
PHYSICAL REVIEW FLUIDS 8, 110510 (2023)
Gallery of Fluid Motion

Axisymmetric and azimuthal waves on a vibrated sessile drop
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There is a growing interest in understanding the dynamics of vibrated sessile drops due to
technological innovations in adaptive liquid lenses [1] and drop atomization in heat transfer cells [2].
Noblin et al. [3] observed that at low forcing amplitudes, the drops exhibited axisymmetric standing
waves with pinned contact lines on polystyrene surfaces. At higher amplitudes, the drops exhibited
azimuthal (nonaxisymmetric) modes punctuated by stick-slip contact line motion. Vukasinovic et al.
[4] found that vibration-induced drop atomization follows the appearance of the azimuthal waves
along the contact line beyond a threshold acceleration. They also observed that the contact line was
pinned, irrespective of the acceleration amplitude. The axisymmetric and azimuthal waves exhibit
harmonic and subharmonic responses, respectively.

We performed 3D numerical simulations of a hemi-ellipsoidal drop of volume V = 100 µL,
contact radius Rc = 4.12 mm, and height h = 3V/(2πR2

c ) as in [4]. We use an in-house multiphase
solver, BLUE [5] previously used to study spherical Faraday waves [6]. The computational domain, a
half cube of dimensions 12 mm × 12 mm × 6 mm, encompassing water and air, is decomposed into
12×12×6 cores each of resolution 643, leading to a global mesh structure of 768×768×384 grid
cells of size �x = 15.625 μm. With approximately 56 grid points per axisymmetric and azimuthal
wave length, the waves are sufficiently resolved.

The density of water and air are set to 998 kg/m3 and 1.205 kg/m3, and their dynamic viscosities
to 10−3 kg/ms and 1.82×10−5 kg/ms, respectively. The surface tension is equal to 0.0714 N/m.
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FIG. 1. Top view of drop (100 μL) oscillations with f = 1040 Hz and a = 1000 m/s2 at t , t + T , and
t + 2T , respectively. Here t = 32T + T/2 and T = 1/ f .

The substrate is vibrated at a frequency f = 1040 Hz. As an initial condition, we used a perturbation
proportional to the 10th axisymmetric spherical harmonic Y (0)

10 to resemble the axisymmetric waves.
We ramped up the acceleration to a = 1000 m/s2 at a rate of 100 m/s2 every 20 forcing time
periods. Although the final acceleration is substantially higher than the threshold acceleration for
the azimuthal waves obtained in the experiments, this procedure reduces the computational expense
since the azimuthal variation appears more quickly.

We imposed periodic and Neumann boundary conditions on the velocity at the lateral and
top faces of the water-air cubical domain, respectively. Near-contact line azimuthal waves were
observed only when a generalized Navier (rather than a Dirichlet) boundary condition was imposed
on the substrate, with hysteresis characterized by advancing and receding contact angles of θa = 90◦
and θr = 84◦, respectively. This contradicts the experiments of [4], in which the contact line
remained pinned.

Figure 1 shows that the near-contact line wave crests (green) and troughs (red) occur at the
same locations at t + 2T , but not at t + T , demonstrating that these are subharmonic standing
waves. Conversely, the axisymmetric waves repeat after each time period T , exhibiting a harmonic
response. These observations agree well with the experiments [4]. Although a subharmonic response
is a classic signature of Faraday waves [7], such waves oscillate in the same direction as the imposed
oscillation. Thus, if the radially oscillating azimuthal waves near the contact line result from a
Faraday-type instability, the instability is not engendered by the vertically oscillating substrate, but
by the radially oscillating axisymmetric waves, as proposed in [4]. However, the azimuthal waves
might be caused instead by a modulation of the axisymmetric waves brought about by the proximity
of the substrate to the contact line.

The subharmonic azimuthal waves grow on the interface, superposed on the harmonic axisym-
metric waves, as shown in Fig. 2. Like quasipatterns in two-frequency gravity modulation caused by
mixing two unstable wave vectors [8], the harmonic and subharmonic wave vectors form an n-fold
symmetric lattice which eventually breaks down to become chaotic, as found in the experiments.
The chaotic mixing leads to the formation of negative curvature craters, which eventually form jets
that undergo end-pinching leading to droplet atomization.

Our observations await a more detailed understanding of the physics of vibrating sessile drops.
Although the harmonic axisymmetric waves may be the cause of the subharmonic azimuthal waves,
a number of crucial questions need to be addressed. Among these are (i) the role of the contact
line in the formation of subharmonic azimuthal waves; (ii) the role of the vibrating substrate in the
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FIG. 2. Snapshot of vibrated drop at t = 32T + T/2. The velocity glyphs illustrate the vortices on the
axisymmetric waves and the strong influx at the contact line. Pressure contours on the interface show high
pressure zones at the crests on the drop apex and in the vicinity of the contact line. The parameter values
remain unaltered from Fig. 1.

growth of these waves on the interface; and (iii) an understanding of such subharmonic waves when
the external vibrations are parallel to the interface, e.g., oscillatory Kelvin-Helmholtz instability [9].
Addressing these issues will be the subject of future work.
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