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ABSTRACT

Spherical Couette flow for the gap size oo = 0.18 is
studied using a numerical axisymmetric initial value code.
Iransitions between states with zero, one, or two Taylor
vortices per hemisphere are simulated numerically. It is
found that transitions to the ome-vortex state occur asym-—

metrically with respect to the equator, despite the symmetry
of the initial and final states. We show that a small

interval of the primary branch, consisting of zero- and two-
vortex states, is linearly unstable to an antisymmetric per-—
turbation. The instability initiates transition to the
secondary branch containing the one-vortex states. Eigen-
values and eigenvectors of the perturbation are computed.
Torques of steady states and critical Reynolds numbers for
transition are compared with experiment.
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PAKT I

1. INTRODUCTION

The subject of this thesis is an axis,umetric numerical

study of Taylor vortices in spherical Couette flow. Spheri-

cal Couette flow, defined to be the incompressible flow

between differentially rotating concentric spheres, encom-

passes a rich variety of phenomena as the parameter values

are varied. The configuration with inner and outer radii R,

and R,, and angular velocities 2, and Q, is shown in Figure

1.1. R, and R, can be combined into the non-dimensional

gap width

8]
(R,-R,)

(2.1)

which completely specifies the geometry.

When the gap width o is small, the flow near the equa-

tor is a variation of cylindrical Taylor-Couette flow, the

classic hydrodynamic problem of flow between two differen-—

tially rotating cylinders (Taylor 1923). We specialize

further to the the case im which the outer cylinder or

sphere is at rest, i.e. Q, = 0. The Reynolds number is

defined by

Re =

2

R,8,
(1.2)

where v is the kinematic viscosity. Re and o supply a com-

plete set of non-dimensional parameters.
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The flow is required to satisfy the Navier-Stokes equa-

E+ 3 Ad

du a2 =
3t + (a « V) nu VP + Re v oh

the equation of incompr=-sibility

Ay -

 oa = 0

and the two-point no-slip boundary conditions

a(R,,0) = 2,R,sin@ eg u(R,,0) = 0

The ¢ component of the flow is called azimuthal

(1.3)

(1.4)

(1.5)

while the

flow perpendicular to

IL n nb r a
©

A4

J
(1 8)

is called meridional

1.1 Spherical and cylindrical Couette flow

The solution to (1.3-1.5) obtained by removing the time

dependence and setting Re to zero, thereby eliminating non-

linear terms, is called Stokes flow. The Stokes solution is

exclusively azimuthal. Each radial shell moves with a con-

stant angular velocity which varies smoothly from that of

the inner radius to zero at the outer radius.

In cylindrical Couette flow (with infinite aspect

ratio), due to fortuitious cancellation pressure gradient

with the nonlinear terms, the Stokes solution happens also

to be a solution to the full nonlinear Navier-Stokes equa-

tions (1.3). Apart from scaling, the laminar flow “changes

with increasing Re only when it becomes unstable. It is not



surprising that cancellation of the nonlinear terms and

pressure gradient does not occur in spherical Couette flow.

A small meridional velocity is generated by the Stokes solu-

tion since the governing equation of the meridional velocity

contains nonlinear terms in the azimuthal velocity. The

small meridional velocity in turn influences the azimuthal

velocity. Spherical Couette flow deviates from the Stokes

solution for any finite Reynolds number. The resulting

intractablity of spherical Couette flow favors «cylindrical

Couette flow for analytic study, despite the widespread

occurrence of spherical geometries in geophysical and astro-

physical applications.

Although no closed form solution for spherical Couette

flow has been found, a qualitative description for the basic

(low Reynolds number) flow can be given. The largest com-

ponent of the velocity is still azimuthal, and does not

depart greatly from Stokes flow. The meridional motiom is

driven by Ekman pumping, which expells fluid out from the

poles along the surface of the rotating inner sphere. The

streamlines resulting from the superposition of the azimu-

thal and the weaker meridional motion are spirals. Despite

being three—dimensional, the flow is avisymmetric (i.e.,’

axisymmetric with swirl).

In cylindrical Couette flow, the basic flow (the Stokes

flow, in this case) becomes unstable to Taylor vortices when

the angular momentum gradient, as measured by the Reynolds
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number, reaches a critical level (Rayleigh 1916). Taylor

vortices redistribute the angular momentum among cylindrical

shells. Taylor vortex flow remains avisymmetric until a

higher Reynolds number is attained

In spherical Couette flow, Taylor vortices also form

when Re exceeds a critical value, but only in the equatorial

region and only for o ¢ 0.24 (Belyaev 1978). The medium gap

size 0 = 0.18 which we use was first selected for experimen-—

tal study by Sawatzki and Zierep (1970) and Wimmer (1976).

Bonnet and Alziary de Roquefort (1976), Bartels (1982), and

Schrauf (1983) numerically investigated the almost identical

gap size o = .17647

immer, Sawatzki, and Zierep found three different

axisymmetric steady states at Re 2 600, each with a dif-

ferent number of Taylor vortices (zero, one, or two) per

hemisphere. The equilibrium attained by the flow depends on

its history, in particular on the acceleration of the inner

sphere to its final angular velocity. Non—-uniqueness in the

number of vortices has also been observed experimentally in

cylindrical Couette flow (Coles 1965, Snyder 1969, Bur-

khalter and Koschmieder 1974), especially in short cylinders

(Benjamin 1978b). However, the classical mathematical model

(Kirchgassner and Sorger 1968, Kogelman and DiPrima 1970)

for c¢ylindrical Couette flow assumes cylinders of infinite

length and the number of vortices is imposed as one of the

parameters.
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Initial-value codes for spherical Couette flow have

been written by Bonnet and Alziary de Roquefort, and Bartels

which are axisymmetric and reflection symmetric about the

equator. They have reproduced some of the final states

observed by Wimmer, and have observed non-uniqueness caused

by accleration rate, but have failed to generate what is

called the one—vortex state as a transition from the basic

flow.

Two questions emerge from these previous studies:

1) Why has generation of the one-vortex state eluded other

initial-value studies?

2) What is the mechanism by which the hi c “Dr Tr of Fh flow

determines the final steady state?

The thesis answers these questions.

1.2 Organization of thesis

Part I continues the introduction to the problem and

describes our numerical simulation. Chapter 2 is a survey

of the literature of Taylor vortices in spherical Couette

flow. In chapter 3, we describe the numerical methods used

in our time-dependent, axisymmetric code. We emphasize that

our program differs from previous simulations, in that it

does not impose equatorial symmetry and uses spectral

methods rather than finite differences. In chapter 4, we

show that our program is not only internally consistent, but

also gives results which agree well with previous investiga-

tions, particularly the experimental measurements of Wimmer.
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In Part II, we present our numerically computed flows.

Detailed descriptions of the steady flow states for oo = 0.18

-— with zero, one, and two Taylor vortices —— are in

Chapter 5. In Chapter 6 the time evolution of the tramsi-

tions among the different steady flow states are given. The

transitions have not been described previously in either

experimental or numerical studies. Question 1) about the

"missing transition” that has evaded previous initial-value

solvers is answered in chapter 6, since we will see that

transition to the one—-vortex state occurs asymmetrically

about the equator.

In Part III, we analyze the asymmetric transitions in

more detail. The numerical steady-state results by Schrauf

(1983), describing the mathematical structure of the solu-

tion branches, have provided the groundwork for our comple-

mentary time-dependent analysis. His steady-state results,

as well as our own, are reviewed in chapter 7. The subject

of chapter 8 is the antisymmetric linear instability ini-

tiating the transition to the CRE~VOTLeE mode. We answer

question 2) about the mechanism determining the final steady

state from the history of the acceleration by showing that

there is a small interval or "window", in Reynolds number,

of unstable states. Chapter 9 is concerned with the non-

linear development of the asymmetric transition, in particu-

lar, the &amp;energy transfer between modes. In chapter 10, we

summarize the results and give suggestions for further

investigation.
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Figure Captions —— Chapter 1

Figure 1.1 Geometry for spherical Couette flow. The inner
radius is R;, and the outer radius is R,. The
angular velocity of the inner sphere is Q,, that
of the outer sphere Q2,.
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2. HISTORICAL SURVEY

There have been a number of investigations of spherical

Couette flow, both experimental and numerical. We will sur-

vey only those relevant to the investigation of Taylor vor-

tices. The critical Reynolds numbers at which Taylor vor-
3

tices first appear (with Re = Q,R,/v) are highly dependent

on gap size, partly because of the use of the length scale

R, rather than the more appropriate length scale R,-R, used

in the standard Re for cylindrical Couette flow. If we wish

to compare our data at oo = 0.18, with results for different

gap sizes, it is more appropriate to use the Taylor number

3

Ta = Re o-. Note that for cylindrical Couette flow, the

critical Taylor number at which Taylor vortex formation

pccurs is Ta_ = 41.3

2.1 Discovery of Taylor vortices in spheres

Bratukhin (1961) performed a linear stability analysis

for spherical Couette flow, Expanding the basic flow in

powers of Re, he approximated the basic flow by the Stokes

solution and the lowest order meridional flow. The axisym-—

metric eigenfunctions of the linearized perturbation problem

are products of Legendre polynomials in © of order L and

spherical Bessel functions in radius, of the same order L.

By looking only at perturbations with L = 1 and L = 2, he

obtained Ta = 100 for ¢ = 1.0. The most unstable eigen-—

function found was of the same spatial form as the basic

flow, not of the Taylor vortex type. Sorokin, Khlebutin,
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and Shaidurov (1966) experimentally tested the validity of

Bratukhin’s analysis for o = 1.0, and indeed found only a

continuous change with Taylor number, not a sudden transi-

tion. There was no qualitative change in the fluid motion.

The torque (which, non-dimensionalized by ir.g., we will

call =&lt;) obeyed, for Ta &lt; 80, the relation t « (1/Re) which

can be derived theoretically from the Stokes solution. For

Ta &gt; 100, the torque obeyed the relation t « (1/Re)?, which

is associated with boundary layer formation.

Khlebutin (1968) then carried out experiments in the

range .0371 &lt; o &lt; 1.5147. He observed the formation of Tay-

lor vortices near the equator for oo 0.19 but not for

oc &gt; 0.44. (His experiment did not investigate the range

0.19 0 &lt; 0.44.) Visual observations of the transition were

accompanied by an abrupt increase in the slope of the

torque..Althoughvorticeswereobservedfor0.12¢ ¢ £ 0.19,

a difference in the torque dependence after transition led

him to distinguish between these "medium” gaps and the nar-

row gaps with o &lt; 0.12. Khlebutin calculated the the best

fit over his five values of o to be Ta = 49, which is close

to the value. for cylinders Ta = 41.3

Yakushin (1969) repeated the analysis of Bratukhin for

small oo (.07 and 0.1). He approximated the basic flow by

the Stokes solution, pointing out that an expansion in Re

for the basic flow converges more rapidly for small 6. By

solving the linearized perturbation equations numerically,
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he was able to investigate the stability of the basic flow

to perturbations with L &lt; 30. He found that the most

anstable perturbations were indeed systems of vortices, with

amplitude much greater at the equator than at the poles.

Significantly, he also found that two perturbations became

anstable at the critical Reynolds number, one symmetric with

respect to the equator, and the other antisymmetric. He

speculated that an asymmetric flow might then develop, from

the basic symmetric flow. For o = 0.1, his Ta = 50.6 is in

good agreement with Khlebutin'’s experiments. For ¢ = 0.07,

the agreement of his Ta = 60.3 is not as good, and Yakushin

attributed this to insufficient numerical resolution. Heu-

ristically, for good spatial resolution of Taylor vortices

(assuming they have nearly «circular cross-sections), the

maximum L must be &gt; n/c, a criterion which is violated for o

= 0.07, but not for oo = 0.1

2.2 Experimental results for o = 0. ls

Sawatzki and Zierep (1970) described spherical Couette

flow in great detail for the narrow and medium gap regime.

Wimmer (1976), who helped perform these experiments, later

expanded their results. In both regimes, the torque =&lt;

obeyed the relation © = (1/Re) for laminar flow, tT « (1/Re)?

1

for supercritical flow, and tv = (1/Re)’ for turbulent flow.

For the narrow gap (oc = .0527), they found a «critical

Taylor number of 41.3 (identical to that im cylinders) at

which Taylor vortices form near the equator. According to
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Sawatzki and Zierep, for this narrow gap, at a slightly

higher Reynolds number, the vortex axes form spirals and end

freely in the flow field, while according to Wimmer, they

remain closed and parallel to the equator. In any case, the

flow field near the poles is not altered, more vortices are

stacked as the Reynolds number is increased, and at a much

higher Reynolds number, the vortices become wavy.

For the medium gap (oc = 0.18), at Re &gt; 650 (Ta &gt; 49.6)

Sawatzki and .Zierep, and Wimmer observe five different

stable flow modes. Three modes are axisymmetric, with zero,

one, or two Taylor vortices per hemisphere. Which mode

pccurs at a given Reynolds number depends on the history of

the flow, specifically, on how quickly the inner sphere is

accelerated to its final angular velocity.

The one—-vortex state, which they call Mode III, has one

vortex just above and one just below the equator. The two-

vortex state, their Mode IV, has two vortices above and two

vortices below the equator. The one-vortex state is most

easily obtained by starting with the two-vortex state and

increasing the Reynolds number. Wimmer notes that this

transition, accomplished by the gradual diminution of the

vortices mnearest the equator, occurs at Re = 3950 (Ta =

302), He also obtained the one-vortex state directly from

the basic state at Re = 650 (Ta = 49.6) if the acceleration

of the inner sphere is gradual. It is the one- and two-

vortex flows which will - be of interest to us, so we will
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refer to Wimmer's results about these states throughout the

thesis.

Sawatzki and Zierep's mode V is a periodic version of

the one-vortex state, in which vortices, their axes no

longer parallel to the equator, are periodically generated

at the equator and spiral to the poles. Wimmer found a

similar variation of the two-vortex state, which he «called

Va. Mode II of Sawatzki and Zierep contains spiral vortices

which begin at the poles. Of a completely different charac-—

ter than the Taylor vortices, these are called Stuart vor-

tices. Wimmer did not call this a separate mode because

Stuart vortices at the poles could exist in combination with

any of the equatorial Taylor vortex flows: the zero-, one—,

or two— vortex steady or periodic states. Stuart vortices

are always formed at Re = 5500 (Ta = 420), -before the onset

of turbulence.

Their Mode I (which we will call the supercritical
1

zero-vortex state) obeys the torque relation © = (1/Re)” but

has no vortices. Instead, according to Sawatzki and Zierep,

there are boundary layers near the inner and outer spheres,

and the region between them rotates like a solid body with

angular velocity less than that of the inner sphere.

Sawatzki and Zierep note that boundary layer formation inhi-

bits the mechanism causing Taylor vortices. Wimmer also

describes a faint and short-lived vortex carried from the

saquator to the poles during the establishment of this mode.
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2.3 Further stability analyses

After numerically obtaining the approximation to the

basic flow accurate to seventh order in Re, Munson and

Joseph (1971) investigated its stability. They used energy

theory, in which one calculates the growth or decay of the

energy of disturbances of .arbitrary size. This gives a

lower bound for Re because the disturbance found to yield

instability may not in fact be excited. Munson and Menguturk

(1975) continued this study with linear stability analysis.

Linear theory gives an upper bound on Re ‘because the dis-

turbances admitted are limited to the infinitesimal, and

other, larger, disturbances may be excited. Munson and

Joseph explain that both the energy and the linear theory

are greatly complicated by the dependence of the basic flow

on the Reynolds number. In each case, a linear eigenvalue

problem arises that depends upon the basic flow. The eigen-

value problem not only contains Re as a parameter, but must

be solved anew for each Re. The numerical calculations were

only carried out for large gaps (oc &gt; .33). For oo = 1.,

Bratukhin's value, the most unstable perturbation by linear

theory was axisyrmetric but equatorially asymmetric, while

the energy theory yielded a perturbation with neither sym-

metry

Munson and Menguturk (1975) also conducted e-~eriments.

Although their primary interest was in wide gaps, they also

studied a small gap (oc = 0.135) and observed Taylor vortices
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at Ta ~ 45-48. Their results are in good agreement with

those of Khlebutin, Yakushin, and Sawatzki and Zierep. Mun-

son and Menguturk compared their experimental torques with

the theoretical torques calculated by Howarth (1954) for

boundary layer (large Re) flow outside a rotating sphere in

an infinite medium. Although these theoretical torques are

intrinsically independent of gap width, they agreed well for

large Re (Re &gt; 2000) with the measured values even in the

small gap oo = 0.135

Walton (1978) carried out an analytic linear stability

analysis in the mnarrow gap limit. He used an expansion of

the basic flow in powers of 6 Ta and o. Considering

axisymmetric and equatorially symmetric eigenfunctions only,

and using matched asymptotic expansions, he found the O(c)

correction to the cylindrical Ta and the number of vortices

in the eigenfunction. His values compared favorably with

those of Wimmer for o = 0.0527 . Finally, Soward and Jones

(1983) showed specifically that the Ta for spheres must be

slightly higher than that for cylinders, in the narrow gap

limit.

2.4 Wide and narrow gap instability; results for o = 0.11

A series of papers by Yavorskaya and others gave a

definitive criterion for the difference between narrow and

wide gaps. Taylor vortices form if o¢ &lt; 0.23 and not if

oc &gt; 0.24 , More precisely, the experiments of Belyaev, Mona-

khov, and Yavorskaya (1978) divided Re-c space into four
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regions with quite different properties. In the lowest (in

Re) region there is only basic flow. This is bounded by a

curve Re vs. 6, above which there is a region in which the

only stable flow is that with Taylor vortices. The upper

boundary of this region is another curve, above which the

state with no vortices remains stable if the fluid is

accelerated into it quickly enough from the basic flow

state. Finally, much higher, there is another transition

line, smoothly connected to the line of transition for thick

layers, above which the fluid becomes unstable to the

thick-layer type of instabilities. These are quite dif-

ferent from Taylor cells; in particular, they are non-

axisymmetric, equatorially asymmetric, and unsteady, as seen

eaxperimentally by Yavors:aya, Belyaev, and Monakhov (1975)

with ¢ = 0.54

The explanation of Belyaev et al. for the lack of Tay-

vortices in wide gaps is as follows: Yavorskaya (1975)

had derived an approximation for the meridional flow and
] 3

showed its intensity to be &lt;« Ta c¥. Assuming the onset of

lor

Taylor vortices occurs at a fixed Taylor number, independent

of o, we see that the intensity of the meridional flow at

onset increases with oc. Belyaev et al. (1978) argue that

when the meridional velocity is large enough, the redistri-

bution of angular momentum is sufficient to suppress the

instability forming Taylor «cells. The suppression of the

Taylor instability also exists in thin layers, and had been

invoked by Sawatzki and Zierep to explain the stability of
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their mode I, the zero-vortex state at supercritical Re.

Astaf’eva, Vvedenskaja, and Yavorskaya (1978) wrote =a

numerical time— dependent axisymmetric program whose results

they compared with the experiments of Yavorskaya, Belyaev,

and Monakhov (1977). They expanded in Legendre polynomials

in 6 and used a finite difference mesh in radius that con-

centrated points at the boundaries. In time, they used for-

wards (Euler) differencing for the nonlinear term and back-

wards (implicit) differencing for the viscous term. For the

thin gap (o = 0.11) with a stationary outer sphere, they

used 10 points in radius, and up to 90 Legendre polynomials

in 6. They obtained states with up to four vortices in each

hemisphere. There was overlap in the ranges (in Re) of sta-

bility of states, i.e. non—-umniqueness.

The numerical simulation of Astaf'eva et al. agrees

remarkably well with experiment, especially for states with

two or more vortices. The experimental values found by

Yavorskaya et al. (1977) for the lower bounds of stability

of the two—, three—, and four— vortex states are Ta = 48,

56, and 63 (Re =~ 1310, 1550, 1730), respectively. The

values computed by Astaf'’eva et al. are “only 2-3% higher

than the experimental values.

The lower bound of stability of the one—-vortex state

was found numerically to be 45.8 as compared to the experi-

mental value of 44.7. Experimentally, Ta = 44.7 was also

found to be the the upper bound of stability of the basic
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However, the simulation did not reproduce the upper bound of

stability for the basic state. In fact, Astaf’'eva et al.

could not obtain a one-vortex state as a solution to the

initial value problem by starting with the basic flow and

merely raising Ta. They were forced to add a disturbance

resembling the one-vortex state, which then evolved into a

steady one—vortex state. To explain their inability to gen-

erate a one-vortex state without adding such a disturbance,

Astaf'eva et al. hypothesize, based partly on experimental

observations, that this transition must take place through

non—axisymmetric or non-equatorially symmetric perturba-

tions

2.5 Numerical results for o = 0.17647

Other numerical time-dependent simulations were also

anable to obtain the one—-vortex state from the basic flow.

Bonnet and Alziary de Roquefort (1976) calculated the flow

for a variety of gap sizes, in particular the gap size non-

dimensionalized by the outer radims (R,-R,)/R, = 0.15 which

corresponds to oo = 0.17647 , almost Wimmer'’s oo = 0.18 .

Their axisymmetric, equatorially symmetric simulation wused

finite differences and 65 points in both directions. At Re

= 900 (Ta = 66.7), starting from rest, they obtained two

vortices per hemisphere. If started from the steady Re = 900

solution, the flow at Re = 1500 (Ta = 111.2) retained its

two-vortex structure, but, if started abruptly from rest,
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did not develop vortices. This corresponds qualitatively

with Wimmer'’'s finding that no vortices were formed for Re &gt;

1700 (Ta = 118.6) if the accel ration of the inner sphere to

its final value was large.

Bartels (1982), whose methods were similar to those of

Bonnet and Alziary de Roquefort, tried to generate the one-

vortex mode at o = 0.17647, first by using the small

accelerations described by Wimmer as producing such a mode.

Remarking, like Astaf'eva et al., that perhaps their failure

to generate the one-vortex state was due to the imposition

of equatorial symmetry, Bartels conducted simulations in the

whole space 0 &lt; © { mn, allowing round-off error to produce

asymmetric perturbations. However, he found that this did

not greatly influence the final solution. Since our study

shows that asymmetric perturbations generated by round-off

error substantially alter the evolution of the flow, we

hypothesize that Bartels did not carry out the simulation

for a sufficient time to observe this effect. Eventually,

adopting the same kind of procedure as Astaf'eva et al., the

solution was forced to temporarily obey a symmetry condition

at 90.7 degree. When this condition was lifted, the solu-

tion then relaxed into a stable, steady, equatorially sym-

metric one-vortex state, provided the Reynolds number was

above 700 (Ta = 51.9). The vortex disappeared quickly if Re

was lowered below 687 (Ta = 50.9), and remained a solution

at least until Re = 1500 (Ta = 111)
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Starting from rest, the two—-vortex state appeared spon-

taneously at Re = 700 (Ta = 51.9). For Re &gt; 1300 (Ta &gt; 96),

a zero-vortex solution could be generated for fast enough

acceleration, but changed into a two-vortex solution if Re

was lowered to 1200 (Ta = 89). For all of these solutions,

Bartels calculated torques that were agreed well with those

of Wimmer. Bartels used 98 points in © (0 ¢ © ¢ n/2) and 20

in radius for his finite difference scheme, and showed that

a mesh of 32 points in © and 10 in radius was insufficient,

generating erroneous results.

Bartels obtained interesting results by varying oc. He

found the maximum oo for Taylor vortex formation to be

o = 0.205 and the maximum number of vortices per hemisphere

to be =n = .4/¢ . Bartel's value of o = 0.205 differs

slightly from the value oo = 24 found experimentally by

Belyaev et al. (1978), perhaps. due to the absence of the

one—vortex state. A sudden acceleration from rest resulted

in the zero-vortex state for Ta &gt; 17.5/¢

Schrauf (1983) used the continuation method of Keller

to calculate steady states. This type of calculation fol-

lows solution branches, regardless of their stability, and

had never previously been performed for spherical Couette

flow. Ee studied the axisymmetric and equatorially sym-

metric steady states of the gap width o = 0.17647 for Re (

1600, i.e. the zero—, one—, and two— vortex states. Finite

differences were mused, with a mesh of 11 radial and 61 or
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We briefly describe Schrauf'’s bifurcation diagram, in

which the structure of the branches is far more complex than

previously supposed. The most striking of Schrauf'’s results

is that the one-vortex states lie on a separate solution

branch, which does not intersect the branch containing the

basic flow. Transition from the basic flow to a one-vortex

state does not occur by bifurcation. The one-vortex branch

has turning points at Re = 653 and Re = 1065 (Ta = 48.4 and

Ta = 79); steady one-vortex states should not be observed

above or below these values, according to his study. At

Re ~ 1065, Schrauf'’'s one—-vortex branch is connected to an

anstable branch along which there are both one- and two-

vortex states. It then has yet another “turning point at

Re 2 800, above which it consists of zero-vortex states.

The two-—vortex states occupy the same branch as the basic

flow. Another interesting feature of Schrauf'’'s diagram is

the existence of yet more unconnected branches above Re =

1300 : a one-vortex branch and a zero-vortex branch. One of

the stable branches, unconnected to the others, contains

zero—-vortex states. It does not exist below Re = 1300

(Ta = 96) and would seem to be a good candidate for the

supercritical zero—vortex states.

Dur results are generally in agreement with those of

Schrauf where the two studies overlap, with the following

exception: in our study, we find that steady one-vortex
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states continue to exist until at least Re = 1300. At Re =

1200, we generated the same steady one—-vortex state by using

a resolution of 16 points in radius and 128 points in © as

when a finer resolution of 16 by 256 was employed (see

chapter 3 for description of our method). We attempted to

reconcile this with Schrauf’s result that the branch of

steady one-vortex states ended at Re = 1065. This Re is also

mentioned by Wimmer as corresponding to a transition to the

two-vortex state when the system was accelerated very

slowly. However, we found a transition from the one-vortex

state to the two-vortex state to occur only by using a

coarser resolution (8 points im r and 64 points in ©) at Re

1200. We therefore conclude that a steady one-vortex

state exists at Re = 1200 if sufficient resolution is

employed.
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3. NUMERICAL METHODS

3.1 Equations of Motion

With the assumption of axisymmetry, the four equations

and variables of incompressible fluid mechanics reduce to

only two. Because axisymmetry implies that the meridional

part of uw is divergence—free (as well as uw), it can be

written as a curl. We write

¥ 3 er(-&gt;

2) = w(r,"?)

i = + Uv (¥

? ¥(r,0)

£ (3.1)

"hus

; = ——1__ 3 Psine
rsin® a0 o-

 12 r}
« dr

(3.2)

The standard formulation (Rosenhead 1963) is

7 -=iT% [wey + VP! x eql

The relationship between the standard formuiation and

(3.3)

ours

IQ

[))  = @wrsin® P' = Prsin6 (3.4)

P* is the meridional stream function; contours of constant

Po are streamlines of the meridional velocity. No signifi-

cance is attached to this difference in formulations.

3
Define the operator A by its action on the scalar ff:

4 4
( © ——

2
r

i

.2
etn BH

} { 3 L)
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Note that

ANd

The

vh1

2 &gt;

Af = es - Vv fey (2.6)

that if f is axisymmetric, then

. Vx [Vx (fey)l = - A
2

(3.7)

equation for the # component of uw is

J w
J +

= (v ) + =a’
= 64 - WX XxX u Re w \

«
~

-

7%=)

ie the ejun9s*ion for the # component of V x u is

)__:
 1 Y

14+ Vx [ux (Vel + = AY (3.9)

The no-slip boundary conditions on wo Ars

® Q,R,sin® at rr = R, (3.10)

-

at r = R,

The velocity cannot be singular at the poles:

In) J at © = 0,= (3.11)

although the angul.
: 0) .

vrlocity Tsino 1S generally non-zero.

Ne decompose © inf J

Is) © + uo (3.12)

where w satisfies the inhomogeneous boundary conditions

(3.10-.11) and the equations

2
A [0 J

) “4

 }) +
= 0 (3.13)

That is, o is the (steady) Stokes solution

¥ 1 4 -€e

I) ( ar

-Q,R,
a= 77;

R,-R,

1 p ) sin©

* a4 — B =

3 _3

R,R,
“3 3
R,-R,

(3.1%)
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and is not a solution to the full nonlinear equations. The

function ® satisfies the same equation as ©, that is

20
Jt = e4 - uw x (V x u) 4  Ad a2

Re A © (3.15)

but with homogeneous boundary conditions

® = 0 at r = R 1° R,

 ®@ =0 at © = 0 T™

(3.16)

(3.17)

Boundary conditions for P are derived as follows: The

condition

(3.18)

implies that P’ = Prsin6 is constant on each of R,, R,. The

constraint of axial symmetry that there be no flow across

the poles

implies that the two constants are the same. This constant

is arbitrary (only V¢’ is significant) and can be set to

zero. Since P’ is zero on each of R,, R, then aiso

14 0 at r = PR 1%

The boundary condi  rt L0D

Ta = 0 at r = R,, R,

along with equation (3.20) implies that

ar _ t rt =R, , RDP = Io a 1 .

(3.20)

(3.21)

(3.22)

Axisymmetry reguir:s u, to be an odd function of © (a sine

series), and vw_ an even function of © (a cosine series).
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These imply that P is odd, so that

" = 0 at 6 = 0, bit (3.23)

3.2 Spatial approximation

We use a pseudo-spectral method (Lanczos 1956, Gottlieb

and Orszag 1977). Functions are represented in spectral

space, as a finite series of N basis functions. Derivatives

are taken in spectral space, where the derivative operator

is exact. Multiplications are convolutions in spectral

space, and are expensive (requiring 0(N") operations) and

inexact (introducing aliasing). Therefore we perform our

multiplications in physical space, where they are exact and

inexpensive, requiring only N operations per multiply. The

advantages of the pseudo—-spectral method are lost if the

transforms between spectral and physical space are- numeri-

cally time-consuming

Each term in our spectral sum is a product of a basis

function in © and a basis function in r. In the radial

direction, we use Chebyshev polynomials, which are normal-

ized such that T (x) = cosl[n cos” (x)1.: Taking the Che-—

byshev transform of a function sampled at the «collocation

points x, = cos (EX) is accomplished by a Fast Fourier

Transform. The spacing of the Chebyshev collocation points
2

is denser at the ©boundaries (0(3) ) than in the interior

(0(£)), enabling boundary layers to be adequately resolved

with small N. Since Chebyshev polynomials are solutions to
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a singular Sturm-Liouville problem, their spectral sums con-

verge exponentially fast.

Ne use Fourier series in the © direction, Previous

authors (e.g. Bratukhin 1961, Yakushin 1969, Munson and

Joseph 1971, Astaf’eva et al. 1978) have expanded in Legen-

dre polynomials because they are the natural basis functions

for a spherical geometry, in that they are the eigenfunc-

tions of the © part of the Laplacian (the associated Legen-—

1

dre polynomials Pp are the eigenfunctions of the 6 part of
2 2

the operator A defined above). However, we have chosen to

expand in Fourier series to take advantage of Fast Fourier

Transforms. Although analagous fast Legendre transforms are

in theory possible, at present they are not as fast and

standard as their Fourier counterparts. There is no advan-

2

tage in using eigenfunctions of A if the time saved in

inverting the linear operator would be spent in the

transforms necessitated by the nonlinearity of the problem.
2

A is not diagonal in a Fourier series basis, but it is

upper triangular, which is still advantageous, as we will

see in section 3.4.

Both sine series and cosine series are complete in the

interval 0 © { nn. The homogeneous boundary conditions

(3.17) and (3.23) dictate the use of a sine series

£f = &gt; f sin n6 for both oo and Y. Each of the basis func-

tions sin nO satisfies the homogeneous boundary conditions

in ©; this is the Galerkin method (Gottlieb and Orszag 1977)
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of imposing boundary conditions. No Gibbs phenomenon can

arise from the sine expansion since the velocities are

periodic in © and have no discontinuities. We do not res-

trict the expansion to equatorially symmetric fields, which

would consist of using only the functions sin n® with odd =n

for ow and with even n for ¢.

Although convenient to work with, sine series have the

disadvantage of sampling equally spaced points in © (i.e.

their roots are equally spaced), whereas the flow we are

studying has most of its spatial structure at the equator.

Legendre series would not provide much improvement since

their roots are nearly equally spaced in ©. It is possible

that the most economical approach overall would be to map

from the upper half-circle 0 &lt; © &lt; n/2 to the interval

[0,1], and from the lower half-circle =n/2 &lt; 6 {( nm to the

interval [-1,0], imposing matching conditions at the equa-

tor, and using Chebyshev polynomials on each interval. In

this way, the equatorial region would be mapped to the boun-

daries of two intervals, where the Chebyshev collocation

points are densely spaced. Using a Chebyshev representa-

tion, with its small spacing between points, would not

present a problem with respect to stiffness because there is

iittle or no flow across the equator.

3.3 Temporal approximation

Ne now consider the approximatation of time deriva-

F 4 ves. Implicit methods are more stable than explicit
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methods, allowing larger time steps to be taken. They are,

however, impractical with the nonlinear term of the Navier-

Stokes equations. We use a globally second-order accurate

Adams-Bashforth approximation with the nonlinear terms.

With the viscous term, we use the Crank-Nicolson approxima-

2

tion, which also has global accuracy O(At) . The Crank-

Nicolson approximation is implicit, eliminating what would

be the very stringent stability requirement on At due to

viscosity. The over—all time-stepping equation, of global

2

accuracy O(At) , is, with J representing a nonlinear opera-

tor and f representing © or A

F(t At) = f(t) +

Define the op: rTalor

BL 1 37(e(t)) = T(£(e-At)) 1]
At [1 ,® 1,’
3 [go A £(t) + p= A £(t+At)] (3.24)

04 arising from the Crank-Nicolson

approximation by

and

mn At
(I - PRD

the nonlinnza- terns I. and J D~

y= ey [u x (V x u)l

Tyg = — ee,  VY x [fu x (V x u)l

(3.22)

(3.26)

The complete algorithm is then

a 7
a L FAt) = As [ 37,(¢) - J, (t-At) ]

At 2 o~
( I + SRA ) w(t)

(3.27)

subject to the boundary conditions (3.16)
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-
\

= At

E(t+At) = 55 [ 3T¢(t) - Te(t-At)]
At 2

I + rad) E(t)

A
 Fr .

The last two equations obey boundary conditions

(3.28)

(3.29)

(3.20) and

(3.722)

3.4 Solution of elliptic equations

Jur method requires us to solve two elliptic equations

a (3.30)

and A fr = g (3.31)

Consider (3.31), which is the simpler of the two. Define

2

the operators A_ and Ay? bv

2 _ 9 2% 0
AL = arf or Ag

_-1_9 _ ___1 __
~ s$in0O 00 2 32

r sin ©

(3 12)

&gt; O that

(3.33)

AL contains only radial derivatives, and multiplication by
2

functions of rr. Ag consists only of derivatives im © and
2 2

multiplication by functions of 6. Because r A is separ-

3 2 2 3
able, it is easier to solve (r A) f = r g than A £f = g,

= A&gt;+AZ
I 6

The representation of Ag? in sine-0 space is upper tri-

angular. In fact, half of the upper triangular elements are

2

zero because A is parity preserving. In this representation

specifically each element is defined
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j(j+1)

Z 1

for k=j

for k&gt;j , j+tk even

(3.34)

z

A_ is not upper triangular in Chebyshev space because

boundary «conditions are imposed at rr = R,, R,. For this

reason, and because of the necessity of multiplying and

2

dividing by r , we solve the equation in a mixed representa-

2

tion of physical-r and spectral 0. A_ is first calculated

in Chebyshev space by computing its action on Chebyshev

polynomials. The resulting matrix is transformed so as to

act in physical-r space. (Vectors in physical-r space con-

sist of function values at the Chebyshev collocation

points.)

2 .

The full operator r’A can be written as a block matrix

2

A +a,,I

LJ

[|

0

2

A _+a,,:]

Lp ay  -_

243

0

2

A +a. 1a

=

9

a,,1

 Nn

 or

(3.35)

a d d

equation (3.34). The equation to be solved is
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-

 -&amp;5

£,
f

f

I

|

gs

g 4

Z

’

L

(3.36)

In (3.36) t; is the function of r which is the coefficient
2 2

of sin (jO). The subma.rices of r A act on the functions

Because (3.35) is block upper triangular, the equation

can be solved by a sub—-matrix back-solve. Let N_ be the

number of points (or polynomials) in r, Ng the number of

points in ©. We reduce the NoN_ x NgN.. matrix equation to

No matrix equations, each N_ x N_, one for each "row” of

(3.35-3.36) The last (Ng) row gives

( A® + I) fa = 8

Ng:Ng Ng Na
The second to last (No-1) row is

(3.372)

3
{ A + a

Ng-1,Ng-1
The N.-2 row is

I ) f.. ~~

py 48 (3.37v)
ole

(3.37¢)

v

i A + a

No-2,N-2
J - + ¢ f

) Ng-2,N, "Ng, EN,-2
The Ng-3 TOW is (3.374)

2
( A + a -

No-3,N 2
AL J ml CN IY aT = g _N N -3

and so on

Each of the N_ x N_ matrix equations (3.37) is to be

solved by an eigenvector—eigenvalue, or Zang-Haidvogel

(1979), factorization. Each of the matrix operators
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(A + a1) has the same eigenvectors; its eigenvalues are

merely shifted by ITE Therefore the factorization need be

done only once. Ve store only Ag and the eigenvector-

eigenvalue decomposition of AL. The number of operations

required is O(N_Ng + NN.). The eigenvector—-sigemnvalune

solution of the full matrix would require O(NN_) opera-

tions. The total storage needed is o(N. + Ng), as compared

to NIN, for the whole matrix.

The requirement for stability for an ordinary back-

solve is diagonal dominance. The analogous requirement for a

sub-matrix back-solve is that 1a + as Il &lt; la, Tl for all

k # 3 (where the norm | . | of a vector is its largest ele-—

ment). This requirement is due to the fact that at step j

of the back—-solve, each error ey k&gt;j, is multiplied by
2 -1 :

+ . i » + . 2 1.2.x (A a; Equivalently, |A asl must be greater
2

than la, | for all eigenvalues A of A_ and for all k # j.

This condition is met for the matrices we use

2

We proceed the same way for the matrix C of

2 on -

’ 7 At 2
Ra

At 2
2Re A_ ]

r I
Ar 2

- 0 Re eo ]

4

2

C
Tr

1
2

Co

(3.25)

(3.28)

where Al and A, are defined as before

To finish solving for ® it remains only to impose the

boundary conditions (3.16). This is done by substituting

the radial boundary conditions into the boundary rows of
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each of the No sib-matrix equations. Homogeneous Dirichlet

conditions are particularly simple to apply, requiring us

merely to drop the boundary rows and columns from each sub-

2

matrix e. + 2,41 There remains a set of Ng sub-matrix

equations, each of which is now of size (N_-2) x (N_-2).°

Imposing the homogeneous Cauchy boundary conditions

(3.20, 3.22) on ?P while solving equations (3.27 -.28) for &amp;

and 9 is more complicated. There are no boundary conditions

for ¢, while there are four boundary conditions for 9.

The complications in the fourth-order system are due to the

elimination of the pressure and of one velocity component.

Ne use the set of Greens functions ho which are the

solations to the homog "neous equation

rn
ip

1
h

»

af (3.23)

vith boundary condicions

I
h,, (r.0) = 5. Rr 86.0,

by jx(r.0) =

3 1

at r

or 2 ++ Xx

sr R. » K

1 AY
3

(3.40)

Solving for each of the 2 . Ng solutions hig requires
3 ,

0(NJN ) operations, but is only done once, in a pre-

processing step. At each iteration, we use the Greens func-

tions to compute § by:

1) Solving

-
*-

1
Lo.

2

=rg ( -, " 41)
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where g is the right hand side of (3.28), subject to arbi-

trary boundary conditions. In practice, we use the homogene-

ous Dirichlet boundary conditions, i.e. E=0 at R,,R,, since

the matrix and procedure are those used in solving for ©.

2) Solve

" A 3 (3.42)

for a particular solution t, ’ imposing homogeneous Diri-

chlet boundary conditions.

3) Form the homogeneous solution t, : the linear combination

of the solutions h which satisfies

p«
“h i -D?,

1 ) Finally, se:

» = t, + tu
satisfies (3.22), as wellS50 that x

. 2 x

as (3.20) and

(3.43)

(3.44)

(3.27

Since each h has (N_-2)Ng entries, the storage for all
2

Big's (denoted by H) is 2(N_-2)Ng., by far the largest array

required, since we generally use Ng = 128 and N_ = 16. It

is possible to reduce the storage at the expense, as usual,

of an increase (20%) in the time per iteration. Rather than

storing all of H, we need only store the boundary rows of

2

D H, a total of 4Ng entries. Two additional sub-matrix

back—-solves are then necessary to find the appropriate homo-

geneous solution to add to the particular 1
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3.5 Eigenvectors and eigenvalues; unstable equilibria

The calculation of eigenvectors and eigenvalues

requires little modification of the computational method.

The linearized Navier-Stokes equations, governing the linear

evolution of a perturbation mw to a given equilibrium U is

(Q@(T)) (uw) = - (au

0  _  q(U) wu
dt

1
V) U - (0 .V) w= VP + o= 7

(3.45)

™

where P is such that i is divergence—-free and where u

satisfies homogeneous boundary conditions. The full non-

linear interaction must be replaced by the cross terms

(ua «- V) U - (U « V) u (3.46)

Specifically, this involves replacing the nonlinear terms Ts

and Jy defined in (3.26) by

J 0)

| w= €g ° [U x (Vx u)) + (ux (Vx U)) I

-e, - [Vx (U x (Vx u)) + Vx (ux (Vx U))]

(3.47)

We then use exactly the time—-stepping algorithm (3.27-

3.29) whose implementation we have described above. By let-—

ting uw evolve in time, it converges to the eigenvector with

the largest growth rate. This is an application of the

power method (e.g., Dahlquist and Bjork 1974). Note that by

using (3.27-.29) we are not finding the eigenvectors and

pigenvalues of Q(U), but of an operator which is an approx-

imation to exp (Q(U)At), valid to second order in At . By

using the power method on Q(U), we would obtain the
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2 2

eigenvalue of largest magnitude, approximately - 2 (NT +NG)

which is negative. Its associated eigenvector is a high fre-

quency mode with fast viscous decay, not the growing insta-

bility we seek.

The largest eigenvalue exp (AAt) of exp (Q(U)At) is

approximated by the Rayleigh quotient

{o(t),w(t+At)
(a(t) , u(t))

where u(t+At) is the solution of the linearized equations

(3.42 -.45). The simplest possible inner product is used in

(3.48),

(ug,u,) = 9 [ wy(n,u,(n,r) + (nu, 0)P,(n,r) 1 (3.49)
n,r

where f(n,r) is the coefficient of sin n® at r. We normal-

ize u at each time step, so the denominator of (3.48) need

not be calculated separately. The eigenvalue of Q(U) is A

the growth rate of mw, and the eigenvectors of the two

operators are the same

The power method converges linearly: the error in the

approximation decreases by a factor of expl[ —-(A-A')At] where

L' is the next largest positive eigenvalue of Q(U). How-

ever, good initial guesses are available, and we are able to

nse the growing eigenvector at one Reynolds number as an

initial guess for its neighbor. Convergence may be improved

in the ways usually used with the power method: shifting and

relaxation. Both are accomplished by adding to the new

approximate eigenvector a multiple of the previous approxi-



+ A

mation. In this calculation, we did not find that either

shifting or relaxation yielded a significant improvement.

Knowing that an initial value code will pick up and

amplify instabilities like an experiment, the question may

arise of how we have calculated the unstable equilibria U

whose growing eigenvectors we seek. The answer is that we

have only had need to calculate states which are unstable in

a very manageable way: they are stable to all equatorially

symmetric perturbations, but unstable to am equatorially

antisymmetric eigenvector. To calculate these wunstable

equilibria U, we merely set the antisymmetric part of the

flow field to zero after each time step. It is easy to

suppress an instability when its form is known. In doing

this, we have basically duplicated the symmetric initial

value calculations of previous authors (Bartels 1982, Bonnet

and Alziary de Roquefort 1976, and Astaf'eva et al. 1979).
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4. TESTS

In this section, we present comparisons of several

aspects of our simulations with previous work. We then

describe the results of internal tests of our code

4.1 Transitions and limits of stability

As previously noted, critical Reynolds numbers, with

Re = Q.R:/v are highly dependent on gap size (partly because

of the use of the length scale R, rather than the more

appropriate R,-R, ). To compare our data at o=.18, with

results for different gap sizes, it is more appropriate to

use the Taylor number Ta = Re o. For cylindrical Couette

flow with infinite, ratio, it has been found that Ta

approaches a value Ta = 41.3 (see DiPrima and Swinney 1981)

as oo approaches zero. For spherical Couette flow, Khlebutin

(1968) has experimentally determined a value of Ta &gt; 49.0

as the best fit over several different gap sizes. Neverthe-—

less, different gap sizes yield flows that differ, even

qualitatively. In Table 4.1, we present several different

kinds of «critical Taylor numbers, for our simulation and

also for the studies described in the introduction. In some

studies, the comparable numbers are given only graphically;

we have indicated such approximate values by a "~",. Rey-

nolds numbers are presented from our simulation and from the

experiments of Wimmer (1976), the only studies to use

exactly oo = 0.18
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Formation of Taylor vortices may involve hysteresis, so

that the lower limit of stability or existence of a given

state (designated by "lowest one” and "lowest two" in the

Table) may differ from that of its onset (designated by

"zero to one” and "zero to two"). Some experimental stu-

dies (Yavorskaya 1977) have specifically stated that hys-

teresis did not occur in their measurements; our simulation

shows hysteresis in the zero— to one— vortex transition, but

to an almost undetectable extent. When experimentalists did

not specify which kind of critical value they had calcu-

lated, we assumed it referred to onset. Not all numerical

studies can measure both kinds of Ta _. A linear stability

analysis can only measure the Taylor number at onset of vor-

tex formation. Previous initial value codes —— those of Bar-

tels (1982), Astaf'eva et al. (1978), and Bonnet et al. (1976)

-— which sought to measure Ta at onset of the one-vortex

state, in fact were unable to reproduce this transition.

4.2 Torques

The most common experimental measurement in Taylor-

Couette flow is the torque required to keep the inner sphere

rotating at the angular velocity associated with the given

Reynolds number. In the steady state this is equal to the

torque exerted by the fluid on the stationary outer sphere.

The non-dimensionalization for the torque used by Wimmer,

Bartels, and Schraunf is

'
b
i)
2,

1

r
‘4.11
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The torque for Stokes flow is exactly

wh-7

“yy

C
Q —1 FRE v/R-

2a
(1-—3/ R’

16n

(4.2)

(! 3)

y = 128.43 for oo = 0.18 . Wimmer, Khlebutin, and Munson and

Menguturk indeed find experimentally that &lt;t = 1/Re for

spherical Couette flow below Re. In Figure 4.1, we show the

values of T/T STOKES = tv Re/y from our numerical simulations

(solid line) and from Wimmer's experimentally measured

torques (0's, from Wimmer, private communication) for

Re { 600. VWimmer'’'s measurements are systematically about 7%

higher than our torques, but also 7% higher than that of

Stokes flow even for Re = 176 (the lowest Reynolds number

measured by Wimmer). At such a low Reynolds number (recall

that the corresponding Reynolds number based on the gap

width is 32), such a large deviation from Stokes flow would

not be expected. We therefore suggest that Wimmer's torques

contain an excess of about 0.07 of the Stokes torque. the

presence of the rods necessary for turning the inner sphere

(Zierep, private communication) or to the intrinsic diffi-

culty in measuring torques to this accuracy (Koschmieder,

private communication). This is not important for Wimmer'’s

comprehensive study, which ranged over four decades of Re,

from laminar flow through turbulence, and where tv varied

from 0.032 to 0.782, but is important for our detailed study
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of the differences between the zero—, one-—, and two— vortex

states for Re 1500, whose torques differ by as little as

2

1

With vortices, Wimmer finds &lt;t = (1/Re)*, which is

roughly what is found by Khlebutin and Munson and Menguturk.

In Figure 4.2, we show &lt;tRe/y for 200 Re £ 1200. Our

zero-—, one—, and two— vortex states are on the solid curve,

short—-dashed curve, and 1long-dashed «curve respectively.

Wimmer's values, with 0.07 subtracted from each, are located

at the numerals 0, 1, and 2, indicating the number of vor-

tice

4.3 Sizes of vortices

Although Taylor vortices are approximately circular, so

the ratio A of their height to the gap width is near one,

Wimmer found that the exact size of the vortices is strongly

dependent on Reynolds number. He measured the size of the

vortex nearest the equator for both one and two vortex

states, and found that their size varied from 0.54 to 1.3.

This enables us to make another comparison of our numerical

results with his experiment. Unlike the torque, which is a

property of the entire flow field (most of which has no vor-

tices), the vortex size is a very local measurement. It

shows marked changes as a critical Reynolds number is

approached and is therefore well-suited for indicating the

turning point of a secondary branch by a near-vertical

tangent (Benjamin 1978b)
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In Figure 4.3, we show the sizes of the vortices for

600 ( Re £ 1200. VWimmer's experimental points (private com-

munication) are indicated as before by the numerals

representing the number of vortices in the state. The

short—dashed curve is the one-vortex state from our simula-

tion. We show the size of both of the vortices in the two-

vortex states by displaying the location of the ©boundaries

of the vortices with the  long-dashed and solid curves.

These two curves almost meet at Re = 740, the lowest Rey-

nolds number for which we have found that the two-vortex

state exists, indicating that the vortex farther from the

equator is infinitesimal at onset. Our curves again sys-—

tematically exceed most of Wimmer's data, beginning at about

5% at Re = 900 and increasing with Re to 10% at Re = 1200.

In our favor, though, we note that the three "1's” above Re

= 900 which lie closest to our curve are taken from a

separate experiment in which "in the lower range of Re the

angular velocity is changed very carefully and slowly”

(Wimmer 1976). These are. then likely to be the true steady

values, and our agreement with them is extremely good.

4.4 Internal tests

The exact equations of motion satisfy the integrated

laws of conservation of angular momentum and comservationof

energy. For any scalar F. we adopt the notation

AF = F(t")-F(t') and [F =
tL? }

J F(t)dt. Multiplying both sides
oo

of the ¢ component of the Navier—Stokes equations through by



50

rsin® (the distance from the axis of rotation), and

integrating over volume and time, we get

AA = fA = [[t,-v,] (4.4)

where the angular momentum is

and the torques are

a

A ] rsin® u,dV

du, u
1 : __$_ 8Re J rsine® | or 4] ds

(4 -
- ow

(4.6)

0)

where the integral for tv, is evaluated at R.

We calculate 7.(t) at each step, and integrate in time

to O(At) by using the trapezoidal rule. flz,-7,] should be

equal to AA to order (At), where A is computed directly by

numerical integration of equation (4.3). The energy conser-—

vation law is

AE = [Eat = [J [E, -E,. 1 dt

The rate of energy input is proportional to the angular

velocity times the torque at the inner wall

= 1
E. = ZQ.&lt;T (4.8)

{The factor of % arises from the non—-dimensiomnalization

(4.1)), The viscous dissipation of energy is

Sis =X fu.vaav-
Re

~
ad

iT

( A a~)

1- 16x 2Re ( 3 J IV x ul av)

Again using the trapezoidal rule to integrate in time, equa-
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tion (4.5) should be correct to oat)”

We have found that AA-SA and AE-JE, as well as the

errors in A and E themselves, vary like (At).

In addition, for each numerical initial value &amp;experi-

ment, the fractional errors (AA-SA)/AA and (AE-SE)/AE should

be small compared to AA and AE themselves. It is a more

stringent test if the flow changes a great deal. In Table

4.2, we present data for the values of these quantities for

such a run, a transition from a zero— to a one— vortex

state. The parameter values are those we will actually use:

At = inner rotation period / 70, Ng = 128, and N_ = 32. The

anits of Table 4.2 are those we will use elsewhere: AA is

5 2

non-dimensionalized by ZR,Q, 2n/Q,,while AE has been divided

by the energy of the Stokes solution.

The initial state for the data in Table 4.2 is a steady

zero—vortex state at Re = 650. The Reynolds number is set

abruptly to Re = 700 by lowering the viscosity. From revolu-

tion OO to 7 there is a systematic undershoot and overshoot,

as a meta-stable zero—-vortex state is reached. From revolu-

tion 7 to 27 there are slowly decaying oscillations about

the meta-stable state, and from revolution 27 to 80 the

change from a zero— to a one—-vortex state takes place. Since

the values of A and E oscillate, we have divided the run

into periods in which they change monotonically.

The conservation tests are not only a che ok of the



52

internal consistency of the code, but also of the temporal

resolution. This is important since we will describe the

evolution of the transitions in time as well as the steady

states. The spatial resolution of N_ = 16 and Ng = 128 has

also been checked, by comparison with runs at higher resolu-

tion. It has been noted (Bartels 1982) that results are

especially sensitive to the resolution in 6. Recall that we

study the entire hemisphere OO &lt; © {( nm whereas previous

numerical simulations have assumed equatorial symmetry and

used only 0 &lt; © &lt; n/2 . However, the spectral method we use

should require fewer spectral coefficients than the number

of sample points required by finite difference calculations.

Dur results are of three types: trancitions, eigenvec-—

tors, and steady states. We find that .the transitions occur-

ring either when Ng is set to 256, or when N_ is set to 32

are the same as those occuring with our 16 by 128 resolu-

tion. An eigenvalue calculated with No = 256 points agrees

to five significant digits with the eigenvalue calculated

using Ng = 128. We find that for Re { 1200, the resolution

of 16 by 128 is adequate, yielding steady states which are

identical to those produced using a finer (16 by 256) reso-

lution. However, the use of N_ = 8 and Ng = 64 at Re = 1200

yields different, and therefore erroneous, results.
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Figure Captions —- Chapter 4

Figure 4.1

Figure 4.2

Figure 4.3

Torque / Stokes torque for Re { 600. Solid lime
shows torques of states numerically computed by
this study, O's are the experimental torques of
Wimmer (private communication). Note that the
experimental points exceed 1 by about 7% as Re
approaches 0.

Torque / Stokes torque for 200 { Re &lt; 1200.
Numerically computed zero—-, one-, and two-— vor-
tex states are on the solid curve, short—-dashed

carve, and long—dashed curve respectively.
Wimmer's values (private communication), with
0.07 subtracted from each, are located at the

numerals 0, 1, and 2, indicating the number of
vortices.

Vortex sizes in units of the gap size. The
short—-dashed curve is the size of the vortex in

the numerically computed one—vortex states. The
long—-dashed curve is the size of the vortex
nearest the equator in the numerically computed
two-vortex states. The size of the second vor-
tex in the two-vortex state is the difference
between the solid curve and the long—-dashed
curve. Note that the solid and 1long-dashed
curves almost meet at Re = 740, indicating that
the second vortex is infinitesimal at onset.

Wimmer's experimental points (private communica-
tion) are indicated by numerals representing the
number of vortices in the state.
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TABLE 4.1

AUTEDR

NUMERICAL
this study
Schrauf
Bartels

3

Bonnet “

Astaf'eya
Sowarth
Nalton
Yakushin

STABILITY
OF ONE

0.18 49.2
0.17647 48.4
0.17647 50.9
0.17647 ———-

0.11 45.8
0.18 ——-

0.18 ———-

0.1 ——-

FORMATION STABILITY FORMATION
OF ONE OF TWO OF TWO

49.8

46.8
44.8
50.6

56.5
~55.6

55§.6-59.3
51.9-66.7
~48.3

56.5
~55.6

55.6-59.3
51.9-66.7
~48.3

EXPERIMENTAL
Wimmer 0.18 47.7-48.5 49.6-49.9 57.3-57.9 61.1-61.9

Buhler 10 0.154 ~48.3 ~48.3 ~54.4
Yavorskaya 0.11 44.7+.6 44.7+.6 ~47.8
Munson 13 0.135 " —— - ~48.1 —-_—

Khlebutin 0.19 a 44 .7+1.6 on
0.1225 ——— 53.6+3.8 ———

best fit ——— 49.0 —_——

REYNOLDS NUMBERS
this study 0.18
Wimmer 0.18

545 2
625-635 650-653

3 5  10 740
730-758 800-810

 a

3

Table 4.1 Critical Taylor numbers (Ta = Rec-) for formation
and stability of Taylor vortices in spherical Couette flow.
Shown are the lowest values of Ta for which formation of the
one-vortex state occurs, for which the one-vortex state is
stable, for which formation of the two—- vortex state occurs,
and for which the two—-vortex state is stable.

"Schrauf 1983
,Bartels 1982
Bonnet and Alziary de Roquefort 1976

(Astaf’eva, Vvedenskaya, and Yavorskaya 1978
saccording to formula in Sowarth and Jones 1983
,according to formula in Walton 1978
,Yakushin 1969
yWimmer, private communication
Buhler, private communication
Yavorskaya, Belyaev, and Monakhov 1977

11

,, Munson and Menguturk 1975
Khlebutin 1969 included is his best

five gap sizes

fit to data from
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TABLE 4.2

ad AA JA-AA lratiol 0] L JE-AE lratiol

2 -2.x10""% -4.z10"1"?
-_— 5 . -3 3

7 9.210" ° -4.x10
—_— 5 -_1l1

217 -1.x10 -9.x10

—_3 -_l0
37 80 —-2.x10" &gt; -2.x10

-8
2.x10

-1 —4 -1
5.x10 7.x10 2.x10

—6 —S —8

9.x10 -9.x10 -4.x10
-1 -2 -7

1.x10 -1.x10 3.x10

—3 —7
-3.x10 -9.x10

—4

3.x10

—4

3.x10

—4
4 .x10

 -_ 3
3.x10

Table 4.2 Tests of conservation of angular momentum and
energy. During each time interval [t', t" 1],
the exact solution satisfies AA = [ A and
AE = [ KE, Data is taken from the numerical

experiment described in section 6.3, in which a

zero— to one-— yortex transition occurred. AA is
in units of mR, Q, while AE is in units of the
Stokes energy.
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PART II: DESCRIPTIVE RESULTS

5 DESCRIPTION OF FLOWS

In this chapter, we describe steady axisymmetric spher-

ical Couette flows at various values of the Reynolds number

.

Re = R,Q,/v . As mentioned previously, the gap ratio used

here and throughout the thesis is o = (R,-R,)/R, = 0.18

The figures we will present are results of our numerical

calculation as described in chapter 3.

5.1 Basic Flow

As stated previously, the azimuthal velocity of spheri-

cal Couette flow is the dominant component and is approxi-

mately equal to Stokes flow at low Reynolds number. The

Stokes solution is

a
IF

{ar

-Q,R,
where a = T7775

R,-R,

+ B/r ) si ng

3 3

R,R,
and B = ———

R,-R.

1)

so that the angular velocity depends only on radius:

a

Tsing = @ t B/
_¥ 0.2)-

To understand the meridional motion, consider the flow

near the poles, where the geometry resembles that between

parallel differentially rotating disks. Ekman pumping

causes fluid to be thrown outward centrigugally along the

rotating disk (inner sphere) and pulled from the center of

the stationary disk (outer sphere). The fluid moving. down
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from the north pole along the inner sphere meets fluid mov-

ing up from the south pole at the equator. The upward- and

downward— moving streams join into an outward equatorial

jet, called the equatorial outflow boundary. The jet divides

at the outer sphere to flow in opposite directions towards

the poles. Outflow boundaries are radial lines along which

ug = 0 and u_ &gt; 0 analogously, inflow boundaries have

Bg = 0 and u_ &lt; 0. Inflow and outflow boundaries are

clearly visible in laboratory visualization studies, since

they can be observed from the surface of the outer sphere.

The fluid in the northern and southern hemispheres does not

mix. We shall henceforth refer to the large-scale meri-

dional circulation in each hemisphere as a large basic vor-

tex. The superposition of the azimuthal flow with the

weaker meridional motion yields fluid paths which are

spirals.

In an expansion of spherical Couette flow in Reynolds

number, the lowest order term is Stokes flow (5.1), which is

azimuthal. The first order correction La is meridional:

 non =V x ( e; f(r) sin20 )
m ¢

where f(r) = Y cr’

I'he meridional velocity components are

a = —-(f' + £f/r) sin20 ug = f/r (3cos26 + 1)

-

~
-

, ww’

a 4

. 3)

.4)

Figures S5.1a and 5.1b depict this basic three-

dimensional flow at Re = 600. Both 5.1a and 5.1b are pro-
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jections of the flow onto the r-6 plane at fixed ¢. (Only

one r—-0 slice is necessary for all ¢ since the flow is

axisymmetric.) In this chapter, the gap width is exaggerated

for clarity of the features (the radial interval [1,1.18] is

mapped linearly to [1,2]). The tick marks along the outer

sphere are spaced so that the circumferential distance

between tick marks is equal to one gap width, providing a

guide to the scaling. The tick marks along the inner sphere

are spaced at intervals of n/16 radians. The long pair of

tick marks denote the equator.

Figure 5.1a shows the projected streamlines of the

meridional flow. Steamlines whose circulation is positive

(counter—clockwise) are solid contours and those whose cir-

culation is negative (clockwise) are dashed contours. The

streamfunction is antisymmetric in © for an equatorially

symmetric flow. The solid streamline at the equator is the

outflow boundary between the two hemispheres of opposite

circulation The spacing between contour lines is onlya

qualitative guide to the magnitude of the meridional flow

since, rather than spacing the contours at equal intervals

of the stream function values, we have used a tanh mapping

of the stream function, when necessary, to exaggerate weak

features. Figure 5.1b shows the contours of constant angu-

lar velocity. Unlike the meridional streamlines, these lines

are not tangent to the velocity. Instead they indicate the

surfaces of equal magnitude of the angular velocity which

decreases monotonically from the inner to the outer sphere.
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Energy spectra convey useful information about a flow.

We are interested in the © dependance, so we decompose u

into vector spherical harmonics Y L+ILM which, when multi-

plied by spherical Bessel functions of r, are eigenfunctions

of the vector laplacian. Using the notation of Edmonds

(1960) (see also Morse and Feshbach, 1953)

a(r,0,¢) = &gt; 5 &gt; u (r) Y (6,9)
L=0 M=-L I=-1,0,1 L-L*I.M L,L+I.M

(5.5)

For an ax. smme.

r

ric flow field, the azimuthal veioci

{r,0) = Y uw, p (o)
L 3

Ir. D 2)

ty

(2.6)

is

and the meridional velocity is

2
 hr

(£,0) = ) ug (8) XY [i o (8)
L 2 LT s LT LA,

(5.7)

The energy can be decomposed into

#h  ¥° bY
H

J
B

£ E als J
Ji

2 Ej (L) = 2 [3

(5.8)

kt 8 1) 3)

and

E = Y E_ (L) = &gt; [ z Sp L+1 (5.10)
L L

The integrals are to be taken over [R,,R,]. There is no L a

0 component in a divergence—free velocity field with homo-—

geneous normal boundar conditions.

for an equatorially symmetric flow, the sums in (5.6)
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and (5.9) only contain terms with odd L, while the sums in

(5.7) and (5.10) are over even VL. Then, E(L) arises

exclusively from azimuthal flow if L is odd (E(L) = E, (L)),

from meridional flow if L is even (E(L) = E_ (L)). Since E

(L) and E_ (L) differ in structure and magnitude, they are

shown seperately. The solid line in Figure 5.1¢c and all

subsequent spectra is the azimuthal spectrum Eg (L), the

dashed line the meridional spectrum E_ (L). The label "L

symmetric” is to be interpreted as: for L odd, the value of

E(L) is to be found on the solid (azimuthal) curve, while

for L even it is to be found on the dashed (meridional)

curve. The spectrum of an equatorially antisymmetric state,

where the situation is reversed, will bear the label “L

antisymmetric”, meaning that E(L) is on the solid (azimu-

thal) curve for L even, and on the dashed (meridional) curve

for L odd. We will not show "mixed spectra”, those of an

asymmetric flow, in which each E(L) is a sum of azimuthal

and meridional components.

Figure 5.1c shows the energy spectrum of the basic flow

at Re = 600. The total energy has been non-dimensionalized

by the energy of the Stokes flow, and the graph is 1loga-

rithmic

5.2 Pinches

As the Reynolds number is increased, the basic flow

develops what Bonnet and Alziary de Roquefort (1976) called

pinching of streamlines. A pinch is «characterized by
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saddle point in the stream function, or equivalently, a

stagnation point in the meridional projection of the +velo-

city field. The stream function has two local maxima per

hemisphere. Vortical motions occur near the equator. How-

ever, these are not Taylor vortices: their circulation is of

the same sign as the large basic vortex and there is no

inflow or outflow boundary separating the vortical motions

from the rest of the basic flow. In a pinch, there is

radial flow, but it does not extend to the surface of the

sphere, so the pinch is not an obvious feature to a labora-

tory observer. We emphasize this distinction because of con-

fusion in the published literature (cf., review article by

Roesner, 1977).

We find that pinches occur for Re &gt; 630, but that the

development of pinches is not accompanied by large or abrupt

changes in the dependance on Re of physical properties of

the flow, such as the torque. The extent of each pinch is

about one gap width from the equator. Figure 5.2a and 5.2b

are pictures (analogous to la and b) of the basic flow at Re

= 650 with pinches. Figure 5.2¢c is the spectrum of this

flow, which has a local maximum at a wavenumber L = 20 .

This value of L corresponds to the length scale of the

pinches, L = 2nR,/2(R,-R,) = nR,/(R,-R,) = 20.

Hereafter, we will refer to the basic flow, with or

without pinches, simply as a zero-vortex state. For Re 2

1200, another stable axisymmetric state without Tavlor vor-
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tices exists, which we will not describe in this chapter.

This state will always be referred to as the supercritical

zero—-vortex state, to distinguish it from the basic zero-—

vortex state.

5.3 Taylor vortices

pt
a

We now consider the Taylor vortex flows occurring at o

0.18. Sawatzki and Zierep (1970) and Wimmer (1976)

observed two axisymmetric, equatorially symmetric steady

states with Taylor vortices: the one-— and two- vortex

states. Figure 5.3 shows the one-vortex state, which has one

Taylor vortex in each hemisphere, at Re = 900. Figure 5.4

shows the two-vortex state, with two Taylor vortices oper

hemisphere, at the same Re = 900. It is not surprising that

the Taylor vortices should be located near the equator,

since it is only in the equatorial region that the geometry

between concentric spheres resembles that between concentric

cylinders. In addition, the local Reynolds number

Re (0) = R.Q,sin6/v, which measures the local centrifugal

force, is highest at the equator.

Looking at Figures 5.3a and 5.4a, we see that the size

of the vortices is on the order of one gap width. _Vortices

meet without shearing, since the circulation alternates in

sign. The straight radial contours are the inflow and out-

flow boundaries separating the Taylor vortices from each

other and from the large basic vortices. Note that the

equatorial boundary is outwards for the two-vortex state,
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but inwards for the one-vortex state. The equatorial inflow

boundary was seen and explained by Wimmer and Sawatzki and

Zierep: If the large basic vortices are to retain their sign

of circulation, there must be outflow boundaries between

them and their neighboring Taylor vortices. This simple con-

sideration yields the correct direction of the equatorial

boundaries.

In Figures 5.3b and 5.4b, the distortion of the sur-

faces of constant angular velocity from spheres is quite

noticeable, especially at the inflow and outflow boundaries.

This demonstrates the advection of angular momentum by the

Taylor vortices.

The spectra of the one-— and two—- vortex states are

shown in Figures 5.3c¢c and 5.4c. We see that the azimuthal

energy continues to dominate the meridional energy. The

spectra of the one— and two-— vortex states have "scal-

lopped” shapes. This suggests a convolution of a Gaussian

or similar function with the spectrum of a periodic func-

tion. Convolution of spectra corresponds to multiplication

in physical space; the velocity field must be periodic with

a modulated amplitude. We see then qualitatively that

"scallopped” spectra are to be expected from a velocity

field with vortices located only at the equator.

We examine a one-dimensional model problem which gives

rise to a scallopped spectrum. Let g(0) be the odd periodic

extension of a Gaussian function centered at I
3



66

2

g(0) = 5 [2]? 2 (-1)® exp - Ag=alazanl (5.11)
Ba

[ts Fourier transform is

Gig)
_ [ 2 2 k-

exp | - E42 | en

}

odd

gven

(5.12)

Let

h(0) = sin ( k,.0).

The spectrum of the product g(®) h(O) is the square of the

(5.13)

convolution of G(k) with H(k) = 5,

E(k) = exp | - (k-ko)a] , k-k,

Now let h’ be a more complicated periodic

odd (5.14)

function with

wavenumber k

h' (0) = Y exp(-bnk,) sin(nk,®)
n

(..14) &amp;E

The spectrum of the product g(6) h’(0) is

(5.15)

2

E'(k) = Y xo) - ry ((k-nk,) +(k-mk,)) - bk, (n+m)
n,m J

(The sum is to be taken over mn, m such that k-nk, and k-mk,

are odd). If Xk, is large enough so that the points k-nk,

are well se~ "ated, the spectrum is appro-imately

(5.16)

E'(k) = Y exp |[ - ((k-nky) - 2bnk, ] » k-nk,
n

odd

which has exponentially decreasing rounded maxima located at
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ld ow
= nx, (5.17)

and sharp minima at

k b + nk,k, . b
2 om (5.18)

Equation (5.16) has the qualitative form of the spec-

trum of the one-vortex state (Figure 5.3¢c). If k, is

smaller, or if h is the sum of two periodic functions with

different wavenumbers, more complicated spectra can occur.

The two-vortex state (Figure 5.34), for example, has a

doubly—-scalloped structure.
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Figure Captions —— Chapter 35

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

The basic flow at Re = 600. The gap width is

exaggerated. Figure S5.l1a shows the meridional
streamlines. The solid and dashed streamlines

denote positive and negative circulation,
respectively. Figure 5.1b shows the contours of
constant angular velocity. Figure 5.1c¢c is the
energy spectrum of the flow. The solid and
dashed curves denote the azimuthal and meri-

dional components, respectively.

The basic state with pinch at Re = 650. Figures
5.2a, bb, and ¢ show the meridional streamlines,
contours of constant angular velocity, and
energy spectrum, as in Figure 5.1.

The one—-vortex state (one Taylor vortex in .each
hemisphere) at Re = 900. Figures 5.3a, b, and c
show the meridional streamlines, contours of
constant angular velocity, and energy spectrum,
as in Figure 5.1.

The two—-vortex state (two Taylor vortices in
each hemisphere) at Re = 900. Figures 5.4a, b,
and ¢ show the meridional streamlines, contours

of constant angular velocity, and energy spec-—
trum, as in Figure 5.1.
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6. DESCRIPTIONS OF TRANSITIONS

Before analyzing the transitions physically and

mathematically, it is important to describe them in detail.

The equilibrium states have been described experimentally

(Sawatzi and Zierep 1970, Wimmer 1976) and numerically (Bon-

net and Alziary de Roquefort 1976; Bartels 1982; Schrauf

1983). However, the path by which one state changes into

another has never been shown. Numerical results are a use-

ful addition to experimental results in this regard, since

the laboratory observer is restricted to viewing the outer

sphere. Numerical simulations are also versatile, able to

begin with either an unstable equilibrium (as is usual in

analytic studies or non-equilibrium state (the usual case in

experimental studies).

In this chapter, we will show pictures of the time

development of four types of transtions. These are: the

zero— to two—, the one— to zero—, the zero— to one—, and the

two— to one— vortex transitions. The first two have been

reproduced numerically, while the third has not previously

been simulated. We will see that there are a number of con-

ceptual problems associated with the zero- to one— vortex

transition, and we will show how these are resolved. The

two— to one— vortex transition has until recently (Buhler,

private communication) escaped experimental notice. We will

see that it has much in common with the zero-— to one— vortex

transition. The two— to zero- vortex transition is not dis-
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cussed separately since it is merely the reverse of the

zero— to two— vortex transition. A one- to two— vortex tran-

sition is known to occur experimentally (Wimmer 1976), but

we have not numerically simulated it.

§.1 Zero- to two— yorte.

The zero— to two— vortex transition is readily produced

in the laboratory and has been previously simulated numeri-

cally (Bartels 1982, Bonnet and Alziary de Roquefort 1976)

but its time development has not been described. We will

describe the zero—- to two— vortex transition that takes

place at Re = 800 and o = 0.18 . In Figure 6.1, we show six

snapshots of the meridional flow. To allow the picture to

be drawn to scale, and display both sides of the equator,

only the sector n/2 + n/8 of the arc is shown. The markers

along the outer sphere are located at intervals of one gap

width along the sphere. The markers along the inner sphere

are at intervals of n/64 radians. Each is labelled by the

time in revolutions of the inner sphere from the start of

the run.

The flow executes a fluid mechanical version of the

biological maxim "Ontogeny Recapitulates Phylogeny”: its

evolution in time resembles the succession of steady states

with increasing Reynolds number. The initial state (not

pictured) at T = 0 is the Stokes flow (not an equilibrium

state). By T = 1, the large basic vortices have formed; the

meridional flow has the qualitative features of equation
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(5.4). At T = 2, pinches have begun to form because of the

centrifugal forces at the equator.

By T = 3, the pinches have grown more prominent and

stretched. As each pinch separates from its basic vortex,

the flow becomes unstable to formation of recirculation vor-—

tices (see Taneda 1979 for general discussion of recircula-

tion vortices). This is in fact what happens: By T = 4,

each pinch has broken off from its large basic vortex and a

new and very weak recirculating vortex has formed in the

space between them. (The formation of recirculation vortices

will also be discussed in section 6.3, since it occurs in

the zero— to one- transition as well.) In the descriptions

to follow, the term "recirculating vortex” will be used to

mean any Taylor vortex whose circulation is opposite to the

large basic vortex of its hemisphere.

The recirculating vortices have grown considerably in

size and strength by T = 5. The flow is close to its steady

state, attained by T = 20. The timescale for the transition

is dynamical, not viscous, since it occurs in a few revolu-

tion times. It is a local phenomenon; the transition time is

insufficient for information to propagate from the poles.

Figure 6.2 shows the same evolution in time of the

radial velocity profile u_(R,0) at the mid-shell

R = (R,+R,)/2. Each profile is labelled by the time, in

revolutions, at which it occurs is given along the abscissa,

and the distance from the equator is shown on the ordinate
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in units of gap size (only the equatorial region is shown).

Within each profile, distance along the abscissa also meas-

ures the magnitude of the velocity. All the profiles have

the same scale, so the figure provides a quantitative com-

parison of the magnitude of the meridional flow at different

times and locations. The maximum meridional velocity in the

figure is u_(max) = .,088 in units of the maximum azimuthal

velocity R,Q,. The local Re based on the gap width and

a (max) is 12, about the Reynolds number at which recircula-

tion vortices form in two dimensional flows. Note that

radial velocity profiles do not distinguish qualitatively

between vortices and pinches.

Figure 6.3 shows the integrated physical quantities «tj

(the torque at the inner sphere) and A = T,-T, (the time

derivative of angular momentum) as a function of time. The

torque T, increases as the pinches and vortices form, redis-

tributing angular momentum. Graphs showing the variation of

T, and A with time are signatures of the different transi-

tions; when the same transition takes place at a different

Re, the graphs change quantitatively but not queltitatively.

6.2 One— to zero-— vorte.\

The progression of this transition, shown in Figure

6.4, is straightforward. The initial condition is the steady

one—-vortex state at Re = 645. When the Revnolds number is

lowered to 644, the recirculating equatorial vortices mono-

tonically decrease in energv. The transition proceeds
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almost imperceptibly until about T = 50. By T = 70, the

equatorial vortices have become noticeably weaker and

smaller. At T = 176, they have disappeared altogether.

Pinches are then formed, and equilibrium reached by T = 80.

The transition is slow; the time scale is viscously dom-

inated.

Figure 6.5 makes especially clear the «change at the

equator from an inflow to an outlow boundary. At T = 176,

when the vortices have disappeared but the pinches have not

yet formed, there is an outflow boundary seen in Figure 6.4,

but Figure 6.5 shows it to be very weak. The radial outflow

increases as the pinch is formed. The maximum meridional

velocity is .034 . In Figure 6.6, we see the torque gradu-

ally decreasing as the recirculating vortex diminishes,

reaching a minimum at T = 76, The pinch then forms, redis-

tributing angular momentum and thereby increasing the

torque.

6.3 Zero— to one- vortex

We begin by speculating on how the one-vortex state

might be formed in light of the two transitions we have

described so far. Suppose the pinch broke off to become a

vortex, as in the zero— to two— vortex transition of Figure

6.1, but that this was not accompanied by the formation of a

second recirculating vortex. Then the circulation of the

vortex would have the wrong sign: recall that the &lt;circula-

tion of a Taylor vortex must be opposite to that of a
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neighboring Taylor vortex or large basic vortex. Transition

to the one—vortex state cannot happen this way.

Suppose instead that the zero— to one— vortex transi-

tion was the reverse of the one— to zero—- vortex transition.

From Figure 6.4, we see that this would require the genera-

tion of a pair of vortices at the equator, which is a strong

outflow boundary in the zero-vortex state. It has been

noticed (Marcus 1983, Mullin 1982) that vortices separated

by outflow boundaries are tightly bound. It is difficult to

insert new pairs of vortices at an outflow boundary, which

would separate the bound vortices (Mullin 1982).

In the preceding paragraphs, we have examined two pos-

sible scenarios for the zero-— to one- vortex transition and

rejected them both. The first -- breaking off a pinch

without forming a recirculating vortex —- does not yield the

one—-vortex state as described in section 5.3. The second —-

generation of a vortex pair at the equatorial outflow boun-

dary —-- is geometrically possible, but physically unlikely.

How then does this transition occur? It has been conjec-

tured that the zero— to ome-vortex transition takes place

either mnon-axisymmetrically or non-equatorially symmetri-

cally (Yavorskayva et al. 1978, Bartels 1982), but neither

possibility has been investigated.

In Figure 6.7 we show the evolution in time of the

zero— to one— vortex transition at Re = 700. The initial

state is the steady zero—-vortex state at Re = 650. It is
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necessary here to allude to the mechanism of the transition,

to be explained in the next two chapters. This transition is

caused by a linear instability of the zero-vortex state at

Re = 700. The flow spends about 10 revolutions relaxing to

the zero—-vortex state at Re = 700, and another 20 revolu-

tions changing imperceptibly, as the initially infinitesimal

perturbation grows to threshold value. The actual transi-

tion, starting at about T = 30, is insensitive to whether

the initial condition is the stable Re = 650 or the unstable

Re = 700 zero—-vortex state.

Having explained this, we can say that the sequence in

Figure 6.7 begins at T = 30 with the Re = 700 zero-vortex

state. There is a large vortex and pinch in each hemisphere.

The pinch in the northern hemisphere moves away from the

large basic vortex and moves across the equator (T = 37).

Two wedge-shaped recirculating zones form, one at each wall

(T = 39.4). These meet (T = 40) to become the recirculating

vortex of the northern hemisphere and separating the pinch

from its basic vortex. This is the same process that occurs

in the zero- to two- vortex transition, but here the pinch

breaks off in only one hemisphere. The former pinch contin-

ues to move down (T = 42), eventually becoming the vortex

associated with the southern hemisphere (T = 70). The re-—

astablishment of symmetry is gradual.

The spontaneous breaking of symmetry is clearly seen in

Figure 6.8 as the equatorial outflow boundary moves down,
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and is eventually replaced by an inflow boundary. The max-

imum value of u_ in Figure 6.8 is .066

In Figure 6.9, the initial rapid increase and overshoot

of Tv, and A are characteristic of an abrupt increase in Re

of about this magnitude, rather than of the transition. The

system then settles into the unstable Re = 700 zero-vortex

equilibrium.

One consequence of the transition mechanism is that the

amount of time spent by the numerically simulated flow in

the unstable equilibrium is not physically meaningful. The

time spent in the unstable state depends on the growth rate

of the instability but also on its initial value. The ini-

tial value, in turn, depends on factors such as the numeri-

cal resolution and round-off error and is therefore non-

physical. Numerical error—-introducing processes are the

analogues of experimental perturbations —-- this is why an

initial value code «can function like an experiment in

responding to instabilities —— but there is no reason to

suppose the rate of introduction of perturbations to be the

same. For calibration purposes only, we note that for Re =

800 when no asymmetric transitions are occurring, with our

usual resolution of 16 radial Chebyshev coefficients and 128

angular Fourier coefficients, the energy of the antisym-—

-24

metric part of the flow is about 10 of the total energy.

This is the initial energy of the "infinitesimal” perturba-—

tion used by the simulation.
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When the transition finally happens it is extremely

rapid, accompanied by a sudden increase in |A] . The inner

torque T, increases monotonically to its final value while

the vortices are formed. It is relatively insensitive to

the re-establishment of symmetry: angular momentum is tran-

sported by the vortices regardless of their position rela-

tive to the equator.

6.4 Two—- to one— vortex

The two— to ome- vortex transition, also asymmetric,

has not received nearly as much attention as the zero- to

one— vortex transition. In fact, it has never been men-

tioned in either the numerical or the published experimental

literature, although it can be seen in Buhler’s transition

diagram (private communication). The absence of the two— to

one— vortex transition in the numerical literature is easily

explained by its asymmetry. The lack of mention in the

experimental literature could be due to the fact that this

transition occurs only in a vary small range of Reynolds

number 740 &lt; Re &lt; T75

Figure 6.10 shows the time evolution of the transition

from a two-vortex state to the one-vortex state at Re = 750.

We have started at T = 0 with the stable Re = 800 two-vortex

state as an initial condition, and have abruptly decreased

Re to 750. Much of what we have said about the zero— to

one— vortex transition applies to the two— to ome— vortex

transition, also caused by a linear instability. That is,
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the actual transition, starting at about T = 50, is unaf-

fected by whether the initial condition is the one we have

actually used —— the two-vortex state at Re = 800 —- or the

two—vortex state at Re = 750, which is unstable.

At T = 50 in Figure 6.10 we show the unstable Re = 750

two—-vortex state. Note that the recirculating vortices are

narrow, their circumferential extent less than 40% of the

gap width. As shown in Figure 4.3 and discussed by Wimmer

(1976) and Yavorskaya (1977), the size of vortices is a

function of Re. We may conjecture that the recirculation

vortices at Re = 750 are unstable because their small size

subjects them to shearing forces.

The recirculating vortex of the southern hemisphere

grows smaller (T = 57) so that the large basic vortex and

the equatorial vortex approach one another (T = 58). (The

recirculating vortex still exists, but is represented by a

blank area because it is too weak to contain a contour

line.) Unlike those in steady states, the vortex boundaries

are not radial lines. Eventually the recirculating vortex

disappears altogether (T = 60), leaving the equatorial vor-

tex to become a pinch associated with the large polar vor-

tex. The recirculating vortex of the northern hemisphere

expands (T = 65) and both vortices move across the equator

till a symmetric configuration is re-established (T = 90).

Figure 6.11, very similar to Figure 6.8, reminds us

that the radial velocity profiles do not distinguish between
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the pinches of zero—-vortex state and the recirculating vor-

tices of the two-vortex state. The maximum value of u_ in

Figure 6.11 is .078 . The asymmetry of the transition is

clearly visible. We may speculate, in the same way as we

did for the zero— to one— vortex transition, about how the

transition could take place symmetrically. It would not

suffice for the small recirculating vortices to disappear

since then vortices of the same sign would be neighbors,

therefore not Taylor vortices. The only remaining alterna-

tive would be for the vortices on either side of the equator

to disappear. Again this seems physically unlikely, not only

on the grounds of destroying an outflow boundary, but also

because of the size and strength of the equatorial vortices.

Figure 6.12 shows that the change in T, does not begin

until after T = 60, indicating that the angular momentum

transport is not greatly affected by the disappearance of

the recirculating vortex of the southern hemisphere into a

pinch. It is rather the increase in size of the recirculat-

ing vortex of the northern hemisphere that causes tT, to

increase. The same disclaimer applies as was made for the

zero— to one— vortex transition: the amount of time spent in

the unstable two-vortex state has no physical significance.
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Figure Captions —-- Chapter 6

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Meridional flow during the zero— to two- vortex

transition. Snapshots of the meridional flow,
each labelled with the time in inner sphere
revolutions. Only the sector =n/2 + n/8 is
shown.

Radial velocity profiles during the =zero— to
two— vortex transition. 2 ((R,+R,)/2,0) as a
function of © (ordinate, units of one gap size)
and as a function of time (abscissa, units of
one inner sphere revolution). All profiles are
scaled to the maximum meridional velocity during

the transition, u_(max) = .088 Q,R,.

Torques during the zero— to two- vortex transi-
tion. The torque at the inner sphere, and the
inner sphere torque minus the outer sphere
torque are shown as a function of time.

Meridional flow during the one— to zero— vortex
transition.

Radial velocity profiles during the one- to
zero- vortex transition. u_(max) = .034 Q,R,.

Torques during the ome- to zero— vortex transi-
tion.

Meridional flow during the zero— to one— vortex
transition. }

Radial velocity profiles for the zero— to one-

vortex transition. u_(max) = .066 Q,R,.

Torques during the zero— to ome- vortex transi-
tion.

Meridional flow during the two- to one- vortex
transition.

Radial velocity profiles during the two— to omne-

vortex transition. u_(max) = .078 Q,R,.

Torques during the two— to ome- vortex transi-
EFion.
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PART III: ANALYSIS OF RESULTS

7 STEADY STATES

7.1 Bifurcation diagram for spheres

Now that we have described the steady flows and the

transitions between them, it is best to consider the global

dependence of the steady flows on Reynolds number. Since it

is impossible to present a graph of the infinite—dimensional

flows as a function of Re, bifurcation diagrams are formed

by projecting the flows onto some one-dimensional quantity.

Schrauf (1983), who completed an extensive steady-state cal-

culation of this problem, chose to represent each flow by

5s 2

its torque (non—-dimensionalized by ZR,0,) T

Figure 7.1 is a graph of tv vs. Re for our numerically

computed flows. All results to be presented in this chapter

refer to steady flows. The torques of zero—-vortex states

are located on the solid curve, those of one—-vortex states

are on the short—-dashed curve, and the two—-vortex states are

on the long-dashed curve. Except in regions of rapid change,

flows were computed at intervals in Re of 10 or 25. The

curve connects the calculated points without any smoothing.

A striking feature, discovered independently by Schrauf and

by our study, is that the zero-vortex states and two-vortex

states lie on the same curve. We find Re = 740 as the value

separating zero-vortex states from two-vortex states. We

showed in Figure 4.3 that the recirculation vortices
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(defined in the previous chapter as the Taylor vortices hav-

ing circulation opposite to the hemisphere’s basic vortex)

are extremely small for Re near 740. As Re is increased,

the recirculation vortices grow radically in size and inten-

sity, thereby increasing the torque. Because of the rapid

change near 740, flows were computed for seven values of Re

in 730 Re ( 745.

Schrauf discovered that the omne—vortex states lie on

branch separate from that containing the zero— and two— vor-

tex states. This result, clearly reproduced in Figure 7.1,

elucidates some of the as—yet-unexplained phenomena in pre-

vious experiments and initial value calculations. We find

Re = 645 as the lowest value of Re for which a steady one-

vortex state exists.

The one—-vortex branch and the zero— and two- vortex

branch do not intersect, despite the coincidence of torques

at Re = 790. We mean to distinguish here between a branch

-— a set of flows, varying continuously with Re —— and the

projection of a branch, onto the t-Re plane in this case,

which we have «called a curve. The intersection of two

curves does not imply an intersection in the two correspond-

ing branches of flows, since intersections occur far more

frequently in the projected space than in the infinite-

dimensional space of flows. When schematic bifurcation

diagrams are used, rather than physical quantities, they are

drawn so that no such fortuitous intersections occur.
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Figure 7.2 shows a section of t vs. Re on a larger

scale. The arrows in Figure 7.2 indicate schematically the

transitions between branches. The arrows connect the initial

and final states of three of the transitions described in

the previous chapter. The one— to zero— vortex transition

when Re is lowered from 645 to 644 occurs because the solu-

tion "falls off” the one-vortex branch when the branch

ceases to exist. The zero— to one— vortex transition at Re =

700 and the two— to one— vortex transition at Re = 750 arise

from an equatorially antisymmetric instability, to be dis-

cussed in the next chapter, of the branch «containing the

zero— and two— vortex states. Antisymmetric components were

suppressed to enable the computation of unstable zero— and

two—- vortex equilibria. All three transitions are time-

dependent processes, taking the flow through regions which

are not steady solutions. The change from a zero— to a

two—vortex state is not a transition in the same sense,

since it does not involve moving from one solution branch to

another

1.2 Branches and turning points

To understand how Figure 7.1 fits into Schrauf'’'s larger

bifurcation diagram, we include here a mathematical digres-—

sion on branches and bifurcations in the Navier-Stokes equa-

tions. Our sources, to which we refer the reader for proofs,

details and more references, are the works of Joseph (1981),

Sattinger (1973), and Benjamin (1976,1978a,1978b,1982). In
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spherical and cylindrical Couette flow, as in many hydro-

dynamic problems, several different steady solutions exist

at the same Reynolds number. At low Reynolds number, how-—

ever, it is a general property of the steady Navier-Stokes

equations that the solution is unique (Serrimn 1959). The

primary branch, in Benjamin's nomenclature, is the unique

continuation of this low Re solution to high Re. Any other

pranch, called a secondary branch, must have a turning point

(also called a one-sided bifurcation) below which it ceases

to exist. Figure 7.3 is a schematic bifurcation diagram

showing a primary branch (a), and a secondary branch (b)

with a turning point (c). Turning points may occur else-

where, for example on a primary branch (d), or at the high-

Re 1imit of a branch (e).

A bifurcation point is the intersection of two

branches. If a bifurcation coincides with a turning point

of one of the two branches, it can be a sub-critical (f) or

a super—critical (g) bifurcation. Sorokim (1961) and Benja-

min (1976) showed that in the absence of exceptional sym-

metry, trans-—-critical bifurcations (h) (not coinciding with

a turning point) are far more common. Perturbations of the

equations or boundary conditions can lead to the decoupling

of a bifurcation (i,j). The stability of a branch changes

upon crossing either a bifurcation point or a turning point

(see Joseph), although the stability may also change else-—

where (Sattinger). In 7.3(a)-(j), the solid lines demote

stable branches, the dashed lines unstable branches, in
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accordance with this rule.

One of the observable distinctions between the dif-

ferent types of bifurcations is the occurence of hysteresis.

At a super—-critical bifurcation, there can be no hysteresis:

in raising Re, transition from the primary to the secondary

branch takes place because the primary flow becomes

unstable, and in lowering Re, transition from the secondary

to the primary branch occurs because the secondary branch

ceases to exist at this point, which can unambiguously be

called Re . At a sub—-critical or trans-critical bifurcation,

or when a bifurcation has been decoupled, the value of Re

will depend on whether Re is increased or decreased.

The global structure of steady solutions is best deter—

mined by a steady-state solver, which traces the branches

regardless of their stability. Solutions can be calculated

which are not actually attained by evolution in time

(unstable solutions in particular) and yet play an important

mathematical role, much as the analytic continuation of real

functions into the complex plane can yield important infor-

mation about the original real functions. The role of an

initial-value solver is complementary; it calculates the

evolution in time of the flow along the steady branches, or

from one branch to another. which a steady-state solver can-

not d&gt;

We can now apply these ideas to spherical Couette flow.

The branch containing the zero— and two— vortex states is
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the primary branch, which is the unique solution for Re (

645. The one-vortex states form a secondary branch. Ve

have said that a secondary branch must terminate at a turn-

ing point linking it to the complementary unstable part of

the branch. Although we cannot calculate unstable states,

we can locate turning points since, as pointed out by Benja-

min (1978a,b), measurements (i.e. projections of the flow)

along the "stable part of a branch should have a slope

approaching the vertical as a turning point is approached.

Although his discussion refers to experiment, it applies

equally well to its numerical equivalent, an initial value

solver. Indeed, the one-vortex curve in Figure 7.1 has a

near—vertical tangent as Re decreases to 645. (Four points

have been calculated in the interval 645 ( Re { 650.) The

dependence of vortex size on Re in Figure 4.3 shows the same

behavior

To follow the secondary branch containing the one-

vortex states past its turning point, we turm to Schrauf'’s

study. His bifurcation diagram shows a complementary branch

of unstable one—-vortex states joining the stable one-vortex

branch at the turning point. According to Schrauf, the

secondary branch containing the one-vortex states never

intersects the primary branch; there is no bifurcation point

of any kind. Schrauf also found a plethora of turning

points, and of other branches, stable and unstable, in addi-

tion to the ones we have described
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7.3 Relation to cylinders

The qualitative nature of these results is not entirely

anexpected, in light of Benjamin's (1978a, 1978b, 1982)

theoretical and experimental work on transition in finite

cylinders. The classical mathematical model of cylindrical

Couette flow, (Kirchgassner and Sorger 1968, Kogelman and

DiPrima 1970) which is in very good agreement with experi-

ments with long cylinders, assumes cylinders of infinite

length. Transition to Taylor vortex flow takes place through

super—-critical bifurcation, and no hysteresis should

occCc1l.&gt;

Benjamin argues that the finiteness of the cylinders

has the effect of decoupling the bifurcation so that one

branch of the Taylor—-vortex solution is joined to the pri-

mary branch below Re and the other branch of the Taylor-

vortex solution is joined to the unstable part of primary

branch above Re . It is usual for a bifurcation to be decou-

pled by -"imperfections”, of which there are two in finite

cylinders: the integer constraint posed by the finite

length, and the Ekman pumping caused by the endplates. These

effects are of course also present in spheres.

In Benjamin's model, transition to Taylor-vortex flow

with the preferred number of vortices —— that yielding vor-—

tices closest to circular —-- takes place continuously. Flows

with one more pair or one fewer pair of vortices are located

on a disconnected secondary branch. This is exactly what
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happens in the spherical case, the two—-vortex states being

located on the primary branch and the one-vortex states

pccupying a secondary branch.
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Figure Captions ——- Chapter 7

Figure 7.1

Figure 7.2

Figure 7.3

The torques of steady states as a function of

Reynolds number for 600 Re 900. The solid
curve shows torques of zero-vortex states, the
short—-dashed curve those of one—-vortex states,
and the short-dashed curve those of two-vortex

states. Note that the curves representing zero-

and two— vortex states join continuously, and
that the one—-vortex states are on a different,
unconnected curve.

Same as Figure 7.1, for 620 Re 800. The
arrows at Re = 644, Re = 700, and Re = 750 show

schematically the one— to zero-, zero-— to one-—,
and two— to one— vortex transitions discussed in

chapter 6.

Schematic bifurcation diagrams. Branches: opri-
mary (a) and secondary (b). Turning points
(c,d,e). Bifurcations: sub—critical (f), super-
critical (g), and transcritical (h). Decoupling
of bifurcations (i,j).
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8. LINEAR INSTABILITY

We have found the instability that initiates transition

to the one-vortex branch. The primary branch is stable to

all equatorially symmetric perturbations. However, for 651

{ Re &lt; 775, the branch is linearly unstable to an equatori-

ally antisymmetric perturbation. After the antisymmetric

perturbation grows to a threshold value, the actual transi-

tion occurs via the highly nonlinear process described in

chapter 6. The final state is the (symmetric) ome-vortex

state. As we have seen in chapter 7, the interval 651 &lt; Re

{ 775 of the primary branch includes both zero—-vortex and

x states: the zero- to one-vortex transition andtwo—""0r

the ¢two— to one—-vortex transition are aspects of the same

phenomenon.

8.1 Growth rates and the Window

The growth rate (in units of inverse revolution times)

of the "antisymmetric perturbations as a function of Re is

shown as the curve in Figure 8.1. These were calculated by

the procedure described in section 3.5. The exact Reynolds

number at which the growth rate first exceeds zero is Re =

652, in agreement with Wimmer'’s experimental data to 3 sig-

nificant digits. The growth rate then increases with Re

ontil Re = 735, where it reaches its maximum value of 0.68,

or equivalently an e—folding time of 1.5 revolutions. Then

the growth rate sharply decreases, becoming negative at Re =

775. It is interesting to note that the growth rate
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achieves its maximum value at approximately the same Re at

which the second recirculating vortex appears (see Figure

4.3) and exactly at the Re at which the torque of the pri-

mary branch obtains its minimum value (see Figure 7.1). We

conjecture that the rapid decrease in growth rate as a func-—

tion of Re for Re &gt; 735 is due to the stabilizing and angu-

lar momentum transporting properties of the second recircu-

lating vortex.

We may call the interval 651 ( Re &lt; 775 a "window"

from the primary branch to the one-vortex branch. Once the

one—vortex branch is attained, there is no difficulty

remaining on it; if the Reynolds number is raised or lowered

(to a value for which the one-vortex branch still exists,

i.e. Re &gt; 645), the flow changes smoothly to the one-vortex

state corresponding to that Reynolds number. But the branch

can only be reached if the time spent in the window,

weighted by the growth rate at each Reynolds number, is

large enough for the antisymmetric perturbation to reach the

threshold level necessary for transitiom to occur.

This window, then, is the mathematical explanation -for

Wimmer's phenomenological finding. He found that the final

state attained for Re &gt; 600 depended strongly on the time

taken for spinup of the inner sphere, but that "attention

need be paid only to the acceleration in the immediate

vicinity of the critical Reynolds number” (Wimmer 1976). A

long spin—-up time generated the one-vortex state, while
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shorter spin-up time generated the two—-vortex state at the

same Reynolds number.

We can calculate an approximate lower bound on the

amount of time required in Wimmer’s apparatus for transition

to the one-vortex state to occur. We know that R, = 6.8 ¢m

and assume the viscosity to be of order v = .01 en" /see .

At Re = 735, the Reynolds number of fastest growth, the e-

folding time is 1.5 revolutions, which is 1 minute. Assume

an initial amplitude for perturbations that is 10° of the

velocity (King, private communication). For the perturba-

tion to —— to a level of 1077, the approximate threshold

value necessary for transition, requires 15 minutes. With

an initial amplitude of 107, transition should require 3

minutes. Wimmer’'s (1976) data indicates that the time

required in his experiment for transition to the one-vortex

state is 3 to 9 minutes.

Our model predicts that the zero—- and two- vortex

states of the primary branch should never be the final

steady state for Reynolds numbers in the window 651 &lt;( Re (

175. If sufficient time is not allotted for transitiom to

occur, these unstable equilibria may be mistaken for stable

states. The model does not preclude the stability of zero-

or two— vortex states om other possible secondary branches,

which may exist, in light of Schrauf's (1983) description of

the complexity of the branches.
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8.2 Relation to Previous Numerical Work

The eigenvectors and eigenvalues we have found are

those of the operator Q(U) corresponding to the Navier-—

Stokes equations linearized about the steady state U

(8.1)

(@(U)) (mu) = - (uo «. V) U- (0 .V)uwu-VP+vJ
»

a

The domain of Q(U) is restricted to fields w satisfying

(3.2)

and the boundary conditions

3 r = R, , R, (3.3)

It is possible to form the linear operator Q(U) and

find its eigenvectors and eigenvalues even if U is not a

steady solution. This is equivalent to investigating the

stability of the Navier-Stokes equations with an external

fo Ta

2

Fox = (0 . V)U-vYV

or, alternatively, to using U as an approximation to a

steady state. We have found another set of eigenvectors and

eigenvalues, which we call Stokes eigenvectors and Stokes

eigenvalues, by using the Stokes solution, defined in

chapter 5, as UT

The crosses on Figure 8.1 are the Stokes eigenvalues

for various values of Re. We see that the Stokes eigen-

values are close to the true eigenvalues for 650 ¢( Re ¢ 700.
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In particular the lowest Reynolds number for which the

growth rate is positive is 648 for Stokes flow, as compared

with 652 for the true primary flow. Mathematically, this

indicates that the eigenvalue problem depends much more

strongly on Re as a parameter than via the basic flow. Phy-

sically, this result indicates that the meridional part of

the basic flow does not play an important role in the onset

of instability, and that the instability is the same as that

which occurs in the formation of Taylor vortices im cylindr-

ical Couette flow. Yakushin’s (1969) analysis, in which he

computed the eigenvalues and eigenvectors for the Stokes

flow, is shown to be a good approximation to the instability

that actually occurs. He cannot see the window effect; he

does not allow for qualitative change of the primary flow,

and the growth rate only increases with Re.

Considerations of equatorial symmetry have played an

important role in previous linear stability analyses of both

spherical Couette flow and finite cylinders. The operator

Q(U) corresponding to the Navier-Stokes equations linear-

ized about a symmetric state U, with symmetric boundary

conditions, commutes with the equatorial reflection operator

(R (u_,ug,u4)) (r,0,9) = (a _,-ug,uy) (r,n-0,9) (8.5)

Therefore its eigenvectors have a definite parity and con-

sideration can be restricted to eigenvectors which are

either symmetric or antisymmetric. An asymmetric (of nei-

ther parity) eigenvector must be the sum of eigenvectors of
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opposite parity with the same eigenvalue, so is possible

only if an eigenvalue is degenerate. Yakushin found that

unstable eigenfunctions occurred in pairs, each consisting

of an antisymmetric and a symmetric eigenfunction whose

eigenvalues intertwine as Re is varied. That is, the eigen-—

values are almost degenerate. Blennerhassett and Hall

(1979) found the same result for finite cylinders.

An eigenvalue —- eigenvector solver is, however, insuf-

ficient for studying transition to the one-vortex branch.

Using only linear stability analysis, we would know that the

basic branch is unstable to an antisymmetric perturbation of

the Taylor—-vortex form, but not the evolution of the flow

done to this instability, nor its eventual steady-state des-

tination. This drawback is evident when we compare our

results to the stability analyses of Yakushin (1969) and

Munson et al. (1971,1975). They found that the eigenvectors

with the lowest critical Reynolds number were antisymmetric,

but believed that experimental verification would require

the final states to be asymmetric

8.3 Eigenvectors

We now show the antisymmetric eigenvectors of the

operator Q(U) defined by equations (8.1-8.3) for various:

flows U. Section 3.5 explains the method of calculation

that was used. For illustrative purposes, we begin by show-

ing the Stokes eigenvector -— the instable eigenvector cal-

culated by using the Stokes flow as an approximation to the
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steady state —— at Re = 700, Figure 8.2a shows the meri-

dional streamfunction, 8.2b the contours of constant angular

velocity, and 8.2c the spectrum of the Stokes eigenvector.

Like the other eigenvectors, the Stokes eigenvector has the

form of a modulated stack of Taylor vortices. The meri-

dional flow, shown in Figure 8.2a, has the form of vortices.

The vortex boundaries (inflow or outflow boundaries) appear

as solid radial streamlines. As explained in chapter 5, the

meridional streamfunction is symmetric for an antisymmetric

flow field. Fluid flows across the equator in antisymmetric

velocity field,

Flow along a Taylor vortex itself (without the addition

of the primary flow on which it is to be superimposed) fol-

lows a spiral, not circular, path. There is not only meri-

dional flow but also azimuthal flow, shown in Figure 8.20.

We emphasize that, despite its resemblance to Figure 8.22,

Figure 8.2b is of an entirely different nature. Figure 8.2)

does not indicate vortices, but the magnitude of the angular

velocity. The angular velocity alternates in sign (direc-

tion), and has its maximum amplitude at or near the vortex

boundaries. -The solid radial lines in Figure 8.2b indicate

the contours of zero angular velocity of the eigenvector,

which pass through or near the vortex centers. In the parts

of the arc that are not shown. the vortex structure contin-

aes with the same periodicity, but becomes progressively

weaker as the poles are approached.
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From the spectrum of Figure 8.1c, we see that the

azimuthal velocity is in fact the larger of the two com-

ponents. According to the analysis of spectra in section

5.3, each of the velocity components is the product of a

Gaussian or other smoothly peaked function and of a single

vector spherical harmonic.

Figure 8.3 shows the primary flow at Re = 700, and Fig-—

are 8.4 the antisymmetric eigenvector to which it is

unstable. At Re = 700, the primary flow is a zero—-vortex

state, and the instability initiates the zero— to omne— vor-

tex transition described in chapter 6 (see Figure 6.7).

Figure 8.5 is the primary flow at Re = 750, and Figure 8.6

its unstable eigenvector. At Re = 750, the primary flow is

a two-vortex state, and the eigenvector initiates the zero-

to two—- vortex transition shown in Figure 6.10. The two

eigenvectors and are very similar to each other. They

resemble distorted versions of the Stokes eigenvector. The

true eigenvectors are highly concentrated at the equator; as

a result, their spectra are broad.

Note that the contours of zero angular velocity of the

perturbations are not radial lines. They are close to per-—

pendicular to the contours of constant angular momentum of

the primary flow (i.e. parallel to its gradient). We show

this by superimposing the contours of zero angular velocity

of the eigenvectors, with the angular momentum contours of

the Stokes or primary flows. Figures 8.7a - ¢ show the
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superimposed contours for the Stokes flow at Re = 700, the

primary flow at Re = 700, and the primary flow at Re = 750,

respectively.



113

Figure Captions —- Chapter 8

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Fiecure 8.7

The growth rate of the antisymmetric eigenvector
to which the primary state is unstable, as a
function of Reynolds number. The crosses are

the growth rates of the antisymmetric eigenvec-
tor of the Stokes flow. Growth rates are in
anits of inverse revolution times.

The antisymmetric eigenvector of the Stokes flow
at Re = 700. The sector n/2 + n/8 is shown.
Figures 8.2a, bb, and &lt;¢ show the meridional
streamlines, contours of constant angular velo-
city, and energy spectrum.

The primary flow (a zero—vortex state) at Re =
700. Figures 8.3a, b, and ¢ show the meridional
streamlines, contours of constant angular velo-
city, and energy spectrum.

The antisymmetric eigenvector of the primary
flow at Re = 700. Figures 8.4a, b, and ¢ show
the meridional streamlines, contours of constant

angular velocity, and energy spectrum.

The primary flow (a two-vortex state) at Re =
750. Figures 8.5a, b, and ¢ show the meridional
streamlines, contours of constant angular velo-
city, and energy spectrum.

The antisymmetric eigenvector of the primary
flow at Re = 750. Figures 8.6a, b, and ¢ show
the meridional streamlines, contours of constant

angular velocity, and energy spectrum.

The contours of zero angular velocity of the
antisymmetric eigenvector superimposed on the
contours of constant angular momentum of the
primary flow. Figures 8.7a,b,and &lt;¢ are the
superimposed contours for the Stokes flow at Re
= 700, the primary flow at Re = 700, and the

primary flow at Re = 750, respectively.
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9. Energy Transfer

9.1 Symmetric and antisymmetric energy

In analyzing the asymmetric transitions, we are faced

with the problem, mentioned in chapter 7, of wanting to pro-

ject infinite dimensional flows onto a one dimensional quan-

tity. The integrated angular momentum or torque are not

appropriate for studying symmetry and antisymmetry, since

only the symmetric modes contribute to the integrals. The

energy, however, is ideal, since it has both a component

arising from the symmetric part of the velocity field and a

component arising from the antisymmetric part of the velo-

city field. These two component we «call the symmetric

energy and the antisymmetric energy. Despite its quadratic

nature, the total energy is the sum of the two, since cross

terms vanish upon integration.

The utility of decomposing the energy into its sym-

metric and antisymmetric parts is immediately seen in Figure

9.1 . -Here we have shown the symmetric energy, the antisym-—

metric energy, and the total energy.asa function of time

during the zero— to one- vortex transition described in sec-

tion 6.3. The scale for the symmetric and total energy,

shown by the long-dashed curve and the solid curve, respec-

tively, is given on the left axis. The antisymmetric energy

is much smaller than the symmetric energy. To enable them

to be shown on the same graph, a ‘translated scale has been

used for the antisymmetric energy, which is given on the
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right axis. Since the two scales are translations of one

another, changes in the symmetric and antisymmetric energies

have the same magnitude in the graph and can be easily com-

pared. Each of the energy curves is normalized by the

Stokes flow energy, and the time is given in inner sphere

revolutions.

The antisymmetric energy is initially zero, grows to a

maximum value of .015, and decreases again to zero. The

symmetric energy decreases sharply, them increases. Its

final one—vortex state value is 0.999, less than the initial

zero-vortex state value of 1.011 . The total energy just

decreases monotonically from 1.011 to 0.999 .

To gain some understanding of this behavior, we embark

on an analysis of the interaction between the symmetric and

antisymmetric parts of the flow. Separating the Navier-

Stokes equations into their symmetric and antisymmetric

parts, we get

du 2

du, 2
Bt C Uy X (V x ug) +t ug x (V x u,) + vV 0, - VP, (9.2)

where Bg and u, are the symmetric and antisymmetric parts

of the flow, respectively, and Pg and P, the symmetric and

antisymmetric components of the pressure head.

Iwo features are immediately apparent:

l) Without the introduction of an antisymmetric perturba-

tion, a symmetric flow remains symmetric for all time, since
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the growth of the antisymmetric component is proportional to

itself.

2) There can be no steady antisymmetric solution to a prob-

lem with symmetric boundary conditions, since the absence of

a symmetric part renders the antisymmetric equation linear,

and a linear equation with symmetric boundary conditions and

forcing must have a symmetric solution. However, steady

asymmetric solutions are not disqualified (and have been

observed in finite cylinders by Benjamin and others).

Taking the dot products of each of (9.1) and (9.2) with

their respective velocities and integrating over the entire

volume, we der.ve

dE
at ~~ Erp ~ Dg * Erg

9B, -B - Dp
3t TR A

{9.3)

(9.4)

where En is the (necescarily symmetric) energy input

5 1

EN = 20,7,

(The factor of 2 arises from the

(4.1).) Dy is the symmetric dissipation

) . _ 1 3
= Eqy Re J ug V ug, 4Vv

(9.5)

non—dimensionalization

{7.7)+

_ 1, idm 2
Ro ( 3 + J Iv x ug dv )

and D, is the antisymmetric dissipation

D, = -—
1 z _ 1 Zz
Ro J a, - Vv u, dv = Re J lv x u, | dv (9.7)

The energy transfer function, defined by
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Erp = [ wu, + ug x (V x u,) dv

measures the transfer of energy from the symmetric to the

antisymmetric part of the flow. The integrand in the energy

transfer function is the triple product of the antisymmetric

velocity, the antisymmetric vorticity, and the symmetric

velocity. Note, however, that it is only the integral of the

triple product which is significant because (9.5) does not

include terms that vanish upon integration over 6. The local-

energy transfer function is

 nN © We X (V x u,) tu, - uw, x (V x ug) - Vv . (w,P,)

(9.9)

IT'he second term vanishes if (9.9) is calculated as a func-

tion of ©, the third vanishes if (9.9) is calculated as a

function of L, the wave number in ©

Returning to Figure 9.1. we see that the increase in

antisymmetric energy at the beginning of the transition mir-

rors the decrease in symmetric energy and vica versa at the

end of the transition. This suggests that energy is

transferred from the symmetric to the antisymmetric modes at

onset of the transition and from the antisymmetric to the

symmetric modes as symmetry is re-established.

If we compute the energy transfer E ps shown in Figure

2 we see that the second part of this scenario is not

correct. The energy transfer is always positive: energy is

never transferred from the antisymmetric part of the flow to

the symmetric part.
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How then does the antisymmetry decrease? From equation

(9.4), we see that E, is the difference between Epp and D,

Throughout the transition, Ep =~ D, (the curves could not be

distinguished if both were graphed). E, is therefore much

smaller than either, with a maximum value of 0.003 (in units

of Stokes energy / revolution time)

IE, | &lt;&lt; Epp =D, (9.10)

At the beginning of the transition, the transfer is slightly

greater than the dissipation and at the end, it is slightly

less; The flows us and LY have changed in such a way as to

no longer favor energy transfer. This accounts for the slow

re-establishment of symmetry, since the antisymmetry

decreases on a viscous timescale.

9.2 Energy transfer from a purely azimuthal equilibrium

The significance of the energy transfer function is not

limited to the transfer between symmetric and antisymmetric

modes. Consider the decomposition of a flow into U, an

equilibrium state, and uw, a perturbation. The energy E of

the perturbation obeys

dE
ot = Erp - D (3. 11)

Tre

E=/[%ua.udV
E ”og =J 8 Ux (Vu) dy

D -_— A
=~ Pe

J lv x ul? dav

(9.12)

(9.13)

(9 14)
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Suppose that U = Uy is axisymmetric and purely azimu-

thal, e.g. the Stokes solution im cylindrical or spherical

Couette flow, and let um be an axisymmetric perturbation. A

meridional perturbation u generates a vorticity which is

exclusively azimuthal. Then

0, x (V x w)=u

so that the triple product in (9.12) is zero. The perturba-

tion must have an azimuthal component LPY which generates a

meridional vorticity V x oy for energy transfer to take

place. On the other hand, the azimuthal perturbation, wu,

is parallel to the basic flow U

 uw, x U,=0 (9.16)

and will also yield a zero triple product. We see that both

the meridional and azimuthal components are essential for

the transfer of energy from the basic flow Uy to the per-

turbation wu. This reflects a general property of energy

transfer to a perturbation: the perturbation must have

component perpendicular to the basic flow, and a vorticity

component perpendicular to both, in order for its energy to

grow. Its linear growth rate is proportional to the

integral of the triple product.

In spherical Couette flow, this analysis is not exact,

since the basic flow U has a meridional component but in

fact, the meridional component U_ is very small and its

contribution to the energy transfer function negligible

relative to that of U.



127

Figure Captions —- Chapter 9

Figure 9.1

Figure 9.2

Energy as a function of time during the zero— to
dne— vortex transition. The axis on the left is

the scale for the total energy and the energy of
the symmetric part of the flow, which are shown
by the solid and 1long-dashed curves, respec
tively. The axis on the right is the
(translated) scale for the energy of the
antisymmetric part of the flow, shown by the
short-dashed curve. Energies are non-—
dimensionalized by the Stokes energy.

The energy transfer rate from the symmetric to
the antisymmetric components “of the flow as a
function of time during the zero— to one— vortex

transition. The transfer function is mnon-
dimensionalized by (Stokes energy / Revolution
period).
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10. CONCLUSION

In this chapter, we summarize the results of the

thesis. At the same time, we raise a number of unanswered

questions that follow from our results

In Part I, we introduced the problem of Taylor vortex

formation in spherical Couette flow. We described our spec-—

tral, axisymmetric initial value code. Its results were

shown to be consistent, in good agreement with experiment,

and sufficiently resolved. Using the code, we have &lt;calcu-

lated the flows presented in Part II. By waiting until con-

vergence, as was done in other initial value studies, we

generated the steady states of spherical Couette flow. But,

more importantly, we have described the variety of transi-

tions that occur in the range 644 ( Re ( 800. Because they

had not previously been simulated numerically, the equatori-

ally asymmetric transitions —— the zero— to one— and two- to

one— vortzx transitions —— are particularly interesting.

There is no doubt that transitions to the one-vortex

state are asymmetric. Buhler (private communication)

informed us that he had observed the same time evolution

experimentally : "in one hemisphere two vortices occur and

the deformation in the other hemisphere disappears. Gradu-

ally the two vortices move into the equatorial region. This

transition is not symmetric with respect to the equator,

only the final state”
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The question naturally arises, why should the transi-

tion be asymmetric? A partial answer is provided by the

observation that inflow and outflow boundaries differ in

fundamental ways. (This was briefly alluded to in chapter

6.) The experimental results of Mullin (1982) on formation

of Taylor vortices in cylinders suggest a transition similar

to the one we have found in spheres. Cylinders, too, tend

to have an even number of Taylor vortices, with inflow boun-

daries at the top and bottom (but not always).

Mullin observed visually that transitions from an odd

number of pairs of vortices (i.e. 6 vortices) to an even

number of pairs (i.e. 8 vortices) took place asymmetrically.

Had the transition taken place symmetrically, it would have

required the insertion of a pair of vortices at the equator,

an outflow boundary. He suggests that it is because vortex

pairs are strongly linked at outflow boundaries that these

transitions take place asymmetrically.

Marcus's (1983) numerical work on non—axisymmetric

cylindrical Couette flow also attests to the difference

between inflow and outflow boundaries. The outflow jet is

always stronger than the inflow jet and the separation

between the vortices much greater at the inflow boundary

than at the outflow boundary. Marcus has shown that travel-

ling azimuthal waves result from an instability of the out-

flow jet

LIE pinches are still rather mysterious objects. We
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have defined pinches, and determined the Reynolds number at

which they first occur, but do not have a detailed nunder-—

standing of them. It is clear that their reason for

existence is the same as that of Taylor vortices: they

redistribute angular momentum between radial shells near the

equator. In a pinch, however, streamlines near the walls

approach the stagnation point (of the meridional flow), then

reverse their radial direction and return to the walls.

What is the restoring force that causes the fluid elements

to reverse their radial direction? That is, what determines

that a pinch will form at a given Re rather than a Taylor

vortex?

What is the role of pinches in the transition process?

In the transitions from the zero-vortex state to either of

the one— or two— vortex states, we have seem that pinches

act as precursors of Taylor vortices. In dividing from a

basic vortex, a pinch leaves stagnant regions near the walls

that function like wedges, in which recirculation vortices

arise and join. After the formation of recirculation vor-

tices the original pinches become Taylor vortices. Yet, the

zero— to one— vortex transition resembles that which occurs

in cylindrical Couette flow between infinite cylinders: the

Taylor numbers are close, the eigenvectors very similar.

There are no pinches in cylindrical Couette flow, suggesting

that the role of the pinches cannot be as central as it

appears visually in spherical Couette flow.
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We turn now to Part III. We have shown the variation

of the torque of the steady flow states with Reynolds

number, and in so doing, the structure of the solution

branches. The steady zero—vortex states evolve continuously

into steady two—-vortex states as the Reynolds number is

increased, while the one-vortex states lie on an unconnected

secondary branch. These results agree well with Schrauf’s

(1983) extensive steady-state survey. Further comparison of

his results with those of initial value «codes would be

desirable. Many of the branches he has discovered are unex-

plored by experiment or initial value codes -- it is not

known what flow history, if any, will produce them. The

bifurcation diagram seems to derive, by bifurcation decou-

pling and continuous distortion of the branches, from a

simpler one. It would be interesting to find homotopy

parameters that map the diagram into a simpler one -—-

finally, perhaps, into the simple supercritical bifurcation

of idealized cylindrical Couette flow. Schrauf has already

made progress in this area by finding bifurcation diagrams

for different gap sizes o

In chapter 8, we have seen how an interval -- the

"window” of the zero— and two— vortex branch (the primary

branch) is unstable to an equatorially antisymmetric pertur-

bation. We have calculated this antisymmetric eigenvector

and its eigenvalue as a function of Reynolds number, and

seen how the eigenvalue decreases and finally becomes nega-—

tive as the two—-vortex state becomes well established. What
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remains to be understood is the relation between the primary

flows and the eigenvalues and eigenfunctions. The maximum

growth rate occurs at Re = 735, at which the torque is a

minimum, and near Re = 740 at which two—vortex states first

appear. Why do the maximum growth rate and minimum torque

occur at Re = 735 rather than Re = 740 ? It seems clear

that the formation of the two—vortex state along the primary

branch must be responsible for the decrease of the growth

rate of the antisymmetric instability. It would be

interesting to prove this and to find the mechanism respon-

sible for the stabilization of the primary branch.

Other questions are raised in chapter 9. Do there

exist steady asymmetric states? Why does the antisymmetry

die out in the transitions to the one-vortex state? We have

seen in chapter 9, that the energy transferred from the sym-

metric part of the flow to the antisymmetric part of the

flow decreases as the transition progresses. Clearly, this

must be due to a change in the flow, particularly the sym-

metric part of the flow, as it changes from a zero-vortex

state to 3a one—vortex state. Again, the mechanism for this

remains unknown.

In studying the evolution in time of the transition to

the one-vortex state, we have utilized the full power of a

nonlinear initial value code. With a steady-state solver,

though we would know of the existence of the one vortex

branch, we would not know if and when (for what values of
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Re) transition to it occurred, nor how. With an eigenvalue -

eigenvector solver, we would find the instability of the

primary branch to an antisymmetric eigenvector, but not the

time development of the transition initiated by this insta-

bility, nor that its final destination is the one-vortex

state. It is the combination of time—~dependent calculations

with complementary steady-state and linear results that has

enabled us to obtain a good understanding of the transitions

in spherical Couette flow
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