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TAYLOR-COUETTE FLOW:
THE EARLY DAYS

Fluid caught berween rorating cylinders
has been intriguing physicists

for over 300 years with its remarkably
varied patterns and its chaotic

and turbulent behavior.

Russell J. Donnelly

‘Courtesy of Harry Swinney and Randall fagg, University of Texas, Austin.)



Taylor’s paper, published in the Philosophical Trans-
actions of the Royal Society of London, can fairly be called
one of the most influential investigations of 20th-century
physics. The correspondence that Taylor obtained be-
tween theory and experiment for the stability rested in an
important way on the no-slip boundary condition for the

flow at the solid surfaces. This success was taken by many

as perhaps the most convincing proof of the correctness of

the Navier-Stokes equations and of the no-slip boundary 5 |
condition for the fluid at the cylinder walls. Such use of onnetly,

Taylor-Couette flow to confirm fundamental ideas in fluid Physics Today, 1991
dynamics has become a tradition.

The Couette-Taylor system has served as a paradigm

for testing ideas on stability in systems described by non-
linear partial differential equations since the landmark
work of Taylor' on flow between concentric rotating
cylinders. He measured the critical Reynolds number for
the primary instability and showed that it agreed within a
few percent with the predictions of a linear stability
analysis. This was the first quantitative agreement of

theory and experiment for any flow instability. However,
Iinear stability analyses do nof, in general, completely
determine the final pattern of secondary flow. ‘

Tagg, Edwards,
Swinney, Marcus,
Phys Rev A, 1989
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varied patterns and its chaofic

and turbulent behavior.

Russell J. Donnelly

The striking flow shown in fAgure ]l is produced in a
simple apparatuss A fAuid is confined between two
concentric cylinders, with the inner and perhaps the outer
cylinder able to rotate. The cellular motion that develops
with rotation was discovered and described mathematical-
Iy by Geoffrey |. Taylor in 1923 A similar apparntus, with
the mner cylinder suspended from a torsion Liber and the
outer cylinder rotating, was used even earlier as a
viscometer, Maurice Couette described this arrangement
in his thesis, which he presented in Paris in 1890, For this
reqason, modern investieators refer to fow between rotat.

TAYLOR-COUETTE FLOW:
THE LATER DAYS




VIIL. Stability of a Viscous Liquid contained between Two Rotating Cylinders.
Cambrldge By G. 1. TayLor, F.R.S.
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Fig. 18. Comparison between observed and calenlated speeds at which instability first appears;
case when Ry »= 3:55 em., Ry == 4-035 em.
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T. Brooke Benjamin, Proc R. Soc Lond A, 1978

Proec. R. Soc. Lond. A. 359, 1-26 (1978)
Printed sn Great Britain

Bifurcation phenomena in steady flows of a viscous fluid

[. Theory

By T. B. Bexyamix, F.R.S.

Fhoud Mechanics Research Institute,
Umniversity of Essex, Colchester CO4 35Q, UK.

Proc. R. Soc. Lond, A. 359, 27-43 (1978)
Printed in Great Britain

Bifurcation phenomena in steady flows of a viscous fluid

[I. Experiments

By T. B. BExsamin, F.R.S.

Fluid Mechanics Research Institute,
University of Essex, Colchester CO4 35Q, UK.
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Mechanism for wavy vortices

Axial dependence (shear) of azimuthal velocity of Taylor vortices:
Kelvin-Helmholtz-like mechanism (explains wide range of azimuthal wavenumbers)

T .

N | Physics of

m \ A P Fluids

Mechanisms for the transition to waviness for Taylor vortices
Dens Martinand, Enc Serre, and Richard M. Lueplow

Citation: Physics of Fluids 26, 094102 (2014); doi: 10.1063/1.4895400

PHYSICAL REVIEW FLUIDS 3, 123902 (2018)

Self-sustaining process in Taylor-Couette flow

Tommy Dessup, Laurette S. Tuckerman, and José Eduardo Wesfreid
Dwight Barkley

Ashlcy P. Willis
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Waleffe: self-sustaining process (SSP)

F. Waleffe & J. Kim, How streamwise rolls and streaks sustain in a shear flow: Part 2,AIAA paper 98-2997 (Albuguerque, June 1998)
F. Waleffe, On a self-sustaining process in shear flows, Phys. Fluids 9, 883-900 (1997)
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Nonlinear dynamics on a torus —
frequency locking

Schematic representation of frequency-locking tongues
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| 0.5 | saddle-node bifurcations create
T - T {2 finite-period limit cycles on the torus



No frequency-locking in modulated wavy vortex flow! Why not?

Rand (1981): Symmetry! In rotating frame,

wavy vortex flow is steady and modulated wavy vortex flow is periodic.
Points on circle (phases in #) dynamically equivalent —> no saddle-nodes.

VOLUME 46, NUMBER 15 PHYSICAL REVIEW LETTERS 13 APRiL 198)

Doubly Periodic Circular Couette Flow: Experiments Compared
with Predictions from Dynamics and Symmetry

M. Gorman™' and Harry L. Swinney
Dy paviment of Physics, University of Texas, Auslin, Texas 78712

and

David A. Rand
Mathemalics Instilule, Universily of Warwick, Covenlvy CVITAL, Uniled Kingdom
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VoLusEe 51, NUMBER 16 PHYSICAL REVIEW LETTERS 17 OCTOBER 1985

Low-Dimensional Chaos in a Hyvdrodynamic System
A. Brandstater, J. Swift, Harry L. Swinney, and A, Wolf

Department of Phvsics. miversity of Texas. Austin. Texas 78712

J. Doyne Farmer and Erica Jen
Center for Nomltnear Siudies, Loz Alamos Nalional Laboralory, Los Alamos, New Mexico 87515

P, J, Crutchfield
Physics Departmenlt, Universily of California, Berkeley, Revkeley, California 54720
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Phase portraits

Poincaré sections
defined by

V(t+ 27) = V*
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VIIL. Stability of a Viscous Liquid contained between Two Rotating Cylinders.

By G. 1. TavLor, F.R.S.
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Normal Form

dS
T — [Il/t—d‘S_l_‘z—b‘S_‘z] S+

dt
N
dt

= [n—alS_P=bIS, I’ |5

Solutions
Trivial S, =S5_=0

Spirals Sy =+/ula,5_ =0

Ribbons S, =8_




This normal form occurs in many cases.

D4 (symmetry of a square)

Hopf bifurcation in O(2) leads to traveling or standing waves

Steady bifurcation on square lattice leads to stripes vs square patterns
Knobloch, Swift, Golubitsky, ...

theoretical prediction of ribbons by Demay & looss (1984)
experimental observation by Tagg, Edwards, Swinney, Marcus (1989)

PHYSICAL REVIEW A VOLUME 39, NUMBER 7 APRIL 1, 1989

Nonlinear standing waves in Couette-Taylor flow

Randall Tagg, W. Stuart Edwards, and Harry L. Swinney

Center for Nonlinear Dynamics and the Department of Physics, University of Texas, Austin, Texas 78712

Philip S. Marcus
Department of Mechanical Engineering, University of California, Berkeley, California 94720




Knobloch, Phys Rev A 1986
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Periodicity: geometric vs assumed
Taylor-Couette: azimuthal vs axial

p(O) = p o (0) +atl  p(2) = pue(z) + az
dp dp

0 Pper(0) +4 7 Pper(2) + @

p must be single-valued function of 6

Periodic directions ALWAYS require additional condition,
e.g. flux or pressure gradient or combination

Geometric/azimuthal: no pressure gradient. Assumed/axial: choice.
Finite boundaries: no flux



Periodic traveling waves with nonperiodic pressure
Eur. J. Mech., B/Fluids, 10, no. 2 - Suppl., pp. 205-210, (1991).

W.S. Edwards, R. Tagg, H.L. Swinney,
Center for Nonlinear Dynamics, Univ of Texas at Austin
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Difference only appears at nonlinear level and when axial reflection symmetry is broken



Transient growth

PHYSICS OF FLUIDS MAY 2002 PHYSICS OF FLUIDS OCTOBER 2002
Energy transient growth in the Taylor—-Couette problem Transient growth in Taylor-Couette flow
Alvaro Meseguer” Hristina Hristova and Sebastien Roch

Peter J. Schmid
Laurette S. Tuckerman'
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J Flutd Mech. (2014), val. 742, pp 254 290. © Cambridge University Press 2014
Joiz 1010174 m. 201412

Transient growth in linearly stable
Taylor-Couette flows

Simon Maretzke' ¥, Bjorn Hof and Marc Avila'

1000
- Solid-body line: Re; = nRe, quasi-Keplerian regime
00 ll =~ Rayleigh line: Re; = n~'Re, h
— Linear stability boundary shear
2|nRe, — Re;
600 } Re := i
400 |
Ro rotation
200 cores (1 —n)(Re; + Re,)
i Ko = Re — R
1 . NiNe, — INg;
~1000 ~600 -200 0 200 600 1000 Dubrulle et al, Phys. Fluids 2005

In quasi-Keplerian regime, maximum transient growth is achieved for
axially independent perturbations, i.e. Taylor columns.
Transient growth of axially independent perturbations is independent of Rq
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PHYSICAL REVIEW LETTERS week ending

PRL 94, 074501 (2005) 25 FEBRUARY 2005

Symmetry Breaking Via Global Bifurcations of Modulated Rotating Waves in Hydrodynamics

Jan Abshalgen,l Juan M. I..opc:z,2 Francisco Mauques,3 and Gerd Pfister’

A, Fiad Mach (2005, sl S30 pp 260299, 2 W05 Cambdeudpe Univerely Prose
Jot 10 1007,/900221 1005005811 Prosed im the United K ingdomn

Mode competition of rotating waves in
reflection-symmetric Taylor-Couette flow

By J. ABSHAGEN ', J. M. LOPEZ’, F. MARQUES'
AND G. PFISTER"'
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Unfolding of codimension-two fold-Hopf bifurcation
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FiGure 11. Bifurcation diagram of the fold-Hopf bifurcation, in normal form vanables,
corresponding to the present flow. Filled (o) and open (o) dots correspond to stable and
unstable solutions respectively, p; and w; are the two bifurcation parameters, SN; is a
saddle-node bifurcation curve, H; is the Hopf bifurcation curve, NS, is the Neimark-Sacker
bifurcation curve, and 4 is the horn region of complex dynamics; the straight line inside region
4 1s the heteroclinic connection predicted by the formal normal form (6.1) and shown in panel
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Spiral Turbulence
in counter-rotating Taylor-Couette Flow

*» Coles JFM (1965)
*van Atta JFM (1966)
 * Andereck et al. JFM (1986)



PHYSICAL REVIEW E 80, 046315 (2009)

Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow

Alvaro Mescguer,"* Fernando Mellibovsky,I Marc Avila,” and Francisco Marquesl

lDt:paruum;'m de Fisica Aplicada, Universitat Politécnica de Catalunya, 08034 Barcelona, Spain
"Max Planck Institute for Dynamics and Self-Organization, 37073 Gorttingen, Germany




Transition to turbulence in counter-rotating Taylor-Couette flow:

Couette experiments

Universal scenario of directed percolation (DP) ™. i oot

Very short Taylor-Couette apparatus: )y = lin_ _ (4908
only extended direction is azimuthal Vout

height-to-gap 16
circumference-to-gap 5500

naoure
hvsics
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LETTERS

Directed percolation phase transition to sustained
turbulence in Couette flow

Grégoire Lemoult'’, Liang Shi'?', Kerstin Avila'?, Shreyas V. Jalikop', Marc Avila® and Bjérn Hof'™*




Directed Percolation in TC with two extended directions

PHYSICAL REVIEW LETTERS 128, 014502 (2022)

Phase Transition to Turbulence in Spatially Extended Shear Flows

Lukasz Klotz®,'? Grégoire Lemoult®,” Kerstin Avila®,* and Bjérn Hofo""’
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Transition to turbulence in counter-rotating Taylor-Couette flow
Universal scenario of directed percolation (DP)

n=r.lr, =099

in’ " out

Lemoult, Maier, Hof, 2014
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PHYSICAL REVIEW FLUIDS 1, 024401 (2016)

Exploring the phase space of multiple states in/highly turbulent

Taylor-Couette flow

Roeland C. A. van der Veen,' Sander G. Huisman,' On-Yu Dung (#{%{%),' Ho L. Tang,'

Chao Sun,”'" and Detlef Lohse'-*!
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1985 International Couette-Taylor Workshop in Karlsruhe




