
A brief introduction to linear stability analysis in fluid dynamics

Some basic definitions

The Navier-Stokes equations are:

∂tU = −(U · ∇)U−∇P +
1

R
∇2U (1a)

∇·U = 0 (1b)

U = Ub on a boundary set B (1c)

A base flow is a steady solution to these equations, where (1a)) is replaced by

0 = −(U · ∇)U−∇P +
1

R
∇2U (2)

Linear stability analysis starts by linearizing about this base flow

∂tu = −(U · ∇)u− (u · ∇)U−∇p+ 1
R∇

2u (3a)

∇·u = 0 (3b)

u = 0 on a boundary set B (3c)

Equation (3a) is linear and homogeneous in time (which means here that no time is singled
out, that every time is equivalent to every other time). The boundary conditions (3c) are also
homogeneous (which, confusingly, means something different here, i.e. that the boundary values
have been set to zero). This means that the entire problem is linear, because the constant
term Ub and the quadratic term (U · ∇)U are not present. The solution to such a problem is
exponential or trigonometric in time. Thus we can write u in the form u(x, t) = exp(λt)ũ(x)
and replace (3a) by

λũ = −(ũ · ∇)ũ− (ũ · ∇)ũ−∇p+ 1
R∇

2ũ (4)

where λ = σ+ iω may be real or complex. Similar concepts can be introduced for time-periodic
base states.

Turning now to the geometry and the spatial dependence of problems (1) and (3), a base
state may depend on one, two, or three spatial directions, i.e. U = U(x1) or U(x1, x2) or
U(x1, x2, x3). It may also have one, two, or three components, i.e. U = U1e1 or U = U1e1+U2e2
or U = U1e1 + U2e2 + U3e3. The difficulty of solving a problem is primarily determined by the
number of independent variables x1, x2, x3, and hence when we describe a problem as one, two,
or three dimensional, we will be referring to the number of independent variables.

For example, in the Taylor-Couette problem of flow between two infinitely long differentially
rotating concentric cylinders, the base state is U = (Ar + B/r)eθ i.e. it depends on r and is
oriented in the θ direction. If axial throughflow is added to this problem, the base state becomes
U = (Ar+B/r)eθ+C(1−r2)ez. The flow is still one-dimensional (it depends only on r), but has
two components. The flow past a circular cylinder depends on x and y, and also has components
in both directions. Since the governing equations (1a)-(1b) are the same for all fluid-dynamical
problems, the type of base flow depends on the boundary conditions (1c).

If the domain is infinite or periodic in a direction (so that there are no distinguished points in
that direction), then the base flow will be homogeneous in that direction, i.e. it will not vary
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in that direction. If there are boundaries in a direction, then a non-zero solution will have a
non-trivial dependence in that direction.

The linear stability problem depends on both the geometry, i.e. the boundary conditions (3a),
and also on the base flow U. Solutions, i.e. eigenvectors, will have a non-trivial dependence
in the directions in which there are finite boundaries or on which the base flow depends. In
other homogeneous directions, the spatial dependence of the eigenvectors must be exponential
or trigonometric. If one seeks an eigenvector which is spatially bounded, then the spatial depen-
dence is assumed to be trigonometric. For example, eigenvectors of the Taylor-Couette problem
are of the form u(r) exp(i(kz+mθ)), where either or both of k, m may be zero, while eigenvectors
of the cylinder wake problem are of the form u(x, y) exp(iβz).

Going one step further, if instead of being homogeneous, the problem is periodic in time or space
via either a force, the boundary conditions, or the base state, then the associated linear stability
problem is called a Floquet problem. If the problem is periodic in time with period T , then its
solution has temporal dependence exp(λt)f(t), where f is a periodic function with period T
called the Floquet function, λ is called the Floquet exponent, and exp(λT ) is called the Floquet
multiplier. If the linear problem is spatially periodic in, for example, z with wavelength Lz then
its solution has spatial dependence exp(iβz)f(z) where f has periodicity length Lz and we have
assumed that the Floquet exponent iβ is imaginary so that the solution is bounded in z.

Concerning numerical methods, the base state can be found by time integration of (1a), (1b),
(1c) or by using Newton’s method on (2), (1b), (1c). The linear stability problem can be solved
by time integration of (3a), (3b), (3c) or by finding the eigenvalues of (4), (3b), (3c) via the power
method, Arnoldi’s method, or the RG algorithm. The choice and feasibility of the numerical
methods depends on the size of the problem, and changes with time as computers become more
powerful.
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Some basic history

The first linear stability analyses in fluid dynamics probably date from the early 1900s and were
carried out by researchers like Rayleigh, Taylor, and later, Chandrasekhar, and, of course, many
others. These analyses treated a one-dimensional analytically determined base flow and, corre-
spondingly, an eigenvector which was inhomogeneous in the same dimension and homogeneous
or trigonometric in other directions.

In the 1980s, increased computing power led to the possibility of calculating two-dimensional
base flows numerically, in cases such as the flow past a circular cylinder. The corresponding
eigenvectors are necessarily also two-dimensional and homogeneous or trigonometric in the third
direction.

At around the same time, techniques were developed for approximating certain two-dimensional
base flows, called weakly non-parallel, as a sequence of one-dimensional flows, each located at
different values, called stations, of a second dimension, then studying the stability of each one-
dimensional flow separately and assembling and interpreting the results, leading to classifications
such as absolute and convective, local and global. The weakly non-parallel approach led to
important advances in understanding, but is not applicable to strongly two-dimensional or three-
dimensional flows.

In the 2000s, the numerical computation of three-dimensional base states and of their stability
became feasible. At around the same time, some researchers in the weakly non-parallel com-
munity turned to the full and exact computation of two- or three-dimensional base states and
their stability. These researchers used the term “global” to distinguish this from the weakly
non-parallel approach. This nomenclature has a number of problems:

–It leads to historical inaccuracy. New researchers often date the advent of two- or three-
dimensional stability analysis to the time at which the term “global” began to be used, and
mistakenly attribute its development to the authors who initiated the use of this term.

–It leads to confusion. New researchers often believe that “global stability analysis” comprises
a specialized theory, rather than referring merely to the numerical solution of equations (1) and
(3).

–It privileges the weakly non-parallel approach, describing full and exact analysis as a special or
competing technique. It is as though the WKB approach to solving differential equations was
treated as fundamental, and other non-WKB techniques were given a special name.

–It unnecessarily overloads the word “global”, which already has other uses in fluid dynamics.
For example, it is used to describe a type of bifurcation that does not involve eigenvalue crossing
as well as an oceanographic circulation.

The computation and linear stability analysis of a two-dimensional or three-dimensional base
state should be called precisely what they are, i.e. 2D or 3D, full, exact, numerical. These terms
are descriptive and logical and do not lead to confusion or historical inaccuracy.
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