(b) PCF and (c),(d) band-free PCF. Contour
plots (a),(c) show Eturbðy; zÞ and arrows show ūstrmð�0.5; zÞ
Unlike in (a), turbulent zones in (c) do not have a selected width.
Curves in (b,d) show Eturb and ūstrm as a function of z at y ¼ 0.5.
(e) Phase-plane representation of ūstrm and Eturb at y ¼ 0.5 in PCF
(blue) and band-free PCF (red). In contrast to PCF, turbulence
and mean-flow in band-free PCF are in phase. Abbreviations:
laminar (L); turbulent (T); refractory (R); excited (E).

FIG. 1. Visualizations of (a) PCF and (b) band-free PCF at
Re ¼ 360 in a domain of size ðLstrm; LspanÞ ¼ ð400; 200Þ. Colors
show the turbulent fluctuations, visualized via the wall-normal
velocity uy at y ¼ 0 (blue: −0.2 ≤ uy < 0, red: 0 < uy ≤ 0.2).
White (uy ≃ 0) signifies quiescent flow. Arrows show the large-
scale flow ðustrm; uspanÞ. The enlargements of uy in (a),(b) show
the streakiness in the turbulent zones.
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Excited and refractory regions are essential for sustaining
localized turbulent regions and for their duplication and
interactions [23–25,30].
In band-free PCF, we find that turbulence and mean

flow are not phase shifted and excited and refractory
zones are absent, i.e., Eturb is a single-valued function
of ūstrm [Fig. 2(e)]. This follows from the approximate
z-reflection symmetry apparent in Figs. 2(c) and 2(d)
(see Supplemental Material [37], Sec. ID). This has major
consequences for the way that turbulence emerges in
this flow.
Transition with and without bands.—Transition scenar-

ios in PCF and in band-free PCF are illustrated by spatio-
temporal diagrams in Fig. 3. Each simulation is initiated
with a localized turbulent patch.
The scenario for PCF is well documented in this

geometry [8,10,27,45]. Below Re ≃ 350, turbulent bands
are localized metastable structures that survive for long
times before decaying [Fig. 3(a)] or proliferating by
splitting [Fig. 3(b)] [45]. Decay and splitting are memory-
less processes, in that their associated waiting times are
exponentially distributed. Above Re0 ≃ 325 [45], the pro-
liferation of a single band becomes more probable than
its decay, and turbulence survives, albeit in intermittent
form [10,13]. In the thermodynamic limit of large systems
with many bands and long times, this intermittency gives
rise to a critical point in the DP universality class at the
estimated critical value Rec ¼ 328.7 [10,13]. (Rec and Re0
are close, but distinctly different: Re0 is determined from
single isolated bands while Rec is influenced by inter-
actions between bands.) For Re≳ 350, e.g., Fig. 3(c),
turbulence proliferates via expanding fronts moving at
equal and opposite speeds (slug phase [30]). The mean
left-going and right-going front propagation speeds are
shown in Fig. 4. Below Re ≃ 450, the fronts delimit a nearly
periodic interior pattern [Fig. 3(c)] [45], which is absent
above Re ≃ 450 (not shown).
By design, band-free PCF does not exhibit discrete

turbulent structures or patterns. Turbulence contracts

and expands, not via decay and splitting of discrete
structures, but rather via fluctuating front motion, shown
in Figs. 3(d)–3(f), whose expansion speeds are also shown
in Fig. 4. Importantly, the decay of turbulence is not a
memoryless process because the mean lifetime of a patch
depends on its initial size, unlike in PCF and pipe flow
[11,45,47], but like low-Re plane channel flow [48,49].
Figures 5(a) and 5(b) shows the spatiotemporal dynam-

ics from a fully turbulent initial state in a long domain
below (Re ¼ 370) and above (Re ¼ 385) the critical point
Rec in band-free PCF. Laminar gaps nucleate within the
turbulent flow and interfaces fluctuate. Below Rec, turbu-
lence predominantly contracts and asymptotically the flow
is laminar. Above Rec, laminar gaps are created but
eventually close as a consequence of preferred turbulent
expansion.
The order parameter for the transition is the equilibrium

turbulent fraction, Ft, which is the mean proportion of
turbulent flow at statistical equilibrium (see Supplemental
Material [37]). Ft is plotted as a function of Re in Fig. 5(c)
for both PCF [10] and band-free PCF. For comparison, we
use reduced Reynolds numbers, ϵ≡ ðRe − RecÞ=Rec. For
PCF, Rec ≃ 328.7 [10]. For band-free PCF we estimate
Rec ≃ 383.5. Without bands, the transition to uniform
turbulence occurs over a significantly shorter range of Re
(Ft ≃ 0.9 at ϵ ≃ 0.01, while Ft ≃ 0.2 at ϵ ≃ 0.01 in PCF).
Measuring Ft near ϵ ¼ 0 is exceedingly costly because

scales diverge and hence simulations become susceptible to
finite-size, finite-time effects. We have not attempted to
determine critical scalings associated with transition in
band-free PCF.
A model for percolation via front motion.—Published

models for puffs and bands contain at least two fields
[29–33]; two are necessary to capture the interaction
between mean-flow and turbulence responsible for discrete
structures; see Figs. 2(a) and 2(b). Band-free PCF lacks

FIG. 3. Band and slug regimes in (a),(b),(c) PCF and (d),(e),(f)
band-free PCF initiated from a turbulent patch. Colors show the
spanwise velocity uspan at y ¼ 0, x ¼ 0 as a function of z and t
(blue: −0.1 ≤ uspan ≤ 0, red: 0 ≤ uspan ≤ 0.1). The wide blue and
red areas visible in PCF result from the large-scale flow.

300 350 400 450 500
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FIG. 4. Front velocity as a function of Re in both PCF and
band-free PCF. Labels (a)–(f) correspond to the visualizations
of Fig. 3(a)–3(f). The points of zero propagation speed are
Re0 ≃ 325 for PCF [45] and Re0 ≃ 383 for band-free PCF. Speeds
below Re0 in band-free PCF are not shown; see Supplemental
Material [37]. The blue curve guides the eye, while the continu-
ous red curves come from simulations of model (1).
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discrete structures and mean flow and turbulence are
slaved, see Figs. 2(c) and 2(d). This suggests modeling
band-free PCF with a single scalar field qðz; tÞ representing
the local turbulent energy.
Following [2,30,50], we consider the stochastic model

∂tq ¼ ∂
2
zq − ∂qV þ σqξ; ð1Þ

with the double-well potential

VðqÞ≡ q2

2

�
1þ ðrþ 1Þ

�
q2

2
−
4q
3

��
;

ξ a space-time Gaussian white noise of unit variance and σ a
parameter controlling the noise strength. Parameter r plays
the role of Re. V has one local minimum at q ¼ 0 (laminar)
and one at q > 0 (turbulent state), the latter being the
lowest minimum for r > 1=8. Multiplicative noise σqξ

represents turbulent fluctuations and vanishes at q ¼ 0,
making it an absorbing state; see Refs. [51–53]. Hence
model (1) describes fronts between an absorbing and a
fluctuating state, just as Pomeau originally envisioned for
the transition to turbulence [2,30,50].
We solve (1) via a finite-difference scheme under the Itô

representation [54]. We first simulate expanding slugs.
Front velocities are found to closely obey the self-similar
expression c ≃ F½r − r0ðσÞ� where Fð0Þ ¼ 0 and r0ðσÞ≃
1=8þ 3σ2=100. F is independent of σ. Front speeds in
band-free PCF, shown in Fig. 4, follow cDNS ≃ aF½bðRe −
Re0Þ� (solid red line), where a and b rescale velocities and
Re, respectively. The agreement is excellent.
The fit of the model speeds to those of band-free

PCF establishes the correspondence between r and Re.
We determine the ratio L̃ ≃ 3.0 of band-free PCF to
model length scales from the width of laminar-turbulent
fronts. From L̃ and a, we obtain a ratio of time scales
between band-free PCF and model, T̃ ¼ L̃=a ≃ 16 (see
Supplemental Material [37]). The final model parameter σ
is chosen so as to reproduce the phenomenology of band-
free PCF as we now show.
With σ ¼ 2.0, simulations of (1) with space, time and Re

rescaling are visualized in Figs. 5(d) and 5(e). The model
closely reproduces the dynamics of fluctuating fronts and
the nucleation of laminar gaps within turbulent flow as seen
in band-free PCF [Figs. 5(a) and 5(b)].
The noise intensity σ indirectly controls the rate of

laminar-gap nucleation, and, consequently, the order of the
phase transition, as we show in Fig. 5(f). With sufficiently
strong noise (σ ¼ 2.0 and 2.5), the transition is continuous
and exhibits the scalings of DP (Ft ∼ ϵ0.276, spatial
and temporal correlations ξ⊥ ∼ ϵ1.097 and ξk ∼ ϵ1.734; see
Supplemental Material [37]). Meanwhile, at low noise
(σ ¼ 1.0) the transition is discontinuous, with no inter-
mediate 0 < Ft < 1 sustained. The transition becomes
sharper as σ is decreased.
We find that the value σ ¼ 2.0 captures the dependence

of turbulent fraction on Re in band-free PCF [Fig. 5(f)]
with similar sharp increase in Ft, and specifically gives
Ftðϵ ≃ 0.01Þ ≃ 0.9. (The accuracy of this match is limited
by the precision of Rec.) Because this value of σ corre-
sponds to a continuous phase transition, this strongly
suggests that band-free PCF, like PCF, undergoes a
continuous transition in the DP universality class.
Conclusion and discussion.—In subcritical shear flows,

turbulence appears, not by increasing its intensity, but by
occupying an increasing proportion of space as Reynolds
number is increased. In previous studies of canonical straight
pipe or planar flows, transition occurs via the percolation of
discrete turbulent structures that individually decay or self-
replicate. Large-scale mean flow plays a crucial role in these
systems by selecting these discrete structures.
Here, we investigate a plane-Couette setup without

discrete structures. Transition follows a distinctly different

FIG. 5. Laminar-turbulent percolation in band-free PCF at
(a) Re ¼ 370 < Rec and (b) Re ¼ 385 > Rec. (c) Equilibrium
turbulent fraction Ft as a function of ϵ≡ ðRe − RecÞ=Rec in PCF
(blue, data from Ref. [10]) and band-free PCF (red). The inset in
(c) shows PCF data rescaled by Ftðϵ ¼ 0.02Þ and confirms the
more abrupt transition in band-free PCF. (d),(e) Space-time
visualization of model (1) with σ ¼ 2.0 at (d) r < rc ≃ 0.2517
and (e) r > rc. Time and length in the model are rescaled with T̃
and L̃, and r values are chosen such that r − r0 ¼ bRe − Re0).
(f) Same as (c) for model (1) with σ ¼ 1.0 (first-order), 2.0, and
2.5 (both second-order cases exhibiting DP scaling ϵ0.276, see
dashed lines).
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scenario, mediated by expanding turbulent fronts and
spontaneous nucleation of laminar gaps. The observed
dynamics are very well captured by a simple stochastic,
double-well model with a single field. The order of this
phase transition is governed by the nucleation rate of
laminar gaps, which depends on the level of fluctuations.
This front-moving transition should be pervasive in

systems where discrete puffs or bands are absent.
Numerous flows, such as bent pipes [55], body-forced
pipes [56], stably-stratified flows [57], suction boundary
layer [58], or constrained Couette flow [59,60], lack
discrete turbulent structures and may follow this scenario.
Our Letter suggests that in such flows, the level of turbulent
fluctuations plays a crucial role in dictating whether front-
moving transition is first order, as recently reported in
experiments of curved and body-forced pipes [56], or
second-order and within the DP universality class.
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[27] S. Gomé, L. S. Tuckerman, and D. Barkley, Patterns in
transitional shear turbulence. Part 2. Emergence and optimal
wavelength, J. Fluid Mech. 964, A17 (2023).
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