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Transitional localized turbulence in shear flows is
known to either decay to an absorbing laminar state
or to proliferate via splitting. The average passage
times from one state to the other depend super-
exponentially on the Reynolds number and lead to a
crossing Reynolds number above which proliferation
is more likely than decay. In this paper, we apply a
rare-event algorithm, Adaptative Multilevel Splitting,
to the deterministic Navier–Stokes equations to
study transition paths and estimate large passage
times in channel flow more efficiently than direct
simulations. We establish a connection with extreme
value distributions and show that transition between
states is mediated by a regime that is self-similar
with the Reynolds number. The super-exponential
variation of the passage times is linked to the
Reynolds number dependence of the parameters of
the extreme value distribution. Finally, motivated by
instantons from Large Deviation theory, we show that
decay or splitting events approach a most-probable
pathway.

This article is part of the theme issue ‘Mathematical
problems in physical fluid dynamics (part 2)’.

1. Introduction
The route to turbulence in many wall-bounded shear
flows is a spatio-temporal process that results from the
interplay between the tendency for turbulence to decay
or for it to proliferate. Individual decay and proliferation
events occur extremely rarely near the critical Reynolds
number for the onset of sustained turbulence, and

2022 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Evolution of turbulence in channel flowat twodifferent Reynolds numbers. Turbulence is seen as black and is localized
to only a portion of space. White corresponds to laminar (or nearly laminar) flow. The motion of the turbulent patch is seen in a
frame of referencemovingwith themean flow in the channel and the system is periodic in spatial coordinate z. At Re= 870 the
localized band of turbulencemaintains an approximately constantwidth and intensity for a considerable time and then abruptly
transitions to laminar flow in a decay event. At Re= 1150 the localized turbulent band is wider and noticeably asymmetric. In
this case, the band splits into two bands. In the vicinity of Re= 1000, both of these key events become extremely rare and
the mean exit time from the one-band state becomes very large. Results are obtained by a numerical simulation in an oblique
domain represented in figure 3. (Online version in colour.)

this makes measuring, let alone understanding the onset of turbulence in these flows both
fascinating and challenging. In this paper, we investigate these rare events.

Figure 1 illustrates individual decay and proliferation (splitting) events of interest. These
have been obtained from numerical simulations of pressure-driven flow in a channel. The
spatio-temporal diagrams of figure 1 display the evolution of such localized turbulent bands
at two Reynolds numbers. Simulations begin after some initial equilibration time. It can be
seen that the one-band state is metastable—it persists for significant time before transitioning
to another state, either laminar flow, as in the upper panel, or a two-band state, as in the
lower one. The corresponding phase-space picture for the governing Navier–Stokes equations
is sketched in figure 2. Trajectories spend a significant time in a region of phase space
associated with a single turbulent band, A, before exiting the region and going to laminar
flow or to the two-band state. Repeated simulations starting from one-band states (in the
region A) show that the exit times are distributed exponentially, so that decay and splitting
events are effectively governed by a memoryless, Poisson process (see [1–6] and references
therein).

A typical study consists of the following. For each value of the Reynolds number, Re, a
large number of events is generated, from which the mean lifetime is determined by averaging
the lifetimes observed in the sample events. This is the Monte Carlo (MC) approach. The
process is repeated for a range of Re to obtain the mean lifetimes to decay τd(Re) and to
split τs(Re). These lifetimes are observed to depend super-exponentially on Reynolds number
as sketched in figure 2b, and are approximated by a double exponential form: τd(Re) ∼
exp(exp(adRe + bd)) and similarly for τs(Re). (Figure 7 discussed below contains actual measured
mean lifetimes for channel flow.) The timescales cross at a critical value Rec. Below Rec

decay events occur more frequently, while above Rec splitting events occur more frequently.
The crossover between these cases is a key mechanism in the onset of sustained turbulence
in wall-bounded shear flow. This crossing point is not, however, the focus of the present
study.
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Figure 2. (a) Illustration of the phase space of the Navier–Stokes equations. Time evolving flow fields u(t) are seen as
trajectories. The one-band state corresponds to a regionA in the phase space in which trajectories u(t) spend considerable
time before exiting and transitioning either to laminar flowB0 or to the two-band stateB2. The fluctuations of observables,
such as the turbulence fraction, are described by extreme value distributions. (b) Schematic showing the dependence of mean
lifetimes on Reynolds number, Re. Lifetimes vary super-exponentially with Re, with τd increasing and τs decreasing with Re.
The timescales cross at a critical value Rec . Below Rec , decay occurs more frequently while above Rec , splitting occurs more
frequently. (Online version in colour.)

The present study focuses instead on two key issues associated with the rare events
themselves. The first is the efficient numerical computation of mean lifetimes. In shear flows,
τd and τs become extremely large near Rec, making brute force MC estimation of mean times
exceedingly expensive. Hence we turn to a more sophisticated class of algorithms that sample rare
events by advancing ensembles of trajectories, removing (pruning) unfavourable and duplicating
(cloning) favourable ones. In particular, we will employ the Adaptative Multilevel Splitting
(AMS) algorithm proposed by Cérou & Guyader [7–9]. (This nomenclature of ‘splitting’ in the
algorithm is unrelated to the splitting of turbulent bands.) This algorithm impressively paved
the way for quantitative study of low-dimensional stochastic systems, as pioneered by Rolland &
Simonnet [10], Rolland et al. [11] or Lestang et al. [12]. It was recently applied to large-dimensional
fluid-dynamical systems such as atmospheric dynamics [13,14] and bluff-body flow [15]. Rolland
[16] extended the application of this rare-event technique to transitional turbulence, first for
transition in a stochastic reduced-order model [17] of pipe flow, and then for the collapse of
homogeneous turbulence in plane Couette flow [18].

The second main focus of our study is the origin of the super-exponential dependence of
mean lifetimes on Reynolds number, and in particular the connection to extreme values of
fluctuations within the one-band state. Goldenfeld et al. [19] proposed a mechanism to account for
the super-exponential dependence of decay lifetimes of Reynolds number. The essential insight
is that the decay process is governed by extreme values and that a linear variation of Reynolds
number translates via extreme value distributions to a super-exponential variation in lifetimes.
This mechanism was investigated and refined by Nemoto & Alexakis [20,21] in a numerical
study of decay events in pipe flow. We will follow a similar analysis applied to both decay and
splitting events in channel flow. Finally, the possible connection to the large deviation framework
is considered through the computation of most-probable pathways and mean reactive times for
rare events.
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2. Methods
We will now describe two very different types of methods: first, those we use for solving the
Navier–Stokes equations governing channel flow, and, second, our implementation of the AMS
algorithm for capturing rare events.

(a) Integration of Navier–Stokes equations in a transitional flow unit
The turbulent bands that are the subject of our study are illustrated in figure 3. We impose a mean
velocity U on the flow between the two parallel rigid plates. Lengths are non-dimensionalized
by the half-gap h between the plates, velocities by 3Ubulk/2 (which is the centreline velocity of
the parabolic laminar flow with mean velocity Ubulk), and time by the ratio between them. The
Reynolds number is defined to be Re = 3Ubulkh/(2ν). The non-dimensionalized equations that we
simulate are the incompressible Navier–Stokes equations

∂U
∂t

+ (U · ∇)U = −∇p + 1
Re

∇2U (2.1a)

and
∇ · U = 0 (2.1b)

Since the bands are found to be oriented obliquely with respect to the streamwise direction, we
use a periodic numerical domain which is tilted with respect to the streamwise direction of the
flow, shown as the black rectangle in figure 3. This is common in studying turbulent bands [22,23]
and more specifically those in transitional plane channel flow [6,24,25]. The x-direction is chosen
to be aligned with a typical turbulent band and the z-coordinate to be orthogonal to the band.
The relationship between streamwise–spanwise coordinates (x′, z′) and tilted band-oriented (x, z)
coordinates is

ex′ = cos θ ex + sin θ ez (2.2a)

and
ez′ = − sin θ ex + cos θ ez. (2.2b)

The usual wall-normal coordinate is denoted by y. The field visualized in figure 3 comes from an
additional simulation we carried out in a domain of size (Lx′ , Ly, Lz′ ) = (200, 2, 120) aligned with
the streamwise–spanwise coordinates.

Equations (2.1) are completed by rigid boundary conditions in y, periodic boundary conditions
in x and z, and imposed flux 2/3 in the streamwise direction x′ and 0 in the spanwise direction z′:

U(x + Lx, y, z) = U(x, y, z + Lz) = U(x, y, z) U(x, ±1, z) = 0 (2.3a)

and
1
2

∫+1

−1
dy U(x, y, z) = 2

3
ex′ = 2

3
(cos θ ex + sin θ ez). (2.3b)

To integrate (2.1) with boundary conditions (2.3), we use the parallelized pseudospectral C++
code ChannelFlow [26], which employs a Fourier–Chebychev spatial discretization. The velocity
field can be decomposed into the stationary laminar parabolic base flow Ubase = (1 − y2)ex′ and
the deviation u ≡ U − Ubase which satisfies the same equations and boundary conditions as U
but with zero flux instead of (2.3b). A Green’s function method is used to impose the flux
in each direction. More specifically, for each periodic direction, one computes and uses the
pressure gradient such that the resulting flow field will have the desired bulk velocity, e.g. [27,28].
Throughout our study, we present the deviation u = (u, v, w) so as to highlight the difference with
the dominant laminar flow Ubase and the motion of flow features with respect to the bulk velocity.

The angle in this study is fixed at θ = 24◦, as has been used extensively in the past [6,22,24]. The
orientation of the domain imposes a fixed angle on turbulent bands, and choosing a short length
for the x-direction of the domain suppresses any large-scale variation along the bands. Thus, these
simulations effectively capture the dynamics of infinitely long bands that only interact along their
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Figure 3. Visualization of a turbulent band in a domain periodic in the streamwise and spanwise directions (red bounding box)
at Re= 1000. Colours show transverse energy 1

2 (v
2 + w′2) in the plane y = 0.8, from our numerical simulation in a box of

size Lx′ = 200, Lz′ = 120. Illustration of the associated tilted computational domain (black) at angle θ = 24◦. (Online version
in colour.)

perpendicular direction, preventing complex 2D interactions that are possible for finite-length
bands [29,30]. In this way, localized bands in the tilted channel geometry are similar to localized
puffs in pipe flow.

Our domain Ω has dimensions (Lx, Ly, Lz) = (6.6, 2, 100) and a numerical resolution of
(Nx, Ny, Nz) = (84, 64, 1250), exactly as in [6], thus allowing direct comparison with these prior
results. The length Lz = 100 of our tilted domain corresponds to an inter-band distance above
which a band is considered as isolated, while the domain width Lx = 6.6 is used because it
corresponds to the natural spacing of streaks in channel flow in a 24◦ box [6,31]. For puffs in
pipe flow, which are similar in many respects to the isolated bands considered here, Nemoto
& Alexakis [21] conducted extensive computations showing that domain length had some
effect on mean decay timescales, with L = 50 and L = 100 giving quantitatively different, but
qualitatively similar results. Domain length is expected to have a quantitative effect on the
splitting timescale; our domain length Lz = 100 has been selected as a compromise between
accuracy and computational cost.

A semi-implicit time-stepping scheme is used to progress from u(t) to u(u + dt), with time step
dt = 1/32 = 0.03125. Trajectories and associated quantities such as turbulence fraction are sampled
at time intervals δt = 32dt = 1. This sampling time is used throughout for collecting statistics and
generating probability distributions. The computation of solutions of the Navier–Stokes equations
discretized in space and time is called, as usual, direct numerical simulation or DNS.

(b) The adaptive multilevel splitting algorithm
Here, we present the essence of the AMS algorithm. We follow closely the method originally
described in Cérou & Guyader [7], although here we consider a deterministic dynamical system,
the Navier–Stokes equations (2.1), whereas Cérou and colleagues considered a stochastic process.
The AMS algorithm has been applied recently to other deterministic fluid systems [12,15,18]. For
the application of other rare-event algorithms to deterministic systems, see [32] and references
therein.

(i) Setup

Let A and B be two states visited by trajectories of a dynamical system. More precisely, A and B
are regions in phase space corresponding to particular flow states of interest. We commonly refer
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Table 1. Definitions of designated levels of turbulent fraction or score function used throughout the paper.

symbol definition

hA hypersurface withinA, origin of trajectories, in practice one-band state
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hS hypersurfaceS close to and surroundingA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hB hypersurface withinB, destination of trajectories
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hB0 threshold for decay events in AMS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hB2 threshold for splitting events in AMS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h0 entrance of the collapse zone for decays for all Re
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h2 entrance of the collapse zone for splits for all Re
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hM maximal value of Ft at fixed Re
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hleft left endpoint of fit between PDF of Ft and Fisher–Tippett distribution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hright right endpoint of fit between PDF of Ft and Fisher–Tippett distribution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Values of designated levels of turbulent fraction or score function used throughout the paper.

Re 815 830 870 900 950 1000 1050 1100 1150 1200

hA 0.21 0.22 0.24 0.26 0.31 0.34 0.37 0.40 0.43 0.44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hS 0.17 0.18 0.21 0.23 0.27 0.375 0.41 0.44 0.46 0.47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hB0 , hB2 0.0001 0.0001 0.0001 0.0001 0.0001 0.70 0.70 0.70 0.70 0.70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h0, h2 0.22 0.22 0.22 0.22 0.22 0.42 0.431 0.461 0.474 0.483
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hM 0.292 0.305 0.344 0.385 0.44 0.635 0.616 0.659 0.677 0.69
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hleft 0.13 0.148 0.176 0.207 0.243 0.30 0.32 0.279 0.271 0.326
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hright 0.285 0.278 0.307 0.327 0.364 0.42 0.436 0.469 0.501 0.536
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

to A and B simply as states. The goal is to produce a large sample of the rare transitions from A to
B. In our case A will always be the one-band state, labelled as A in figure 2, while B will be either
the laminar flow, labelled as B0, or else the two-band state, labelled as B2 in figure 2.

Perhaps the most crucial piece of the AMS algorithm is the specification of a score function, or
reaction coordinate, φ, that quantifies transitions from A to B. The score function φ(u) is a real-
valued function of the flow field whose gradient is non-zero (at least everywhere of interest),
and such that there exist real values hA and hB, with hA < hB, such that φ(u) < hA implies
u ∈A while φ(u) > hB implies u ∈ B. Note that for decay, the laminar state is a single point in
phase space, so we will take B to be a set within its basin of attraction. Tables 1 and 2 list the
various thresholds of the score function that we will use throughout the paper. The score function
provides a smooth landscape for quantifying the progress of the transition between A and B, as
illustrated in figure 4a.

The algorithm also requires a value hS and associated hypersurface S, close to A, given by

S = {u|φ(u) = hS}.

(ii) Initialization

The initialization step consists of generating a sample of N trajectories ui(t), i ∈ {1, . . . , N}, that
start within A, leave A at least as far as S, and then either reach B or, more likely, return to A
(figure 4a). In practice, the N initial conditions ui(0) are obtained by taking N snapshots, equally
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kill

clone

time

K

kill
clone

time

f contour

(a) (b)

(c) (d)

hA

hS

hB

hA

hS

hB

f

f = f K

f

A

B

A

B

Figure 4. Schematic depiction of the AMS algorithm for a transition from A to B. (a) The initialization of the algorithm.
Contours are shown for the score functionφ(u) and a hypersurfaceS surroundingA.N trajectories are computed starting from
random initial conditions inA that crossS and then either return toA or go toB. (HereN = 3 and no initial trajectories reach
B.) (b) First iteration of the algorithm. The trajectory attaining the smallest maximum score function (hereφK with K = 1) is
killed, and a new trajectory is cloned from another randomly selected trajectory, resulting in an improved set of trajectories. The
process is then iterated until a sufficient number of trajectories reachB. Time series (c) and (d) correspond to the trajectories in
(a) and (b). (Online version in colour.)

spaced in time, from a single trajectory that remains in A over a long time and thus samples the
natural measure of states within A.

The role of the hypersurface S is to ensure that after initialization, all trajectories in our sample
have ventured from A at least as far as S. Hence the maximum value of the score function obtained
along each trajectory is at least hS . From the point of view of the score function, all trajectories in
our initial sample have made some, possibly small, progress towards B. Since S is chosen close to
A, the initialization step is not computationally demanding.

For the initialization and subsequent iterations, it is necessary to store the trajectories. In
practice, we store full flow fields ui(tj) for each trajectory i ∈ {1, . . . , N} at sparsely spaced times
tj = j dT, as a compromise between the large CPU times required for computing trajectories and
the large memory needed to store them. The computations reported here all use a storage interval
of dT = 320 dt = 10, which is 10 times the sampling time δt used to collect statistics on trajectories.

(iii) Iteration

Iterative step m consists of discarding the K worst-performing trajectories and replacing them
with trajectories obtained by cloning non-discarded trajectories. Specifically, we compute the
maximal value φ

(m)
i of the score function along each trajectory and re-order the trajectories such

that

φ
(m)
1 ≤ φ

(m)
2 ≤ · · · ≤ φ

(m)
K ≤ · · · ≤ φ

(m)
N .
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We discard the K trajectories whose maximal values are lowest, in practice, a value K(m) ≥ K
because of possible equality of the maxima. Thus, in general we retain trajectories ui such
that φ

(m)
i > φ

(m)
K . We replace each discarded trajectory uk(t) with a new trajectory constructed as

follows:

(i) Choose at random (uniformly) one of the trajectories ul(t) from the set of N − K(m)

retained trajectories. Overwrite the trajectory uk(t) with the part of the trajectory ul(t) up
to time tclone at which the score function along ul(t) first reaches φ

(m)
K , i.e. φ(ul(tclone)) =

φ
(m)
K (figure 4b). (Owing to the discrete sampling of stored trajectories, in practice, we copy

trajectories until the score function first exceeds φ
(m)
K .)

(ii) Modify ul(tclone) with a low-amplitude multiplicative spectral perturbation as follows.
Let

η(x, y, z) =
∑
mx

∑
mz

∑
my

η̃mx,my,mz
s|mx|+|my|+|mz| ei(mxkxx+mzkzz)Tmy (y),

where each η̃mx,my,mz
is a vector whose components are uniform random complex

numbers of modulus less than 1, s is a smoothing parameter such that 0 < s < 1, and
Tmy is the Chebyshev polynomial of order my. Then the low-amplitude multiplicative
perturbation at the cloning time is

uk(x, y, z, tclone) = (I + εη(x, y, z))ul(x, y, z, tclone) (2.4)

where ε sets the size of the perturbation. The weak random perturbation is necessary
to ensure that cloned trajectories do not exactly repeat the path of the trajectory from
which they are cloned. Perturbations are always sufficiently weak that they leave the
score function unchanged to at least four significant digits. Rolland [18] uses a similar
approach in applying AMS to turbulence collapse in Couette flow. The remainder of the
trajectory uk(t) for t > tclone is obtained by simulating the new trajectory until it reaches
A or B as before.

Once the K(m) discarded trajectories have been replaced (overwritten), we have a new set of N
trajectories that are superior to the set at the start of the iteration, in the sense of being closer to
reaching B. Specifically, the maximum value of the score function for each of the new trajectories
is now at least φ

(m)
K . We increment m and repeat as necessary.

(iv) Stopping and post processing

Iterations end once the N samples have all reached B. The final number of iterations is denoted
by M. From the resulting trajectories and information gathered during the iteration process, we
can construct estimators of relevant statistical quantities. Trajectories begin in A, pass through S
and terminate upon arrival at either A or B. The estimator of the probability to go from S to B is
given by [7]

p̂ =
M∏

m=1

(
1 − K(m)

N

)
, (2.5)

where K(m) is the number of trajectories eliminated at iteration m. The probability of going from
S to A is (1 − p̂) and that of going from A to S is 1.

The main quantity of interest is the mean first passage time τ from state A to state B. For
this, we will require the sample mean times available from the computations [8]. Let TAS ≡
inf{t > 0, u(t) ∈ S|u(0) ∈A} and let TAS denote its sample mean obtained from trajectories whose
initial conditions u(0) are selected from a long simulation lying within A. Because S is close to A,
TAS is easily obtained from DNS (or from the initialization step of the AMS). Similarly, from the
trajectories that cross S and return to A we can compute TSA, the sample mean time to go from S
to A. Finally, from the N sample paths constructed as part of the AMS we can compute TSB, the
sample mean time to go from S to B.
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p

1

TAS

TSA
1 − p̂

ˆ
A S B

Figure 5. Schematic depiction of the data gathered via the AMS algorithm for a transition fromA toB viaS . The probability
p̂ of transition from S to B is estimated, thus giving 1 − p̂ as the probability for transition from S toA. The sample mean
times obtained for the two transitions are TSB and TSA. FromA, all trajectories reachS (probability of one) and the sample
mean time for this transition is TAS . Trajectories begin atA and make some number of round trips betweenS andA before
possibly reachingB. (Online version in colour.)

From these quantities, the estimator for the mean first passage time τ is constructed as
illustrated in figure 5. A trajectory going from A to B does so by going from A to S and back
some number of times, n, before finally transitioning from A to S to B. The probability of such a
trajectory is (1 − p̂)n p̂ and the mean time for all such trajectories is (TAS + TSA)n + TAS + TSB.
Summing over all possible n yields the estimator for τ :

τ =
∞∑

n=0

(1 − p̂)np̂[(TAS + TSA)n + TAS + TSB]

= (TAS + TSA)
1 − p̂

p̂
+ (TAS + TSB). (2.6)

We do not use separate notation for the true mean first passage time and this estimator of it. In
describing the transition dynamics in terms of a Markov chain in figure 5, we rely on standard
assumptions of the AMS algorithm, stated by Cérou et al. [8, p. 12].

The time TAS + TSA is the mean non-reactive time. This is the mean time for trajectories starting
from within A to return to A, conditioned on the fact that they reach S. Similarly, TAS + TSB is
the mean reactive time for trajectories starting from within A to reach B, conditioned on the fact
that they do not return to A. Neither the reactive time nor the non-reactive time is particularly
large. What makes the mean first passage time large is that on average a trajectory will make
many failed attempts to reach B so that the mean non-reactive time is multiplied by the large
factor (1 − p̂)/p̂.

3. Computing mean passage times in channel flow

(a) Choice of the score function for band decay and splitting
The choice of the score function is critical for the AMS algorithm. In our case, we need functions
that quantify the transition progress between the one-band state A and either the laminar state B0
(decay event) or the two-band state B2 (splitting event). We use slightly different score functions
for decay and splitting.

We introduce the turbulent fraction, Ft, quantifying the proportion of the flow that is turbulent:
Ft = 0 for laminar flow, while Ft = 1 for flow that is turbulent throughout the channel. For
localized turbulent bands, the turbulent fraction is between zero and one. Specifically we define

e(z) ≡ 1
LxLy

∫ 1

−1

∫Lx

0

1
2

(v2 + w′2) dx dy and Ft ≡ 1
Lz

∫Lz

0
H(e(z) − ethresh) dz, (3.1)

where H is the Heaviside function. These quantities use the energy contained in the cross-channel
and spanwise velocity components v and w′, which is zero for laminar flow. Its cross-sectional
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Figure 6. Evolution of the turbulent band during (a) a decay at Re= 870 and (b) a split at Re= 1150. Top: Spatio-temporal
visualization. Colours show (v2 + w′2)/2 at (x = 3.3, y = 0.8) (white: 0, black: 0.001). Bottom: Evolution of the turbulent
fraction Ft (black curves) and of score functionφ (thin blue curve) defined for splits in (3.2). (Online version in colour.)

integral e(z) provides a good characterization of the turbulence as a function of z. We define the
flow at location z to be turbulent if e(z) exceeds the empirical threshold ethresh, where ethresh =
1.1 × 10−3. Figure 6a presents the typical life of a decaying band, repeated from figure 1, along
with the corresponding time series of the turbulent fraction Ft. Local minima of Ft occur at local
contractions of the band, which are themselves small detours towards the laminar state. Then Ft

drops sharply to zero when the band transitions to the laminar state. In practice, we take φ = Ft

and replace < with > (and max with min) as necessary in the algorithm. We define the system to
be in B0 if φ < hB0 = 0.0001 independently of Re, since all trajectories attaining this value of Ft are
in the basin of attraction of the laminar state. The value hA is taken as the most-probable value
of the score function from a long simulation of the one-band state. As a result, hA depends on
Reynolds number. The level hS is chosen to be approximately 0.8 hA. (See also tables 1 and 2 for
definitions and values of all of these levels.)

We now consider the transition from one to two bands. Unlike for band decay, we have
found that the turbulent fraction is not an adequate score function for band splitting. Figure 6b
illustrates the difficulty. We see that before attaining the two-band state, multiple attempts to
split occur. These deviations from the one-band state are characterized by widening of the initial
band, possibly leading to the opening of a laminar gap between two turbulent regions. The
resulting downstream turbulent patch then either decays, leading to a one-band state, or gains
in intensity, ultimately leading to a steady second turbulent band whose shape and energy level
are comparable to those of the initial band. The problem with using Ft as a score function is
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that while it captures the widening of the single band, it does not select for the intensification
of downstream patches that results in a persistent secondary band. In figure 6b, the branching
which will eventually lead to a new band occurs at t ≈ 5400, but it is only at t ≈ 7660 that this
band becomes wider and more intense, acquiring some permanence and stability. It is this latter
event that we will define as the split.

We have constructed an empirical but successful score function φ that encompasses the
entire process of band stretching, captured by Ft, as well as separation into multiple bands and
subsequent intensification of downstream bands. As can be seen by comparing the blue and
black curves in figure 6b, φ does not differ greatly from Ft, but the difference is crucial for the
performance of the AMS algorithm. The score function is given as follows. Consider the flow to
consist of nb turbulent bands, i.e. nb distinct regions in which e(z) > ethresh, as defined in (3.1).
We associate with each turbulent band its width Wi in z, the laminar gap length Li upstream
until the next turbulent band, and finally its average energy Ei. We consider the mother band
to be the band whose upstream laminar gap is maximal. Its properties are labelled (W1, L1, E1),
and the other bands i are ordered by downstream distance from the mother band. We then define
the following empirical score function for splits:

φ = Ft +
nb∑

i=1

li
Lz

(
Ei

Emax

)α

= 1
Lz

nb∑
i=1

[
Wi + li

(
Ei

Emax

)α]
. (3.2)

Here, Emax ≡ max
1≤i≤nb

Ei and li ≡∑i
j=2 Lj is the total laminar gap between band i and the mother

band, which can describe continuously the collapse or splits of multiple child bands. The
exponent α is chosen empirically to balance energy localization and turbulence spreading. In
practice, we use α = 0.5, in order to counteract the decrease in turbulent fraction usually observed
after a split, as shown on figure 6b at t = 7 500. In this way, we have enhanced the turbulent
fraction by adding a function of band intensity Ei and of the total laminar distance li to the mother
band. In this study, the level hB2 = 0.7 is found to capture a successful split: the presence of a
lasting secondary band whose profile and intensity are similar to those of the initial band. We
take hS � 1.2hA, with hA the most probable value of (3.2) in the one-band state.

We have introduced a number of numerical parameters that could affect the performance and
the accuracy of the computations. Of these, the selection of hB2 and ε require the most care.
Referring to figure 6b one sees that the threshold hB2 must correctly capture the completion of
a splitting event. As with the difficulty in defining a good score function for splitting, this is a
reflection of our lack of good understanding of the splitting process. As can be seen in figure 6a,
this issue does not arise for decay since the score function of the laminar state is known to be
zero. Concerning the perturbation size ε used in the cloning, equation (2.4), one would ideally
choose this to be small and independent of Re. In practice, we have found it necessary to vary
ε with Re, and as discussed at the end of §3b, the current algorithm applied to decay events
sometimes requires ε to be larger than desired. (See the electronic supplemental material for
further discussion of the perturbation size ε and also the sample size N.)

(b) Simulating rare events with AMS
We have used the AMS algorithm to compute the mean decay and splitting times of an isolated
turbulent band in a channel. These mean times are plotted as a function of Reynolds number in
figure 7, where we also include previous results obtained via standard MC simulations [6]. The
AMS results overlap with the MC data, but also substantially extend the range of accessible time
scales. Both the AMS and MC results use the same tilted computational domain, the same spatial
resolution, and the same underlying time-stepping code, as described in §2(a). This permits direct
comparison of the two methods.

Figure 7 confirms the super-exponential dependence of the time scales found for decay and
splitting events in wall-bounded shear flows [3–6]. From fits with τd = exp (exp(ad Re + bd))
and τs = exp (exp(as Re + bs)) in the decay and split regimes, we find Rec � 980 as an improved
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Figure 7. Mean decay times (red, magenta) and splitting times (black, purple) of turbulent bands as a function of
Reynolds number, estimated with the Monte Carlo method (MC, circles) or with the AMS (diamonds). Error bars give
confidence intervals for MC and are computed from multiple realizations of the algorithm for AMS. Dashed lines are best
fits to double exponential form using the combined AMS and MC data: τd � exp [exp (3.9 × 10−3 Re − 1.09)]; τs �
exp [exp (−2.6 × 10−3 Re + 5.27)]. (Online version in colour.)

estimate of the crossing Reynolds number for this flow configuration. (Previous fits to the MC
data gave a crossing Reynolds number of 965.)

We recall a few details from the MC computations in [6]. The initial fields for the simulations
are taken from snapshots of long-lasting bands simulated at Re ∈ [900 − 1050]. The Reynolds
number is then changed to the desired value. Decay and splitting times from the start of the
simulation are recorded. From these, the mean times and associated error bars are obtained [6].
The MC estimate of the transition probability p̂MC is computed from the multiple simulations by
counting the number of decays or splits relative to the number of passages through S. Typically
N = 40 decay and splitting events are obtained at each Reynolds number. Fewer than N = 40
events were obtained by MC at the largest values of τ . With such techniques, only time scales
τ < 105 are currently accessible in practice.

The AMS initial fields are created from long-lasting bands, as in the MC method, except that
each initial field is simulated for an additional relaxation time of 500 before commencing the
AMS algorithm. The number of trajectories we seek to discard at each AMS iteration is K = 1.
At each value of Re, the AMS algorithm is run NAMS times, with each realization computing a
sample of N trajectories. Each realization gives a value of τ calculated using (2.6), where TAS +
TSA is computed by DNS as part of the initialization step, TAS + TSB is obtained from the AMS
trajectories, and p̂ is obtained via (2.5). Then the final estimate of τ is obtained by averaging over
the NAMS independent realizations.

Table 3 compares estimates of the transition probability p̂ from the MC and AMS strategies.
Both methods yield comparable estimates when MC results can be obtained. We emphasize that
lifetimes τ change by orders of magnitude over the range of Re of interest, so we do not seek
more than about one digit of accuracy in their values. The overall gain in computational speed
achieved by the AMS over MC is measured by the total CPU time. One component of this cost
is the CPU time per trajectory, for which the AMS shows a typical improvement of order O(10)
and even O(100) for the low-transition-probability cases we considered; see Re = 1000 in table 4.
For higher-transition-probability cases, AMS does not outperform MC because AMS requires
NAMS realizations to compensate for the variability in individual realizations. For low-transition-
probability cases such as Re = 1000, only AMS is capable of inducing the very rare trajectories
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Table 3. Results of Monte Carlo (MC) and Adaptative Multilevel Splitting (AMS). N is the number of samples for MC or for a
single realization of AMS. For AMS, NAMS is the number of realizations of the algorithm and ε is the perturbation amplitude
used in cloning. The estimated transition probability and mean first passage time obtained by MC and AMS are p̂MC, τMC and p̂,
τ , respectively.

Monte Carlo (MC) Adaptive Multilevel Splitting (AMS)

Re N p̂MC τMC ε NAMS × N p̂ τ

870 40 0.081 3.0 × 104 5 × 10−4 9 × 50 0.081 3.6 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

900 40 0.013 9.3 × 104 1 × 10−3 7 × 50 0.015 8.9 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1000 — — — 1 × 10−3 3 × 50 0.00029 5.5 × 106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1150 40 0.047 2.1 × 104 1 × 10−5 9 × 50 0.046 2.2 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Performance of Monte Carlo (MC) and Adaptative Multilevel Splitting (AMS). N is the number of samples for MC or for
a single realization of AMS. For AMS, NAMS is the number of realizations of the algorithm and ε is the perturbation amplitude
used in cloning. The estimated CPU time per successful trajectory is given, as well as the total CPU time (both in processor hours
on an HPE SGI 8600 computer).

Monte Carlo (MC) Adaptive Multilevel Splitting (AMS)

Re N CPUtraj CPUtot ε NAMS × N CPUtraj CPUtot
870 40 2500 1 × 105 5 × 10−4 9 × 50 360 1.6 × 105

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

900 40 7500 3 × 105 1 × 10−3 7 × 50 330 1.2 × 105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1000a 40 4 × 105 2 × 107 1 × 10−3 3 × 50 1000 1.5 × 105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1150 40 5000 2 × 105 1 × 10−5 9 × 50 500 2.2 × 105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aFor Re= 1000, no estimator of the time scale could be achieved by Monte Carlo, so the CPU times are extrapolated from the AMS
estimator τ .

which are out of reach for the MC method (see electronic supplemental material for further
comparisons).

The results from AMS show larger variability than those from MC, especially for decay
cases, as seen by the error bars on figure 7. It is known that the standard deviation of the
estimated probability for AMS will decrease as 1/

√
N (at least in ideal cases) [10,33]. For our

high-dimensional system, N is restricted by computational costs. Using N larger than 100 is not
practical and we typically use N = 50. We observe that the large variability between different
realizations of the AMS algorithm is associated with variability in the initialization, especially the
extent to which the initial trajectories are a representative sample.

The amplitude ε of the perturbation that we use in cloning trajectories is chosen to promote
separation of the trajectories. The only issue occurs for rare decay (Re ∈ [900 − 950]) where the
amplitude must be increased (ε > 10−2 at Re = 950). In these cases, cloned trajectories resulting
from small-amplitude perturbations separate from one another only after having reached their
minimum Ft value. Hence they do not acquire an improved score function, causing the algorithm
to stagnate. The reason for this is that the duration of the approach to the minimum of Ft is
shorter than the Lyapunov time of the system. This limitation of our current procedure has been
observed in other studies [15,18] and has been addressed in [18] by anticipating branching. This
technique clones trajectories prior to where one would in the standard algorithm, thus promoting
the separation of trajectories near the minimum of Ft.
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4. Extreme value description of decay and splitting trajectories
The super-exponential dependence of lifetime of turbulence on Reynolds numbers seen in figure 7
is ubiquitous for decay and splitting events in wall-bounded shear flows, e.g. [3–6,34]. Goldenfeld
et al. [19] have formulated a hypothesis explaining decays through extreme value theory. The
main idea is to associate the decay of a turbulent patch to the statistical distribution of the largest
fluctuation over some space–time interval. If the maximum amplitude of fluctuations becomes
lower than some threshold, then the multiple fluctuations comprising a turbulent zone will
all laminarize. This connects laminarization to the distribution of extrema of a set of random
variables. Just as the Central Limit Theorem states that under very general conditions the limit of
the sum of independent and identically distributed random variables is a Gaussian, the Fisher–
Tippett–Gnedenko theorem [35] states that the extrema of a set of n independent and identically
distributed variables should follow a Fisher–Tippett distribution. Goldenfeld et al. assumed that
the decay threshold depends on Re and approximated that dependence locally as linear. This
linear dependence translates into a super-exponential dependence of the lifetimes on Re via
properties of the Fisher–Tippett distribution.

In a study of the decay of turbulent puffs in pipe flow, Nemoto & Alexakis [21] found that
the maximal vorticity over the domain followed a Fréchet distribution, a member of the Fisher–
Tippett family. Moreover, they found that the parameters of this distribution depend linearly on
Re over a range of 75 in Re near the critical value Rec. Similar to the Goldenfeld et al. argument, this
linear dependence on parameters translates to a super-exponential dependence of the lifetimes on
Re. Thus, Nemoto & Alexakis were able to directly relate extreme values to the super-exponential
evolution with Re of the puff decay times in pipe flow. Other quantities related to the distance to
the laminar attractor have been shown to follow the extreme value law [36,37], particularly when
a maximal or minimal value is extracted from a divided time series [38].

Here, we explore these ideas for both the decay and splitting of turbulent bands in channel
flow over a substantial range of Re. To do so, we must link the rare events (decay or split) with
some observable that follows an extreme distribution. Rather than speculate on which variable or
combination of variables are mechanistically responsible for driving decay and splitting events,
we choose to focus on Ft for both transitions. Our reasoning is that turbulence fraction is a useful
observable of general interest that is easily obtainable in computations and experiments. As we
show below, the turbulent fluctuations and reaction pathways project onto Ft and allow us to
analyse the connection between fluctuations and the rare events. As a practical matter, it is helpful
to study distributions of a quantity that is (or is closely related to) the score function used to obtain
rare events.

(a) Probability densities of turbulent fraction
We begin by showing in figure 8 the probability density function (PDF) of the turbulent fraction
p(Ft) for a variety of Reynolds numbers. These PDFs have been constructed from MC simulations
that start, after initial equilibration time, from the one-band state A and terminate at the end of a
decay or split. The distributions have a clear asymmetry about their maxima and they have broad
tails that depend on Re: the low-Ft tails are present at lower Re while high-Ft tails are present at
higher Re. To our knowledge, this is the first report of p(Ft) in any transitional shear flow.

We find that the central portions of these PDFs are closely approximated by Fisher–Tippett
distributions. The cumulative distribution function (CDF) of the Fisher–Tippett (also called
Generalized Extreme Value) distribution that we will use is

P(X ≤ h) = PFT(h) ≡ 1 − e−(1+ξ (μ−h)/σ )−1/ξ

, (4.1)

where the location μ, scale σ and shape ξ are fitting parameters. Equation (4.1) is the CDF for
minima of a set of random variables, and it is this form that fits our data. We fit p(Ft) with the
Fisher–Tippett density pFT(h) = dPFT/dh shown as dashed curves on figure 8. (The resemblance
of the abbreviation FT for Fisher–Tippett and the notation Ft for turbulent fraction is coincidental.)
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Figure 8. Probability density function of the turbulent fraction around the one-banded stateA. Dashed lines correspond to
fits with a Fisher–Tippett probability density, the derivative of (4.1). Fits are carried out over intervals [hleft, hright], shown for
the case Re= 830 by coloured and white points. Values of hleft and hright are given in table 2. (Online version in colour.)

Figure 8 shows that the central region near the maximum of each PDF fits well with the Fisher–
Tippett distribution inside a range spanning from hleft to hright. As an example, these lower and
upper bounds of the fit are indicated by coloured and white circles for Re = 830. The quality
of the fit is particularly good for Re < 1000 but shows some noticeable deviations at Re = 1000
and Re = 1050. The fitting parameter values as a function of the Reynolds number are plotted in
figure 10a, which will be discussed below.

The turbulence fraction Ft defined in equation (3.1) is not a maximum of a set of independent
quantities (although it includes a Heaviside function which, like the maximum, is a non-analytic
operation). Hence, it is not obvious that Ft should be governed by an extreme value distribution.
Even in the case of vorticity maxima, Nemoto & Alexakis noted that it is not possible to fully
justify Fisher–Tippett distributions since vorticity is correlated in space and time and hence the
maxima are not independent. At present we do not have a formal justification for the fits used
in figure 8 other than that the distributions are clearly non-Gaussian and are fit reasonably
well with the Fisher–Tippett form. We hypothesize that the strong spatio-temporal correlations
within the localized turbulent bands play a significant role in the statistics, but we leave this for
further investigation. The only way the fits will enter into the analysis that follows is via their
parameterization. In this regard the fits give us a useful representation of the PDFs in terms of
three parameters depending on Re. It is nevertheless possible that the distributions are of some
other type.

The Nemoto & Alexakis approach requires many numerical simulations of rare events in order
to obtain the tails of probability distributions. Here, the AMS approach is particularly useful as
it produces large samples of the rare event trajectories that reach destination B. From the AMS
data one can reconstruct the CDF of any observable X depending on a field u as follows. Each
point on a trajectory u(t) is known to be on a segment from A to S, from S to A or from S to
B. (See figure 5.) Hence the CDF can be decomposed into a weighted sum of independent CDFs
conditioned on the location of u:

P(X ≤ h) = τAS
τ

P(X ≤ h|CAS ) + τSA

τ
P(X ≤ h|CSA) + τSB

τ
P(X ≤ h|CSB), (4.2)
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Figure 9. (a) Cumulative distribution function P(h)= P(Ft ≤ h) for band decay and (b) survival function S(h)≡ 1 − P(h)≡
P(Ft ≥ h) for band splitting at values of Re indicated in the legend. Continuous lines are obtained fromMonte Carlo and dotted
lines are from the AMS algorithm. Dashed lines correspond to fits to a Fisher–Tippett distribution (4.1). (c,d) Distributions from
the AMS algorithm rescaled by P(hB0 ) and Sφ (hB2 )≡ 1 − Pφ (hB2 ). In the splitting case (d), the range in Ft is rescaled by
hM(Re)= max(Ft). Colouredpoints in (c) showhleft, the lower bounds of thefit to thePDFwith a Fisher–Tippett density function
(figure 8). Similarly the open points in (d) show the upper bounds hright. Vertical lines show the break-even points defined in
the text. (Online version in colour.)

where CAS (resp. CSA and CSB) is the conditional event that a field u lies on a trajectory that goes
from A to S (resp. from S to A or to B). The weights are the relative time spent in each segment,
where

τ = τAS + τSA + τSB

= 1
p̂

TAS + 1 − p̂
p̂

TSA + TSB.

We refer the reader back to equation (2.6) for the formula for τ in terms of TAS , etc. The individual
CDFs in (4.2) are obtained in the standard way by rank ordering the sample data and performing
a cumulative summation followed by normalization.

Figure 9a shows the CDF P(h) = P(Ft ≤ h) for the low-Re decay cases and figure 9b shows
its complement, the survival function S(h) ≡ 1 − P(h) ≡ P(Ft ≥ h), for the high-Re splitting cases.
Results from the MC simulations are shown as continuous curves, while those from AMS have
been included as dotted curves. It can be seen that the distribution functions constructed from
AMS improve the quality of the tails from MC, particularly in the range 900 ≤ Re ≤ 1100 where
MC systematically underestimates the tails associated with rare transitions. (We note, however,
that even with the improvements from the AMS, there remain some sampling effects in the weak
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tails.) Dashed curves show the Fisher–Tippett CDFs obtained by fitting the PDFs of Ft shown in
figure 8.

(b) Timescales from extreme value distributions
We can now apply the Nemoto & Alexakis approach [21] to our decay and splitting data.
The essential idea is to scale the CDFs and obtain forms that separate into approximately Re-
independent portions and Re-dependent portions that can be fit to Fisher–Tippett distributions.
From this it is possible to express the mean timescales for decay and splitting directly in terms of
the parameters of the Fisher–Tippett distributions.

We will first describe the decay case and afterwards summarize the differences for the splitting
case. Recall that in the decay case the score function for AMS is just the turbulence fraction
and the boundary of the laminar state is hB0 = 0.0001, meaning that trajectories u(t) that reach
the threshold Ft(u) = φ(u) = hB0 from above are considered to have undergone transition to the
laminar state. As shown in figure 9c, by rescaling CDFs by their value at the threshold P(hB0 ),
the low-probability tails for different Re nearly collapse to a common curve. More specifically, we
observe that below a value h0, indicated on the plot, the ratio P(h)/P(hB0 ) depends only weakly
on Re. (Moreover, some of this dependence is likely due to sampling errors of the low-probability
tails.) Flow fields u such that Ft(u) ∈ [hB0 , h0], called the collapse zone in the following, are in an
intermediate state that can either recover (missed decay) or die (successful decay). This process
is not a strong function of Re. Above h0, the rescaled CDFs depend strongly on Re, varying by
over an order of magnitude over the Re range shown. Significantly, however, for almost all Re
this portion of the CDFs lies within the region that is well fit by the Fisher–Tippett distribution.
Concretely, the coloured points in figure 9c indicate the left-most values of h for each Re for which
the Fisher–Tippett fits are good and in almost all cases, these points are below h0, with the point
for Re = 950 slightly above h0.

Following Nemoto and Alexakis, we can connect the CDFs to decay lifetime τd. The algebraic
statement is

τd = δt
P(hB0 )

= δt
P(h0)
P(hB0 )

1
P(h0)

� δt
P(h0)
P(hB0 )︸ ︷︷ ︸
Πd

1
1 − e−(1+ξ (μ−h0)/σ )−1/ξ︸ ︷︷ ︸

fd(Re)

, (4.3)

which we will explain in steps.
The first equality can be understood as follows [21]. Consider estimating τd by MC simulation

with Ndecay independent realizations of decay events. Then τd = Ttotal/Ndecay, where Ttotal is the
total combined time to decay for all realizations. Further letting Ttotal = δt Ntotal, where Ntotal
is the total number of sample points on all trajectories and δt is the sample time, we have
τd = δt Ntotal/Ndecay. Finally, from Ndecay simulations that terminate at hB0 , we have P(hB0 ) =
Ndecay/Ntotal, since there are Ndecay out of Ntotal sample points with Ft ≤ hB0 . In practice, we
construct P(hB0 ) from AMS simulations via (4.2) with a sampling time δt = 1.

The remainder of (4.3) consists of multiplying and dividing by P(h0) and then applying the
previous observations about figure 9c to decompose (4.3) into a factor Πd, that depends only
weakly on Re, and 1/P(h0), that depends strongly on Re. Furthermore, we approximate P(h0) by
the Fisher–Tippett distribution evaluated at h0. The Re-dependence of fd � 1/P(h0) is contained in
the Re-dependence of the parameters μ, σ and ξ . We return to this after discussing the splitting
case.

In almost all respects the splitting analysis is the same as that of the decay case. The only
important differences comes from the fact that the score function φ for splitting (3.2) is not the
turbulence fraction Ft. However, φ and Ft are closely related, both in terms of expression (3.2)
and in terms of the values they take during band splitting in figure 6b. A split is deemed to have
occurred when φ(u(t)) reaches hB2 from below. Hence, analogously with (4.3), the time scale for
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splits is related to the survival function of φ evaluated at hB2 :

τs = δt
P(φ > hB2 )

= δt
Sφ(hB2 )

, (4.4)

where Sφ is the survival function for φ. While one could analyse distributions of the score function
φ, the turbulence fraction is ubiquitous in this field and the distributions in figures 8 and 9b
are of general interest. Hence it is preferable to work with these distributions, even though it
will be necessary to rescale the CDF in figure 9b using Sφ(hB2 ). This is not as awkward as it
may seem since Sφ(hB2 ) = Nsplit/Ntotal, by the same argument as above for decay. Hence, while
we write the normalization in terms of Sφ , it is not necessary to have access to this CDF to
know the normalization, which is determined simply from the number of sample points and
the number of splitting cases. To collapse the CDFs we must also rescale the horizontal axis of
figure 9b. We rescale by hM, the maximum value of Ft observed at each Re. This was unnecessary
in the decay case because the minimum value of Ft is achieved at the Re-independent termination
value hB0 .

Figure 9d shows the rescaled CDFs for band splitting. We observe that the low-probability tails
for different Re collapse well to a common curve h ≥ h2, while for h < h2 the rescaled CDFs depend
strongly on Re. Also shown as points in figure 9d are the upper limits for which the curves are
well approximated by Fisher–Tippett distributions. These points are above, or nearly above h2
in all cases. Hence, we can again exploit this to approximate the splitting time scale in terms of
parameters of the Fisher–Tippett distributions. Starting from (4.4) the algebra is

τs = δt
Sφ(hB2 )

= δt
S(h2)

Sφ(hB2 )
1

S(h2)
� δt

S(h2)
Sφ(hB2 )︸ ︷︷ ︸

Πs

e(1+ξ (μ−h2)/σ )−1/ξ︸ ︷︷ ︸
fs(Re)

. (4.5)

We thus obtain an approximation for τs as a product of a factor Πs, weakly dependent on Re, and
a factor fs(Re), strongly dependent on Re via the parameters μ, σ , ξ , as well as h2. Note that h2/hM

is constant at the start of the collapse zone, but hM depends on Re, and hence so does h2. Values
of h2 and hM, as well as h0, are given in table 2.

Finally, the vertical lines in figure 9c,d indicate the break-even point for transition events to
take place. These have been determined from DNS trajectories that originate in A as follows.
For a given value of h, we compute the fraction of trajectories attaining Ft = h that successfully
transition to B0 or B2, without returning to A. The value of h for which this fraction is 1/2 is
the break-even point. This is conceptually similar to finding where the committor function for a
stochastic process [39] is equal to 1/2, but here we condition on values of the turbulence fraction
and not points in phase space. At Re = 1050 we have not obtained a sufficient number of DNS
trajectories undergoing transition to B2 to estimate the break-even point, and hence this case is
not included in figure 9d. We provide context for these break-even points in the next section.

(c) Super-exponential scaling
We now explore the connection between the observed super-exponential dependence of mean
lifetimes on Re seen in figure 7 and the approximations to the mean lifetime given in (4.3) and
(4.5). We have argued that the dominant dependence of mean lifetimes on Re is captured by the
dependence of the functions fd and fs on Re. These functions depend on Re via the Fisher–Tippett
parameters μ, σ and ξ of (4.1) which are shown in figure 10a. The location parameter μ varies
linearly with Re, a feature which can already be seen in the Re-dependence of the maxima in
figure 8. The Re-dependence of the scale σ and the shape ξ is less clear; their fluctuations may
be due to their sensitivity to the fitting procedure. Since the quality of the fits in figure 8 is not
improved by the inclusion of more simulation data, the fluctuations may indicate that p(Ft) is not
exactly of Fisher–Tippett form even near its maximum.

The parameter ξ plays an essential role in the family of Fisher–Tippett distributions, dividing
them into three categories. Those with ξ > 0 are the Fréchet distributions (also known as type II
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Figure 10. (a) Dependence of the three Fisher–Tippett parameters on Re. These have been obtained by fitting Fisher–Tippett
distributions to the numerical PDFs p(Ft) over ranges hleft ≤ Ft ≤ hright as seen in figure 8. (b) Dependence of log log fd (4.3)
and log log fs (4.5) on Re using the parameters from (a). Dashed lines show linear fits. (Online version in colour.)

extreme value distributions), while ξ < 0 corresponds to Weibull (type III). Figure 10a shows that
the central portions of most of the curves in figure 8 are best fit to Weibull distributions (ξ may be
positive for Re = 815 and 830, but there is too much uncertainty in our fits to be sure). The limiting
case ξ = 0 is the family of Gumbel distributions (type I), which will play a role in §5.

Figure 10b shows log log fd and log log fs from expressions (4.3) and (4.5) as a function
of Re using the numerically obtained parameter values for each Re. Linear fits show that
log log fd � ad Re + bd and log log fs � as Re + bs over a range of nearly 200 in Re in each case.
Hence both fd and fs depend super-exponentially on Re and are at least approximately of the form
[exp(exp(a Re + b))]. Given the functional forms of fd and fs and the complicated dependence of
the fitting parameters on Re, the double exponential dependence on Re is only an approximation.
Nevertheless, we clearly observe a faster than exponential dependence on Re resulting from
modest variation with Re of parameters of the Fisher–Tippett distribution characterizing the
fluctuations in the one-band state.

The interpretation of these results comes from the mechanism proposed by Goldenfeld et al.
[19] and subsequently refined by Nemoto & Alexakis [20,21]. We focus on the decay case, but
similar statements apply to the splitting case. The picture is that the statistics of strong turbulent
fluctuations are governed by extreme value distributions and this gives rise to the strong Re
dependence of the probability P(h0) of states being in the collapse zone h ≤ h0; see figure 9c. Note
that most trajectories that enter the collapse zone do not decay directly, but instead return to
the one-band state A. Only when trajectories achieve values of Ft below the break-even points
(shown as vertical lines in the figure) are trajectories more likely to decay than to return to A.
The probability of decay becomes one at hB0 , since this defines the boundary we have chosen for
the laminar state B0, and the rate of ultimate decay is given by P(hB0 ) which is much less than
P(h0). However, the ratio P(h0)/P(hB0 ) is nearly independent of Reynolds number. Hence up to
a Re-independent multiplicative factor, the decay rate is determined from probability P(h0). The
reason why the CDFs for different Re collapse over a range of turbulence fractions, and why this
occurs for both decay and splitting processes, remains unexplained.

We end this section with a few observations and caveats. We observe that PDFs of Ft are well
fit near their maxima by Weibull distributions, at least for most of the Re range investigated.
This is distinctly different from the Fréchet distributions observed by Nemoto & Alexakis [21] for
maximum vorticity in pipe flow. We note also that while Ft is a non-smooth function of the flow
field, it is not given as an extremum over any feature of the field.

The purpose of decomposing the mean lifetimes (4.3), (4.5) and using the Fisher–Tippett
parameter fits is not to obtain quantitatively accurate formulas for τd and τs, but to gain insight
into the source of the super-exponential dependence on Re. In this regard we note that the biggest
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issue, both quantitative and conceptual, with this approach is that we rely on the existence of
delimiters h0 and h2 that are simultaneously within the collapse zones and within the range
in which the distributions are close to Fisher–Tippett form. As can be seen in figure 9c,d, this
does not hold for 950 � Re � 1050. This was also observed for puff decay in pipe flow: figure 10a
in [21]. This does not invalidate the connection between extreme value statistics and the super-
exponential scaling, but it does mean that there is a gap in using the Fisher–Tippett approximation
at large time scales that at present we do not see how to close.

5. Transition pathways
Extreme value theory not only relates the super-exponential scaling of mean lifetimes to the
distribution of fluctuations of the one-band state, it also provides a framework for understanding
the rare pathways from one state to another. In a previous publication [6] we observed that the
dynamics of band splitting were concentrated around a most-probable pathway in the phase
space of large-scale Fourier coefficients. This motivates us to explore connections with instantons
in the framework of Large Deviation theory for systems driven by weak random perturbations.
See for example [40–42] and references therein. The concept is easily illustrated with the following
stochastic differential equation

Ẋ = −∇V(X) + √
εη, (5.1)

where X ∈ R
d, V is a potential, ε is a perturbation strength and η is Gaussian white noise. We

assume that V has two local minima A and B separated by a saddle point and we consider
transitions from A to B. In the weak noise limit ε → 0, transitions will be rare and the trajectories
associated with these rare events will be concentrated around a most-probable path that connects
states A and B. This is the instanton. The dynamics along the instanton is such as to climb uphill
from A to the saddle point under the influence of weak noise, and then to fall deterministically
from the saddle to B.

Examples of instantons in fluid systems are found for shocks in Burgers equations [41,43],
and have been predicted and experimentally observed in rogue waves [44]. The concentration
of transition paths around an instanton in a high-dimensional fully turbulent system was first
observed by Bouchet et al. [13] in a 2D barotropic model of atmospheric dynamics. Schorlepp et al.
[45] have used instanton calculus to investigate the most likely configurations to generate large
vorticity or strain within turbulence in the 3D Navier–Stokes equations. This phenomenology can
also apply to deterministic chaos, as in the solar system [46]. Rolland has discussed instantons
specifically in relation to turbulent–laminar transition, both in a model system [16] and in plane
Couette flow [18].

Rare transitions of the type considered here could exhibit instanton-type behaviour if turbulent
fluctuations were to play the role of weak noise. A detailed investigation is outside the scope of
this paper, but the current interest in the topic and the capacity of AMS to generate large numbers
of rare transitions motivates us to briefly present transition paths for decays and splits. Examples
of each are shown in figure 11. By binning samples from 200 transition paths we construct PDFs
and then render isosurfaces of these PDFs to reveal the reactive tubes where paths concentrate. We
include only reactive trajectories that leave A and terminate at the boundary of B0 or B2 without
returning to A.

The coordinates used for the PDF are chosen separately for decay and splitting. For decay, we
show the decay of energy associated with the three velocity components of the flow, Ex, Ey, Ez

E(x,y,z) ≡ 1
LxLyLz

∫
Ω

1
2

(u2, v2, w2) dx.

Figure 11a shows that the reactive pathway from A to B0 is such that Ey decays most quickly,
followed by Ez, followed by Ex so that the tube of reactive trajectories approaches B0 almost
tangent to the Ex axis. This ordering of decay of energy components has been reported previously
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Figure 11. Joint probability density functions for reactive trajectories going from (a)A toB0 at Re= 830 (decay events) or (b)
fromA toB2 at Re= 1150 (splitting events). (a) Isosurface of p(Ex , Ey , Ez) enclosing 90% of the total probability. (b) Isosurface
of p(û0,1, û0,2, û0,3) enclosing 80% of the total probability. Two-hundred trajectories are computed in each case. (Online version
in colour.)
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Figure 12. (a) Histogram of the reactive times TAB2 at Re= 1150, estimated with the AMS on N = 500 trajectories. Dashed
lines show a fit with a Gumbel distribution (5.2) withα = 1.9 × 103 andβ = 2.7 × 10−3. (b) Mean reactive times TAB0 and
TAB2 , for different Re, estimated with the AMS. Error bars indicated one standard deviation. Reactive times are measured from
a random point inA to the boundary ofB0 orB2. (Online version in colour.)

[6,47]; here the 90% probability isosurface shows that almost every successful decay trajectory
follows a similar path.

For splits, we use coordinates similar to those in [6], the first three z Fourier components
û0,1, û0,2, û0,3 of u, averaged in x and y:

û0,n = 1
LxLz

∫
dy
∣∣∣∣
∫

dx
∫

dz u(x, y, z) e−2π inz/Lz

∣∣∣∣ .

Figure 11b shows that the reactive pathway from A to B2 for the case of splits consists of a highly
curved tube. This shape arises from the non-monotonicity of the splitting trajectories in these
coordinates, as seen in [6]. While a one-band state in A is characterized by high û0,1, the magnitude
of û0,2 decreases at the beginning of a split before reaching its ultimate higher value in the two-
band state in B2.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 M

ay
 2

02
2 



22

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210036

...............................................................

The transition pathways can also be described by the distribution of reactive times TAB.
Reactive times have been characterized by Gumbel distributions

pGum(T) = β e−β(T−α) exp (−e−β(T−α)), (5.2)

rigorously in simple stochastic ODEs in the weak noise limit [48], and observationally in one-
dimensional stochastic PDEs [11,16] and in the decay of uniform turbulence in the Navier–Stokes
equations [18]. We find that the distributions of reactive times TAB0 for decays and TAB2 for
splits are consistent with Gumbel distributions for each Re and hence also with instanton-like
behaviour. Figure 12a illustrates this for Re = 1150, but the relatively small number of computed
reaction trajectories (around 500 for this Re) precludes drawing more definite conclusions. The
mean duration of reactive trajectories and their standard deviation as a function of Re are shown
in figure 12b. The mean reactive times TAB vary only modestly with Re within each of the decay
and the splitting regimes, as do the standard deviations (shown by the error bars).

The results presented in this section were motivated by interest in rare-event pathways
and instantons in particular. We observe that reactive trajectories for both decays and splits
concentrate around a reactive tube in phase space. This suggests that turbulent fluctuations are
dominated by the collective behaviour of trajectories along a most-probable path, which may be
an instanton. We observe mild contraction of pathways as we vary Re and events become rare
(see electronic supplementary material). Such contraction would be expected if the transitions
exhibited instanton-like behaviour. At the present time, even using the AMS algorithm, we have
not produced sufficient numbers of independent reactive trajectories at very high transition times
to draw definite conclusions and more work is needed to relate this behaviour to the Large
Deviation theory.

6. Discussion
Determining—or even defining—the threshold for turbulence in wall-bounded shear flows has
been an important question since Reynolds’ 1883 article [49]. Over time it has become clear that
transitional turbulence is typically metastable and that transitions from metastable states play
a crucial role in determining the onset of sustained turbulence [50–55]. The culmination of this
realization was the study of Avila et al. [4] that determined the mean lifetimes for puff decay and
puff splitting in pipe flow and showed that these lifetimes cross at a critical value of the Reynolds
number Rec. Although this work involved both numerical simulations and experiments, it was
only through experiments that the very long lifetimes associated with Rec were accessible. This
has driven interest in capturing transitions from long-lived metastable states in wall-bounded
flows via numerical simulations in order to obtain a clearer theoretical understanding of these
events and of their Reynolds number dependence.

We have used the AMS algorithm [7–9] to obtain rare events in plane channel flow. We have
specifically analysed transitions from the metastable one-band state to either laminar flow (decay)
or to a two-band state (splitting) in tilted-domain simulations of the 3D Navier–Stokes equations
with 2 × 107 degrees of freedom. Using AMS on this large system we have been able to obtain
mean lifetimes as large as 5 × 106 in advective time units with a gain in computational efficiency
of a factor of up to 100 over the standard MC approach. This has permitted us to access timescales
near the lifetime crossing point for this flow. With the significant number of rare transitions we
obtained, we have been able to construct weak tails in the probability distribution functions for
the turbulence fraction. Exploiting ideas by Goldenfeld et al. [19] and Nemoto & Alexakis [20,21],
we have been able to link directly the super-exponential variation of mean lifetimes with Re, for
both decay and splitting, to the distribution of fluctuations in the one-band state. Finally, we have
examined briefly the reaction pathways for decay and splitting.

Without conducting an extensive companion study in a large untilted domain, we cannot rule
out effects of our narrow tilted domain on the transition rates and paths. However, we can cite
comparisons of thresholds in the two types of domains. Shimizu & Manneville [29] carried out
channel flow simulations in large domains of size Lx′ × Lz′ = 500 × 250 or 1000 × 500 and obtained
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a threshold between Re = 905 and 984 for one of the two regimes they studied. This is quite
close to the crossover at Re ≈ 980 between the decay and splitting times that we have computed
here in a narrow tilted domain via AMS. In plane Couette flow, the threshold for transition to
turbulence was estimated to be Re = 325 by Shi et al. [5] as the decay-splitting lifetime crossing in
computations in a narrow tilted domain. This is the same as the value estimated experimentally by
Bottin et al. [51,52] and numerically by Duguet et al. [56], in rectangular domains of size 380 × 70
and 800 × 356. An experiment in a much larger domain of size 3927 × 1500 by Klotz et al. [57]
yields Re = 330 ± 0.5 as the threshold.

Throughout this study we have focussed on the turbulence fraction as a scalar observable of
the state of the system, in large part because it is an easily obtainable quantity of general interest.
While turbulence fraction is presumably not a mechanistic driver of either event, it is a very
informative observable that is highly correlated to the distance to the targeted states. Our analysis
of the super-exponential dependence of mean lifetimes on Re is probabilistic and relies heavily
on the observed, but unexplained, collapse of rescaled distributions of Ft over what we call the
collapse zone.

This approach is complementary to the dynamical-systems approach to turbulence [2,58–60].
It would be useful to connect these approaches and to understand the mechanisms at work within
the collapse zone. A particular question is the role played by saddle points or edge states [2,25,61–
63] in creating behaviour that can be rescaled and collapse to Re-independent form, because this is
a key ingredient in how turbulent fluctuations are connected to decay and splitting events. While
there is much previous work on decay from a dynamical-systems perspective, there is little to rely
upon in the case of splitting.

Our investigation of reaction pathways demonstrates their concentration in phase space for
both decay and splitting events. We have also observed a Gumbel distribution for the reaction
times. The mild contraction of pathways that we have observed as the transition probability
becomes very low resembles an instanton, but is inconclusive. To better support this picture,
we would need to quantify the level of the fluctuations of the effective degrees of freedom in
the system and how the fluctuation levels depend on the Reynolds number. Following this,
we would need to compare the transition-rate dependence on the Reynolds number to what
would be expected from the level of fluctuations within Large Deviation theory. This would
require us to disentangle the effect of Re on turbulent fluctuations from its effect on the potential
term, which itself strongly depends on Reynolds number as seen by the parameterization of
the PDFs within the one-band state (figures 8 and 10a). This approach would thus require the
computation of the action minimizer in Large Deviation theory, which is out of the scope of
the current study. This fundamental issue is related to the absence of a second parameter that
would independently control the level of turbulent fluctuations and thereby allow an approach
to a low-noise limit. We note that the states studied here are localized and insensitive to
domain length. Hence domain size, the one parameter other than Re available in the numerical
simulations, does not provide a means to influence the effect of fluctuations on the transitions.
We refer the reader to the important studies of Rolland [16,18] on rare events in transitional shear
flows.

Finally, while we have succeeded in using the AMS algorithm to compute rare events in the
3D Navier–Stokes equations represented by O(107) degrees of freedom, the experience has not
been without difficulties. The most notable issues are: (i) the algorithm sometimes stagnates,
making very slow progress toward obtaining trajectories reaching the target state and (ii) the
variance in the estimated mean lifetimes associated with the AMS realizations is large, thus
requiring the costly step of running multiple realizations. The method used here could possibly
be improved with the implementation of Anticipated AMS [18]. Most importantly, the score
function is well known to be crucial to efficient performance of the algorithm. Finding a score
function that targets successful splitting events has been particularly challenging. Although we
have obtained a serviceable empirical score function based largely upon the turbulence fraction,
a more far-ranging search for appropriate score functions is needed.
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