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ABSTRACT

Spherical Couette flow for the gap size o = 0.18 is
studied wusing a numerical axisymmetric initial value code.
Transitions between states with zero, one, or two Taylor
vortices per hemisphere are simulated numerically. It is
found that transitiomns to the ome-vortex state occur asym-
metrically with respect to the equator, despite the symmetry
of the initial and final states. We show that a small
interval of the primary bramnch, comsisting of zero— and two-
vortex states, is linearly unstable to an antisymmetric per-—
turbation. The instability dinitiates transition to the
secondary branch containing the one-vortex states. Eigen-—
values and eigenvectors of the perturbation are computed.
Torques of steady states and critical Reynolds numbers for
transition are compared with experiment.
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PART 1

1. INTRODUCTION

The subject of this thesis is an axisymmetric numerical
study of Taylor vortices in spherical Couette flow. Spheri-
cal Couette flow, defined to be the incompressible flow
between different;ally rotating concentric spheres, encom-
passes a rich variety of phenomena as the parameter values
are varied. The configuration with inner and outer radii R,

and R,, and angular velocities 2, and @, is shown in Figure

1.1 . R, and R, can be combined into the non-dimensional
gap width
o= Ty (1.1)

i

which completely specifies the geometry.

When the gap width o is small, the flow near the equa-
tor is a variation of cylindrical Taylor—-Couette flow, the
classic hydrodynamic problem of flow between two differen-—
tially rotating cylinders (Taylor 1923). We specialize
further to the the case in whicq the outer c¢ylinder or
sphere is at rest, i.e.' 2, = 0. The Reynolds number is

defined by

Re = —— (1.2)
where v is the kinematic viscosity. Re and o supply a com-—

plete set of non-dimensional parameters.



The flow is required to satisfy the Navier—-Stokes equa-

tions

2u . e
at T (a . V) n VP + Re V u (1.3)
the equation of incompressibility
¥ o ow =D (1.4)

and the two—point no-slip boundary conditions

u(R,,0) = 2,R,sin® ey u(R,,8) = 0 (1.5)
The ¢ component of the flow is called azimuthal while the

flow perpendicular to ey

u =Eu - ugey = uw e + LI (1.6)

is called meridional.

The solutiom to (1.3-1.5) obtained by removing the time
dependence and setting Re to zero, thereby eliminating non-
linear terms, is called Stokes flow. The Stokes solution is
exclusively azimuthal. Each radial shell moves with a con-
stant angunlar velocity which varies smoothly from that of

the inner radius to zero at the outer radius.

In cylindrical Couette flow (with infinite aspect
ratio), due to fortuitious cancellation pressure gradient
with the nonlinear terms, the Stokes solution happens also
to be &a solutiom to the full nonlinear Navier—Stokes equa-
tions (1.3). Apart from scaling,-the laminar flow "changes

with increasing Re only when it becomes unstable. It is not



surprising that cancellation of the nonlinear terms and
pressure gradient does not occur in spherical Couette flow.
A small meridional velocity is gemerated by the Stokes sglu—
tion since the governing equation of the meridiomal velocity
contains nonlinear terms in the azimuthal velocity. The
small meridional velocity in turn influences the azimuthal
velocity. Spherical Couette flow deviates from the Stokes
solution for any finite Reynolds mnumber. The resulting
intractablity of spherical Couette flow favors <c¢ylindrical
Couette flow for analytic study, despite the widespread
occurrence of spherical geometries in geophysical and astro-

physical applicatioas.

Although no closed form solution for spherical Couette
flow has been found, 2 qualitative description for the basic
(low Reynolds number) flow can be given. The 1largest com-
ponent of the velocity is still azimuthal, and does not
depart greatly from Stokes fléw. The meridional motiomn 1is
driven by Ekman pumping, which expells fluid out from the
.poles along the surface of the rotatimng inmer sphere. The
streamlines resulting from the superposition of the azimu-—
thal and the weaker meridioﬁal motion are spirals. Despite
being three—dimensional, the flow is axisymmetric.(i.e..'

axisymmetric with swirl).

In cylindrical Couette flow, the basic flow (the Stokes
flow, in this case) becomes unstable to Taylor vortices when

the angular momentum gradient, as measured by the Reynolds
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number, reaches a <critical level (Rayleigh 1916). Taylor
vortices redistribute the angular momentum among cylindrical
shells. Taylor vortex flow remains axisymmetric until a

higher Reynolds number is attained.

In spherical Couette flow, Taylor ~vortices also form
when Re exceeds a critical value, but only in the equatorial
region and only for o k 0.24 (Belyaev 1978). The medium gap
size o = 0.18 which we use was first selec;ed for experimen-
tal study by Sawatzki and Zierep (1970) and Wimmer (1976).
Bonnet and Alziary de Roquefort (1976), Bartels (1982), and
Schrauf (1983) numerically investigated the almost identical

gap size o = .17647 .

Wimmer, Sawatzki, and Zierep found three different
axisymmetric steady states- at Re 2 600, each with a dif-
ferent number of Taylor vortices (zero, ome, or two) per
hemisphere. The equilibrium attained by the flow depends on
its history, in particular on the acceleration of the inner
sphere to its final angular velocity. Non-uniqueness in the
number of vortices has also been observed experimentally in
cylindrical Couette flow (Coles 1965, Snyder 1969, Bur-
khalter and Koschmieder 1974), esp;cially in short cylinders
(Benjamin 1978b). However, the classical mathematical model
(Kirchgassner and Sorger 1968, Kogelman and DiPrima 1970)
for <c¢ylindrical Couette flow assumes cylinderq of infinite
length and the number of vortices is imposed as ome of the

parameters.
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Initial-value codes for spherical Couette flow have
been written by Bonnet and Alziary de Roquefort, and Bartels
which are axisymmetric and reflection symmetric about the
equator. They have reproduced some of the final states
observed by Wimmer, and have observed non-uniqueness caused
by accleration rate, but have failed to generate what is
called the one—-vortex state as a transition from the basic

flow.

Two questions emerge from these previous studies: -
1) Why has generation of the one-vortex state eluded other
initial-value studies?
2) What is the mechanism by which the history of the flow
determines the final steady state?

The thesis answers these questions.

1.2 Organization of thesis

Part I continues the introduction to the problem and
describes our numerical simulation. Chapter 2 is a survey
of the literature of Taylor vortices in spherical Couette
flow. In chapter 3, we describe the numerical methods used
in our time—-dependent, axisymmetric code. We emphasize that
our program differs from previous simulatioms, im that it
does mnot impose equatorial symmetry and uses spectral
methods rather than finite differences. In chapter 4, we
show that our program is not only internally consistent, but
also gives results which agree well with previous investiga-

tions, particularly the experimental measurements of Wimmer.



In Part II, we present our numerically computed flows.
Detailed descriptio#s of the steady flow states for o = 0.18
——- with zero, one, and two Taylor vortices —-—- are in
Chapter 5. In Chapter 6 the time evolution of the transi-
tions among the different steady flow states are given. The
transitions have mnot been described previously in either
experimental or numerical studies. Question 1) about the
"missing transition” that has evaded previous initial-value
solvers is answered in chapter 6, since we will see that
transition to the one—-vortex state occurs asymmetrically

about the equator.

In Part III, we analyze the asymmetric tramsitioms in
more detail. The numerical steady-state results by Schrauf
(1983), describing the mathematical structure of the solu-
tion branches, have provided the groundwork for our comple-—
mentary time-dependent amalysis. His steady-state results,
as well as our own, are reviewed in chapter 7. The subject
of chapter 8 is the antisymmetric linear instability imni-
tiating the transitiom to the one-%ortex mode. We answer
gquestion 2) about the mechanism determining the final steady
state from the history of the a;celeration by showing that
there is a small interval or "window”, in Reynolds number,
of unstable states. Chapter 9 is concerned with the non-
linear development of the asymmetric tramsition, im particu-
lar, the &energy transfer between modes. In chapter 10, we
summarize the results and give suggestions for further

investigation,.



Figure 1.1

Geometry for spherical Couette flow. The inner
radius is R, and the outer radius is R,. The
angular velocity of the inner sphere is 2,, that
of the outer sphere 2,.
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FIGURE 1.1
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2. HISTORICAL SURVEY

There have been a number of investigations of spherical
Couette flow, both experimental and numerical. We will sur-
vey only those relevant to the investigation of Taylor vor-
tices. The c¢ritical Reynolds numbers at which Taylor vor-
tices first appear (with Re = QIR:/v) are highly dependent
on gap size, partly because of the use of the length scale
R, rather than the more appropriate length scale R,-R, used
in the standard Re for cylindrical Counette flow. If we wish
to compare our data at ¢ = 0,18, with results for different
gap sizes, it is more appropriate to use the Taylor number
Ta = Re c;. Note that for <c¢ylindrical Couette flow, the

critical Taylor number at which Taylor vortex formationm

occurs is-Tac = 41.3,

2.1 Discovery of Taylor vortices im spheres

Bratukhin (1961) performed a linear stability analysis
for Qpherical Couette flow, Expanding the basic flow in
powers of Re, he approxiﬁated the basic flow by the. Stokes
solution and the lowest order meridional flow. The axisym-—
metric eigenfunctions of the linearized perturbation proﬁlem
are products of Legendre polynomials in © of order L and
spherical Bessel functions in radius, of the same order L.
By 1looking only at perturbations with L = 1 and L = 2, he
obtained Tac = 100 for o = 1.0. The most wunstable eigen-—
function found was of the same spatial form as the basic

flow, not of the Taylor vortex type. Sorokin, Khlebutin,
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and Shaidurov (1966) experimentally tested the validity of
Bratukhin’s analysis for o = 1.0, and indeed found only a

continuous change with Taylor number, not a sudden transi-

tion. There was no qualitative change in the fluid motion.
5 2
The torque (which, non-dimensionalized by 3ZR,G,, we will

call <) obeyed, for Ta { 80, the relation t =« (1/Re) which

can be derived theoretically from the Stokes solution. For
1

Ta > 100, the torque obeyed the relation t = (1/Re)*, which

is associated with boundary layer formation.

Khlebutin (1968) then carried out experiments in the
range .0371 ¢ o ¢ 1.5147. He observed the formation of Tay-
lor vortices near the equator for o £ 0.19 but =not for
o > 0.44, (His experiment did not investigate the range
0.19 < o < 0.44.) Visual observations of the transition were
accompanied by an abrupt increase in the slope of the
torque. . Although vortices were observed for 0.12 ¢ ¢ £ 0,19,
a difference in the torque dependence after transitionuled
him to distinguish between these "medium” gaps and the nar-
row gaps with o ¢ 0.12. Ehlebutin calculated the the best
fit over his five values of o to be Tac = 49, which is close

to the value. for cylinders Tac = 41.3.

Yakushin (1969) repeated the analysis of Bratukhin for
small o (.07 and 0.1). He apéroximated the basic flow by
the Stokes solution, pointing out that an exp;ngion in Re
for the ©basic flow converges more rapidly for small o. By

solving the linearized perturbation equations numerically,
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he was able to investigate the stability of the basic flow
to perturbations with L < 30. He found that the most
unstable perturbations were indeed systems of vortices, with
amplitude much greater at the equator than at the poles.
Significantly, he also found that two perturbations became
unstable at the critical Reynolds number, one symmetric with
respect to the equator, and the other antisymmetric. He
speculated that an asymmetric flow might then develop, from
the basic symmetric flow. For o = 0.1, his Tac = 50.6 is in
good agreement with Khlebutin's experiments. For ¢ = 0.07,
the agreement of his Tac = 60.3 is not as good, and Yakushin
attributed this to insufficient numerical resolution. Heun—
ristically, for good spatial resolution of Taylor vortices
(assuméng they have mnearly circular c¢ross—sectioms), the
maximum L must be > n/o, a criterion which is violated for o

= 0.07, but not for o = 0.1 .

Sawatzki and Z;erep (1970) described spherical Couette
flow in great detail for the narrow and medium gap regime.
Wimmer (1976), who helped perform these experiments, 1later
expanded their results. In both regimes, the torque <
obeyed the relation v = (1/Re) for laminar flow, T <« (1/Re)§

i
for supercritical flow, and © <« (1/Re)” for turbulent flow.

For the narrow gap (o = .0527), they found a <critical
Taylor number of 41.3 (identical to that in cylinders) at

which Taylor vortices form near the equator. According to
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Sawatzki and Zierep, for this narrow gap, at a slightly
higher Reynolds number, the vortex axes form spirals and end
freely in the flow field, while according to Wimmer, they
remain closed and parallel to the equator. Imn any case, the
flow field near the poles is not altered, more vortices are
stacked as the Reynolds number is increased, and at a much

higher Reynolds number, the vortices become wavy.

For the medium gap (o = 0.18), at Re > 650 (Ta > 49.6)
Sawatzki and Zierep, and VWVimmer observe five different
stable flow modes. Three modes are axisymmetric, with zero,
one, or two Taylor ~vortices per hemisphere. Which mode
occurs at a given Reynolds number depends on the history of
the flow, specifically, on how quickly the inner sphere is

accelerated to its final angular velocity.

The one—vortex state, which they call Mode IIXI, has one
vortex just above and one just below the equator. The two-
vortex state, their Mode Iv, has two vortices above and two
vortices below the equator. The one-vortex state is most
easily obtained by starting witﬁ the two-vortex state and
increasing the Reynolds number. Wimmer mnotes that this
transition, accomplished by the gradual diminution of the
vortices mnearest the equator, occurs at Re = 3950 (Ta =
302), He also obtained the one—-vortex state directly from
the basic state at Re = 650 (Ta = 49.6) if the acceleration
of the inner sphere is gradual. It is the one— and two-

vortex flows which will -be of interest to us, so we will



refer to Wimmer's results about these states throughout the

thesis.

Sawatzki and Zierep's mode V is a periodic version of
the one-vortex state, in which <vortices, their axes mno
longer parallel to the equator, are periodically gemnerated
at the equator and spiral to the poles. Wimmer found a
similar variation of the two-vortex state, which he <called
Va. Mode II of Sawatzki and Zierep contains spiral vortices
which begin at the poles. Of a completely different charac-
ter than the Taylor vortices, these are called Stuart vor-
tices. Wimmer did not call this a sep;rife mode because
Stuart vortices at the poles could exist in combimation with
any of the equatorial Taylor vortex flows: the zero-, one-,

or two— vortex steady or periodic states. Stuwart vortices

are always formed at Re 5500 (Ta = 420), before the onset

of turbulence.

Their Mode I (which we will c¢all the supercritical
zero-vortex state) obeys the torque relatiom t <« (1/Re)% but
has no vortices. Instead,‘according to Sawatzki and Zierep,
there are boundary layers near the inner and outer spheres,
and the region between them rotates like a solid body with
angular velocity 1less than that of the inner sphere.
Sawatzki and Zierep note that boundary layer formation inhi-
bits the mechanism causing Taylor vortices. Wimmer also
describes a faint and short-lived vortex carried from tﬁe

equator to the poles during the establishment of this mode.



2.3 Further stability analyses

After numerically obtaining the approximation to the
basic flow accurate to ‘seventh order in Re, Munson and
Joseph (1971) investigated its stability. They used energy
theory, in which one calculates the growth or decay of the
energy of disturbances of .arbitrary size. This gives a
lower boumnd for Rec becaunse the disturbance found to yield
instability may not in fact be excited. Munson and Menguturk
(1975) continued this study with linear stability analysis.
Linear theory gives an upper bound on Rec'because the dis-
turbances admitted are limited to the infinitesimal, and
other, larger, disturbances may be excited. Munson and
Joseph &explain that both the energy and the linear theory
are greatly complicated by the dependence of the basic flow
on the Reynolds number. In each case, a linear eigenvalue
problem arises that depends upon the basic flow. The eigen-—
value problem not only contains Re as a parameterf but must
be solved anew for each Re. The numerical calculations were
only carried out for 1large gaps (o > .33). For o = 1.,
Bratukhin's value, the most unstable perturbation by 1linear
theory was axisymmetric but equatérially asymmetric, while
the energy theory yielded a perturbation with neither sym-—

metry.

Munson and Menguturk (1975) also conducted experiments.
Although their primary interest was in wide gaps, they also

studied a small gap (¢ = 0.135) and observed Taylor vortices



at Tac = 45-48., Their results are in good agreement with
those of Khlebutin, Yakushin, and Sawatzki and Zierep. Mun-
son and Menguturk compared their experimental torques with
the theoretical torques calculated by Howarth (1954) for
boundary layer (large Re) flow outside a rotating sphere in
an infinite medium. Although these theoretical torques are
intrinsically independent of gap width, they agreed well for
large Re (Re > 2000) with the measured values even in the

small gap o = 0.135 .

Walton (1978) carried out an analytic linmear sta£ility
analysis in the mnarrow gap limit. He used an expansion of
the basic flow ian powers of G-%Ta and o. Considering
axisymmetric and equatorially symmetric eigenfunctions only,
and using matched asymptotic expansions, he found the O(o)
correction to the cylindrical Tac and the number of vortices
in the eigenfunction., His values c¢ompared favorably with
those of Wimmer for ¢ = 0.0527 . fina]ly, Soward and Jones
(1983) showed specifically that the Ta_ for spheres must be

slightly higher than that for e¢ylinders, in the narrow gap

limit.

2.4 Wide and narrow gap instability; results for ¢ = 0.1

A series of papers by Yavorskaya and others gave a
definitive criterion for the difference between narrow and
wide gaps. Taylor vortices form if o < 0.23 and =not if
o > 0.24 , More precisely, the experiment; of Belyaev, Mona--

khov, and Yavorskaya (1978) divided Re-o space into four



regions with quite different properties. In the lowest (in
Re) region there is only basic flow. This is bounded by a
curve Rec vs. o, above which there is a region in which the
only stable flow is that with Taylor vortices. The wupper
boundary of this regionmn is another curve, above which the
state with no vortices remains stable if the fluid is
accelerated into it quickly enough from the basic flow
state. Finally, much higher, there is another transition
line, smoothly connected to the lime of tramsition for thick
layers, above which the fluid becomes wunstable to the
thick-layer type of instabilities. These are quite dif-
ferent from Taylor <cells; in particular, they are mnon-
axisymmetric, equatorially asymmetric, and unsteady, as seen
experimentally by Yavorskaya, Belyaev, and Monakhov (1975)

with ¢ = 0.54 .

lThe explanation of Belyaev et al. for the lack of Tay-
lor vortices in wide gaps is as follows: Yavorskaya (1975)
had derived an approximation for the meridional flow and
showed its intensity to be <« Ta a%. Assuming the omnset of
Taylor vortices occurs at a fixed Taylor number, independent
of o, we‘ see that the intensity ﬁf the meridional flow at
onset increases with . Belyaev et al. (1978) argue that
when the meridional velocity is large enough, the redistri-
bution of angular momentum is sufficient to suppress the
instability forming Taylor <c¢ells. The suppression of the

Taylor instability also exists in thin layers, and had been

invoked by Sawatzki and Zierep to explain the stability of
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their mode I, the zero—-vortex state at supercritical Re.

Astaf'eva, Vvedenskaja, and Yavorskaya (1978) wrote a
numerical time— dependent axisymmetric program whose ;esults
they compared with the experimen?s of Yavorskaya, Belyaev,
and Monakhov (1977). They expanded in Legendre polynomials
in © and used a finite difference mesh in radius that con-
centrated points at the bound;ries. In time, they used for-
* wards (Euler) differencing for the nonlinear term‘and back-
wards (implicit) differencing for the viscous term. For the
thin gap (o = 0.11) with a stationary outer sphere, they
used 10 points in radius, and up to 90 Legendre polynomials
in 6. They obtained states with up to four vortices in'each
hemisphere. There was overlap in the ranges (in Re) of sta-

bility of states, i.e. non-uniqueness.

The numerical simulation of Astaf'eva et al. agrees
remarkably well with experiment, especially for states with
two or more vortices. The experimental values found by
Yavorskaya et al. (1977) for the lower bounds of stability
of the two-, three—, and four- vortex states are Ta = 48,
56, and 63 (Re =~ 1310, 1550, 1730), respectively. The
values computed by Astaf'eva et al. are .only 2-3% higher

than the experimental values.

The lower bound of stability of the one-vortex state
was found numerically to be 45.8 as compared to the experi-
mental valune of 44.7. Experimentally, Ta = 44.7 was also

found to be the the upper bound of stability of the basic
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state —— it is this number which is wusuwmally called Tac.
However, the simulation did not reproduce the upper bound of
stability for the basic state. " In fact, Astaf'eva et al.
conld not obtain a one-vortex state as a solution to the
initial value problem by starting with the basic flow amnd
merely raising Ta. They were forced to add a disturbance
resembling the one-vortex state, which then evolved into a
steady one-vortex state. To explain their inability to gen-
erate a one-vortex state without adding such a disturbance,
Astaf'eva et al. hypothesize, based partly on experimental
observations, that this transition must take place through
non—axisymmetric or non-equatorially symmetric perturba-

tions.

2.5 Numerical results for o = 0.17647

s —

Other numerical g}me—dependent simulations were also
unable to obtain the ome—-vortex state from the basic flow.
Bonnet and Alziary de Roquefort (1976) calculated the flow
for a variety of gap sizes, in particular the gap size non-
dimensionalized by the outer radius (R,-R,)/R, = 0.15 which
corresponds to ¢ = 0.17647 , almost Wimmer's o = 0.18 .
Their axisymmetric, equatorially symmetric simulation used
finite differences and 65 points in both directions. At Re
= 900 (Ta = 66.7), starting from rest, they obtained two
vortices per hemisphere. If started from the steady Re = 900
solution, the flow at Re = 1500 (Ta = 111.2) retained its

two-vortex structure, but, if started abruptly from rest,
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did not develop vortices. This corresponds gqualitatively
with Wimmer's finding that no vortices were formed for Re >
1700 (Ta = 118.6) if the acceleration of the inner sphere to

its final value was large.

Bartels (1982), whose methods were similar to those of
Bonnet and Alziary de Roquefort, tried to generate the one-—
vortex mode at o = 0.17647, first by wusing the small
accelerations described by Wimmer as producing such a mode.
Remarking, like Astaf’eva et al., that perhaﬁs their failure
to generate the one-vortex state was due to the imposition
of equatorial syﬁmetry, Bartels conducted simulations in the
whole space 0 < © ( n, allowing round-off error to produce
asymmetric perturbations. However, he found that this did
not greatly influence the final solution. Since our study
shows that asymmetric perturbations generated by round-off
error substantially alter the evolution of the flow, we
hypothesize that Bartels did not carry out the simulation
for a sufficient time to observe this effect. Eventually,
adopting the same kind of procedure as Astaf'e;a et al., the
solution was forced. to temporarily obey a symmetry condition
at 90.7 degree. When this condition was lifted, the solu-
tion then relaxed into a stable, steady, equatorially sym-—
metric one—-vortex state, provided the Reynolds number was
above 700 (Ta = 51.9). The vortex disappeared quickly if Re
was lowered below 687 (Ta = 50.9), and remained a solution

at least ﬁntil Re = 1500 (Ta = 111).
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Starting from rest, the two—vortex state appeared spon—
taneously at Re = 700 (Ta = 51.9). For Re > 1300 (Ta > 96),
a zero—-vortex solution could be genmerated for fast enough
acceleration, but changed into a two-vortex solutiomn if Re
was lowered to 1200 (Ta = 89). For all of these solutions,
Bartels <calculated torques that were agreed well with those
of Wimmer. Bartels used 98 points in 6 (0 ¢ © ¢ n/2) and 20
in radius for his finite difference scheme, and showed that
a mesh of 32 points in © and 10 in radius was insufficient,

generating erroneouns results.

Bartels obtained interesting results by varying o. He
found the maximum o for Taylor vortex formation to be
o = 0.205 and the maximum number of vortices per hemisphere
to be n = .4/c . Bartel's value of o = 0.205 differs
slightly from the value o = .i4 found experimentally by
Belyaev et al. (1978), perhaps. due to the absence of the
one-vortex state. A sudden acceleration from rest resulted

in the zero-vortex state for Ta > 17.5/c .

Schrauf (1983) used the continuation method of Keller
to calculate steady states. This type of calculation fol-
lows solution branches, regardless of their stability, and
had mnever previously been performed for spherical Couette
flow. EFHe studied the axisymmetric and equatorially sym-
metric steady states of the gap width o = 0.17647 for Re ¢
1600, i.e. thé zero—, one—, and two—- vortex states. Finite

differences were used, with a mesh of 11 radial and 61 or



121 © points.

We briefly describe Schrauf's bifurcation diagram, in
which the structure of the branches is far more complex thanmn
previously supposed. The most striking of Schrauf's results
is that the one-vortex states lie on a2 separate solution
branch, which does not intersect the branmch containing the
basic flow. Transition from the basic flow to a one-vortex
state does not occur by bifurcation. The one-vortex branch
has turning points at Re = 653 and Re = 1065 (Ta = 48.4 and
Ta = 79); steady one-vortex states_should not be observed
above or below these values, according to his study. At
Re = 1065, Schrauf's one-vortex branch is connected to an
unstable branch along which there are both one— and two-
vortex states. It then has yet another -“turmning point at
Re 2 800, above which it consists of zero-vortex states.
The two—vortex states occupy the same branch as the basic
flow. Another interesting feature of Schrauf's diagram is
the existence of yet more unconnected branches above Re =
1300 : a one—-vortex branch and a zero-vortex branch. One of
the stable branches, unconrnected to the others, contains
zero—-vortex states. It does not exist below Re = 1300
(Ta = 96) and would seem to be a good candidate for the

supercritical zero—-vortex states.

Our results are generally in agreement with those of
Schrauf where the two studies overlap, with the following

exception: in our study, we find that steady one-vortex



states continwme to exist until at least Re = 1300. At Re =
1200, we generated the same steady one—-vortex state by using
a resolution of 16 points in radiws and 128 points in © as
when a finmer resolution of 16 by 256 was employed (see
chapter 3 for description of our method). We attempted to
reconcile this with Schrauf’s result that the branch of
steady one-vortex states ended at Re = 1065. This Re is also
mentioned by Wimmer as corresponding to a tramsitiom to the
two-vortex state when the system was accelerated very
slowly. However, we found a tramsition from the one-vortex
state to the two-vortex state to occur only by wusing a
coarser resolution (8 points inmn r and 64 points in ©) at Re
= 1200. VWe therefore conclude that a steady one-vortex
state exists at Re = 1200 if sufficient resolution is

employed.
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3. NUMERICAL METHODS

3.1 Eguations of Motion

With the assumption of axisymmetry, the four equations
and variables of incompressible fluid mechanics reduce to
only two. Because axisymmetry implies that the meridional
part of uw is divergence—-free (as well as mw), it can be

written as a curl. VWe write

v = ey + V x (Te¢) (3.1)
_where
o = w(r,0) ? = P(r,0)
Thus
_1 a3 Ysine _ 12 =¥ ;
Br T Tsine ae %9 = "r ar (3.2)

The standard formulation (Rosenhead 1963) is

= _...l._.._ [] []
a T5ine [w ey + VP x e¢] (3.3)
The relationship between the standard formulationm and ours

is

w' = wrsin® ' = Prsine (3.4)
P* is the meridional stream function; contours of constant
' are streamlines of the meridional velocity. No signifi-

cance is attached to this difference in formulations.
2
Define the operator A by its action on the scalar f:

Azf = (Y = s F (3.5)
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Note that

ey - Vv [V x (fe¢)] = - A f (3.7)

The equation for the # component of m is

%% = é¢ . ux (Vx u) + ﬁ: Azw (3.8)

while the equation for the ¥ component of V x u is

2
i?ﬁri = - e4 - Vxlux (Vxul + f: A‘T (3.9)

The no-slip boundary conditions on w are

w = Q,R,sin® at r = R, (3.10)
= 0 at I"—'Rz

The velocity cannot be singular at the poles:

o = 0 at © = 0, n (3.11)
. __w___ . -
although the angular velocit rsin@ 1S generally mnon-zero.

We decompose o into

@ = o+ o (3.12)
where o satisfies the inhomogeneous boundary c¢onditions

(3.10-.11) and the equations

2 = 2w _
A" w=0 . 5¢ ~ D (3.13)

That is, o is the (steady) Stokes solution

w = Car+2)sine (3.14)
3 3_13
-9,R,; R,R,
where B = Tty . and B " 3
R,-R, R,-R,



and is not a2 solutiom to the full nonlinear equations. The

function @ satisfies the same equation as w, that is

80 = ey i wx (Vxuw) + - A'G (3.15)

but with homogeneous boundary conditions
@ =0 at r =R,, R, (3.16)
® =0 at © =0, =n (3.17)

Boundary conditions for P are derived as follows: The

condition

s, =0 at r =R,, R, (3.18)
implies that P' = Prsin6 is constant om each of R,, R,. The
constraint of axial symmetry that there be no flow across

the poles

g =0 at €6 =20, « (3.19)
implies that the two constants are the same. This constant
is arbitrary (only VP’ is significant) and can be set to

zero. Since P’ is zero on each of R,, R, then also

=0 at r =R,, R, (3.20)

The boundary condition

ue = 0 at r = R19 Rz ) (3-21)

along with equation (3.20) implies that

Dp = %g = 0 atr=R,, R, (3.22)
Axisymmetry requires Gy to be an odd function of © (a sine.

series), and ®_ an even function of © (a cosine series).



These imply that P is odd, so that
=0 at 6 =0, =x (3.23)
3.2 Spatial approximation

We use a pseudo-spectral method (Lanczos 1956, Gottlieb
and Orszag 1977). Functions are represented in spectral
space, as a finite series of N basis functions. Derivatives
are taken in spectral space, where the derivative operator
;s exact. Multiplications are <convolutions in spectral
space, and are expensive (requiring O(Nz) operations) and
inexact (introducing aliasing). Therefore we p;rform our
multiplications in physical space, where they are exact and
inexpensive, requiring only N operations per multiply. The
advantages of the pseudo—-spectral method are lost if the
transforms between spectral and physical space are- numeri-

cally time—consuming.

Each term in our spectral sum is a product of a basis
function in © and a basis functiom in r. Im the radial
direction, we use Chebyshev polynémials, which are normal-
ized such that Tn(x) = cosln cos-i(x)].~ Taking the Che-
byshev transform of a function sampled at the <collocation

points x cos(%%) is accomplished by a Fast Fourier

x =

Transform. The spacing of the Chebyshev collocation points
2

is denser at the boundaries (0(%) ) than in the interior

(0(%)), enabling boundary layers to be adequately resolved

with small N. Since Chebyshev polynomials are solutioms to
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a singular Sturm-Liouville problem, their spectral sums con-—

verge exponentially fast.

We use Fourier series in the © direction, Previous
authors (e.g. Bratukhin 1961, Yakushin 1969, Munson and
Joseph 1971, Astaf’'eva et al. 1978) have expanded in Legen-—
dre polynomials -because they are the natural basis functions
for a spherical geometry, in that they are the eigenfunc-
tions of the O part of the Laplacian (the associated Legen-
dre polynomials P; are the eigenfunctions of the © part of
the operator A: defined above). However, we have chosen to
expand in Fourier series to take advantage of Fast Fourier
Transforms. Although analagous fast Legendre transforqs are
in theory possible, at present they are mnot as fast and
standérd as their Fourier counterparts. There is no advan-
tage in using eigenfunctions of A3 if the time saved in
inverting the 1linear operator would be speant in the
transforms necessitated by the nonlinearity of the problem.
Az is not diagonal in a Fourier series basis, but it is

upper triangular, which is still advantageous, as we will

see in section 3.4.

Both sine series and cosine series are complete in the
interval O £ ® { n. The homogeneous boundary conditions
(3.17) and (3.23) dictate the wuse of a sine series
f = E £ sin n® for both @ and Y. Each of the basis func-—
tions sin nO satisfies the homogeneous boundary conditions

in ©; this is the Galerkin method (Gottlieb and Orszag 1977)
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of imposing boundary conditions. No Gibbs phenomenon <can
arise from the sine expansion since the velocities are
periodic in © and have no discontinuities. We do not res-
trict the expansion to equatorially symmetric fields, which
would consist of using only the functions sin n® with odd =n

for v and with even n for .

Although convenient to work with, sine series have the
disadvantage of sampling equally spaced points in 6 (i.e.
their roots are equally spaced), whereas the flow we are
studying has most of its spatial structure at the equator.
Legendre series would not provide much improvement since
their roots are nearly equally spaced in ©. It is possible
that the most economical approach overall would be to map
from the wupper half-circle 0 ¢ ©® < n/2 to the interval
[0,1], and from the lower half-circle =n/2 < ® ( m to the
interval [-1,0], imposing matching conditions at the equa-
tor, and using Chebyshev polynomials on each interval. In
this way, the equatorial region would be mapped to the bouwn-—
daries of two intervals, whefe the Chebyshev c¢ollocation
points are densely spaced. Using a Chebyshev representa-
tion, with its small spacing between points, would not
present a problem with respect to stiffness because there is

little or no flow across the equator.

3.

Jw

Temporal approximation

We now consider the approximatation of time deriva-

tives. Implicit methods are more stable than explicit
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methods, allowing larger time steps to be taken. They are,
however, impractical with the nonlinear term of the Navier-—
Stokes equations. We use a globally second-order accurate
Adams-Bashforth approximation with the nonlinear terms.
With the viscous term, we use the Crank-Nicolson approxima-
tion, which also has global accuracy 0(At) ", The Crank-
Nicolson approximation is implicit, eliminating what would
be the very stringent stability requirement on At due to
viscosity. The over—all time—stepping equation, of global
accuracy O(At)z. is, with J representing a nonlinear opera-

5 -~ 2
tor and f representing & or A ¥

£Ce+at) = £0e) + A [ 37(£(6)) - T(E(e-at)) ]
At (1 ,° 1,0
5 g A £(t) + g= A £(t+At)] (3.24)

Define the operator C2 arising from the Crank-Nicolson

approximation by

2 ._..A.._t._. 2
C (I - 2ReA ) (3.25)

and the nonlinear terms Im and J? by

Im = ey - [ x (V x u)l (3.26)

J'(rs-—ed-Vx[ux(Vxn)]

The complete algorithm is then

c? G(t+At) = at 1 37, () - T (t-At) ] (3.27)

At 2 ~
+ (I + 2ReA ) a(t)

subject to the boundary conditions (3.16)



c* glerae) = B0 3Tg(t) - Te(e-at)] (3.28)
, e s
+C1 o+ AR (o)
A'Y = ¢ (3.29)

The last two equations obey boundary conditions (3.20) and

(3.22)
3.4 Solution of elliptic eguations
Our method requires us to solve two elliptic equatioens

C f = g {330
and A £ = g (3.31)
Consider (3.31), which is the simpler of the two. Define

the operators A: and Aez by

it e 4t S g A NS
r - ar’ or . © - sin® 00 2 3
r sin ©
(3.32)
so that
r’A® = A + Al (3.33)
T [*]

A: contains only radial derivatives, and multiplication by

2
functions of r. Ae consists only of derivatives in © and
2 2
multiplication by functions of 6. Because r A is separ—

able, it is easier to solve (r’Az) f = rzg than Azf = g.

The representation of Ae= in sine-© space is upper tri-
angular. In fact, half of the upper triangular elements are
zero because Az is parity preserving. In this representation

specifically each element is defined



®
Ii

ix = Agli k) = = j(j+1) for k=j (3.34)

- 2j for k>j , j+k even

A: is not upper triangular in Chebyshev space because

boundary conditions are imposed at r R,, R,. For this
reason, and because of the mnecessity of multiplying and
dividing by rz, we solve the equation in a mixed representa-
tion of physical-r and spectral @, A: is first calculated
in Chebyshev space by computing its action on Chebyshev
polynomials. The resulting matrix is transformed so as to
act in physical-r space. (Vectors in physical-r space con-

sist of function wvalues at the Chebyshev collocation

points.)

The full operator r’A2 can be written as a block matrix

—— e —— ——— ] —————— ———— ] —— e e e e | e e e e e e e e

| !
A +a,,I } 0 i a,,I 0 i &
————————— it e B
| | | |
0 { A +a,,I } 0 85,1 o = @
--------- o]
I | | |
: 0 | A +a,,I 0 s % B
|
|
|
|

|
|
1
|
. 1
|
|
|
1
|
|
|
|
|
1
|
1
|
|
|
!
|
|
|
|
1
1
o s st i o i i i g

(3.35)

where I is the identity matrix and where ajk are defined in

equation (3.34). The equation to be solved is
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f

| "2 | [ 82 ]

2 2 | £5 1 | g5 |
r A I 0 = 1 (3.36)

| | |

. I .

L ] L J
In (3.36) fj is the function of r which is the coefficient
of sin (jO). The submatrices of rzAz act on the functions

f..
J

Because (3.35) is block upper triamngular, the equation
can be solved by a sub-matrix back-solve. Let Nr be the
number of points (or polynomials) in r, NG the number of
points in ©, VWe reduce the NONr X NBNr matrix equation to

NB matrix equations, each Nr x Nr' one for each row” of

(3.35-3.36) The 1last (NB) row gives

( A* + I ) £ (3.372)
a = g .37a
T NO'NB Ne Ne
The second to last (N0—1) TOW is
( A” + I) £ (3.37b)
- _ _ = B .
T Ne 1’N6 1 NO 1 NO 1
The Ng-2 row is "~ (3.37¢)
2
( A + a I) f + ¢ £ 2
T Ne-2.N9—2 . Ne—z NG-Z,N9 NG\ NB_2
The N9—3 TOwW is (3.374d)
2
( A+ a I ) ¢ + ¢ f = g
T NG—S,N9-3 Ne-3 N9—3‘N0 N9 N9—3

and so on.

Each of the Nr x N matrix equationms (3.37) is to be
solved by an eigemnvector—-eigenvalue, or Zang-Haidvogel

(1979), factorization. Each of the matrix operators



2
(Ar + ajjI) has the same eigenvectors; its eigemvalues are
merely shifted by ajj' Therefore the factorization need be
2
done only once. Ve store only Ae and the eigenvector—

2
eigenvalue decomposition of Ar' The number of operations
2 2
required is O(NrN9 + NONr)' The eigenvector—eigemnvalue

solution of the full matrix would require O(N:N;) opera-

2 2
tions. The total storage needed is O(Nr + NG)' as compared
to N:N; for the whole matrix.

The requirement for stability for an ordinary back-
solve is diagonal dominance. The analogous requirement for a

. z
sub—-matrix back—-solve is that 'Ar + a,, Il ¢ IajkI[ for all

33
k # j (where the norm | . | of a vector is its largest ele-
ment). This requirement is due to the fact that at step j
of the back-solve, each error L k>j, is multiplied by
2 P § :
i +
ajk'(Ar + ajjI) . Equivalently, Ia ajjl.must be greater
3
than lajkl for all eigenvalues A of A_ and for all k # j.

This condition is met for the matrices we use.

We proceed the same way for the matrix c? of (3.25)

£2c¢* = 2P (1 - EAiitE ) (3.38)
= _ At _ At 2
[='1 - At a2 g [ AL 421
_ 2 + Cz
= Cr (5]

where A: and A; are defined as before.

To finish solving for @ it remains only to impose the
boundary conditions (3.16). This is done by substituting

" the radial boundary conditions into the ©boundary rows of



each of the Ne sib-matrix equations. Homogeneous Dirichlet
conditions are particularly simple to apply, requiring us
merely to drop the boundary rows and columns from each sub-
matrix C: + a,.I. There remains a set of NO sub-matrix

ii

equations, each of which is now of size (Nr—z) x (Nr-2).‘

Imposing the homogeneous Cauchy boundary conditions
(3.20, 3.22) on ¥ while solving equations (3.27 -.2#) for &
and ¥ is more complicated. There are no boundary conditions
for ¢, while there are four boundary conditions for P,

The complications in the fourth—-order system are due to the

elimination of the pressure and of one velocity component.

We use the set of Greens functions hjk which are the

solutions to the homogeneous equation

c*a’n = o (3.39)

with boundary conditions

2
A hjk(r,e) = ar,Rj Be’ek j=10r 2 ; k = 1,...,Ne
hjk(r,e) = 0 at r = R, , R,
(3.40)
Solving for each of the 2 . N9 solutions hjk requires

3 .

O(NeNr) operations, but is only done once, in a pre-
processing step. At each iteration, we use the Greens func—
tions to compute ¢ by:

1) Solving

r’c’e =<'y (3.41)
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where g is the right hand side of (3.28), subject to arbi-
trary boundary conditions. In practice, we use the homogene-
ous Dirichlet boundary conditions, i.e. £&=0 at R,,R,, since
the matrix and procedure are those used in solving for @.

2) Solve

rzAsz = rzg (3.42)
for a particular solution TP " imposing homogeneous Diri-
chlet boundary conditions.

3) Form the homogeneouns solution Th : the linear combination

of the solutions h which satisfies

D‘fh = -D‘l’p (3.43)

4) Finally, set

P = TP + ?h ) (3.44)
so that P satisfies (3.22), as well as (3.20) and (3.27

-.28). -

Since each } has (NI—Z)Ne entries, the storage for all
hjk’s (denoted by H) is 2(Nr-2)Nz. by far the largest array
required, since we generally use N9 = 128 and Nr = 16. It
is possible to reduce the storage at the expense, as usual,
of an increase (20%) in the time per iteration. Rather than
storing all of H, we need only store the boundary rows of
D_E‘ a total of 4N; entries. Two additional sub-matrix

back-solves are then necessary to find the appropriate homo-

geneous solution to add to the particular §.
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3.5 Eigenvectors and eigenvalues; unnstable eguilibria

The <calculation of eigenvectors and eigenvalues
requires 1little modification of the computational method.
The linearized Navier—Stokes equations, governing the limnear

evolution of a perturbation uw to a given equilibrium U is

du _
at Q(U) = (3.45)
2
(a(U)) (u) = - (u - V) U - (U . V) u - VP + ﬁ: v:
where P is such that %% is divergence—free and where u

satisfies homogeneous boundary conditions. The full non-—

linear interaction must be replaced by the cross terms

- (o - V) U- (0 .V)au (3.46)
Specifically, this involves replacing the nonlinear terms Im

and J? defined in (3.26) by

J’m = ey - [U x (Vxu)) + (uzx (Vx U)) 1]
I'? = - ey - [ V(U x (Vxua)) + Vx (uazx (V x U))]

(3.47)

We then use exactly the time—-stepping algorithm (3.27-
3.29) whose implementation we have described above. By let-
ting u evolve in time, it converges to the eigenvector with
the 1largest _growth rate. This is an application of the
power method (e.g., Dahlquist and Bjork 1974). Note that by
using (3.27-.29) we are not finding the eigenvectors and
eigenvalues of Q(U), but of an operator which is an approx-
imation to exp (Q(U)At), valid to second order in At . By

using the power method on Q(U), we would obtain the
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2 2
eigenvalune of largest magnitude, approximately - f:(Nr+Ne),
which is negative. Its associated eigenvector is a high fre-
quency mode with fast viscous decay, not the growing insta-

bility we seek.

The largest eigenvalue exp (AAt) of exp (Q(U)At) is

approximated by the Rayleigh quotient

(o(t) , un(t+At)
(a(t) , u(t))

where u(t+At) is the solution of the linearized equations

(3.48)

(3.42 -.45). The simplest possible inmner product is used in
(3.48),

(8,0 = 9 [ o,(n.0de,(a,) + $,(a, )%, (a, 1) 1 (3.49)

n,r

where f(n,r) is the coefficient of sin n6 at r. We mnormal-
ize uw at each time step, so the denominator of (3.48)_need

not be calculated separately. The eigenvalue of Q(U) is A,
the growth rate of w, and the eigenvectors of the two

operators are the same.

The power method converges linearly: the error in the
approximation decreases by a factor of exp[ —(A-A')At] where
A' is the next largest positive eigenvalue of Q(U). How-
ever, good initial guesses are available, and we are able to
use the growing eigenvector at one Reynolds number as an
initial guess for its mneighbor. Convergence may be improved
in the ways usually used with the power method: shifting and
relax;tion. Both are accomplished by adding to the new

approximate eigenvector a multiple of the previous approxzi-
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mation. In this calculation, we did not find that either

shifting or relaxation yielded a significant improvement.

Knowing that an initial value code will pick wup and
amplify instabilities 1like an experiment, the question may
arise of how we have calculated the unstable equilibria U
whose growing eigenvectors we seek. The answer is that we
have only had need to calculate states which are unstable in
a very manageable way: they are stable to all equatorially
symmetric perturbations, but wunstable to am equatorially
antisymmetric eigenvector., To <calculate these nunstable
equilibria U, we merely set the antisymmetric part of th;
flow field to zero after each time step. It is easy to
suppress an instability when its form is known. In doing
this, we have basically duplicated the symmetric imitial

value calculations of previous authors (Bartels 1982, Bonnet

and Alziary de Roquefort 1976, and Astaf’'eva et al. 1979).
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In this section, we ©present comparisons of several
aspects of our simulations with previous work. We then

describe the results of intermnal tests of our code.
4.1 Transitions and limits of stability

As previously noted, critical Reynolds numbers, with
Re = nxni/v are highly dependent on gap size (partly because
of the use of the length scale R, rather than the more
appropriate R,-R, ). To compare our data at ¢=.18, with
results for different gap sizes, it is more appropriate to
use the Taylor number Ta = Re a%. For cylindrical Counette
flow with infinite, ratio, it has been found that Tac
approaches a value Tac = 41,3 (see DiPrima and Swinney 1981)
as o approaches zero. For spherical Couette flow, Khlebutin
(1968) has experimentally determined a value of Tac ~ 49.0
as the best fii over several different gap sizes. Neverthe-
less, different gap sizes yield flows that differ, even
"qualitatively. In Table 4.1, we present several different
kinds of <critical Taylor numbers, for our simulation and
also for the studies described in the introduction. Imn som;
studies, the comparable numbers are given only graphically;
we have indicated such approximate values by a "~". Rey-
nolds numbers are presented from our simulation and from the
experiments of Wimmer (1976), the only studies to use

exactly o = 0.18.
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Formation of Taylor vortices may involve hysteresis, so
that the 1lower 1imit of stability or existence of a given
state (designated by "lowest one” and "low;st two” in the
Table) may differ from that of its onmnset (designafed by
"zero to one” and "zero to two"). Some experimental stu-
dies (Yavorskaya 1977) have specifically stated that hys-—
teresis did not occur in their measurements; our simulation
shows hysteresis in the zero— to one— vortex transition, but
to an almost undetectable extent. When experimentalists did
not specify which kind of critical value they had calcu—-
lated, we assumed it referred to onset. Not all numerical
studies can measure both kinds of Tac_ A linear stability
analysis can only measure the Taylor number at onset of vor-
tex formation. Previous initial value codes —— those of Bar-
tels (1982), Astaf'eva et al.(1978), and Bonnmet et al.(1976)
—— which sought to measure 'I'ac at onset of the onme-vortex

state, in fact were unable to reproduce this tramnsition.
4.2 Torgues

The most common experimental measurement in Taylor-
Couette flow is the torque required to keep the inner sphere
rotiting at the angular velocity associated ;it} the given
Reynolds number. In the steady state this is equal to the
torque exerted by the fluid on the stationary outer sphere.
The mnon-dimensiomalization for the torque used by Wimmer,
Bartels, and Schrauf is

v = I (4.1)

5 2
3R,0,
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The torque for Stokes flow is exactly

wilere
3
R'1
Y = 16n / (1-—7) (4.3)
R

2

¥ = 128.43 for ¢ = 0.18 . Wimmer, Khlebutin, and Munson and
Menguturk indeed find experimentally tﬁat T = 1/Re for
spherical Couette flow below Rec, In Figure 4.1, we show the
values of t/tSTOKES = t Re/y from our numerical simulations
(solid 1line) and from Wimmer's experimentally measured
torques (0's, from Wimmer, private communication) for
Re £ 600. Wimmer's'measurements are systematically about 7%
higher than our torques, but also 7% higher than that of
Stokes flow even for Re = 176 (the 1lowest Reynolds number
measured by VWimmer). At such a low Reynolds number (recall
that the corresponding Reynolds number based on the gap
width is 32), such a large deviation from Stokes flow would
not be expected. We therefore suggest that Wimmer's torques
contain an excess of about 0.07 of the Stokes torque. tﬁe
presence of the rods necessary for turning the inner sphere
(Zierep, private c&mmunication) or to the intrinsic diffi-
culty in measuring torques to this accuracy (Koschmieder,
private communication). This is not important for Wimmer's
comprehensive study, which ranged over four decades ;f Re,
from laminar flow through turbulence, and where t varied

from 0.032 to 0.782, but is important for our detailed study
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of the differences between the zero—, one—, and two— vortex
states for Re { 1500, whose torques differ by as little as

2%.

With vortices, Wimmer fimds =t = (1[Re)%, which is
roughly what is found by Khlebutin and Munson and Menguturk.
In Figure 4.2, we show <tRe/y for 200  Re £ 1200. Our
zero—, one—, and two— vortex states are on the solid curve,
short—-dashed curve, and -long-dashed curve respectively.
Wimmer's values, with 0.07 subtracted from each, are located
at the numerals 0, 1, and 2, indicating the number of vor-

tices.

4.3 Sizes of vortices

Although Taylor vortices are approximately circular, so
the ratio A of their height to the gap width is near omne,
“Wimmer found that the exact size of the vortices is strongly
dependent on Reynolds number. He measured the size of the
vortex nearest the equator for both one and two vortex
states, and found that their size varied from 0.54 to 1.3,
This enables us to make another comparison of our numerical
results with his experiment. Unlike the torque, which is a
property of the entire flow field (most of which has no vor-
tices), the vortex size is a very local measurement. It
shows marked changes as a ec¢ritical Reynolds number is
approached and 1is therefore well-suited for indicating the
turning point of a secondary branch by a near-vertical

tangent (Benjamin 1978b).
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In Figure 4.3, we show the sizes of the vortices for
600 i‘Re € 1200. Vimmer's experimental points (private com-—
munication) are indicated as before by the numerals
representing the number of vortices in the state. The
short-dashed curve is the omne-vortex state from our simula-
tion. We show the size of both of the vortices imn the two-—
vortex states by displaying the location of the ©boundaries
of the vortices with the  long-dashed and solid curves.
These two curves almost meet at Re = 740, the 1lowest Rey-—
nolds number for which we have found that the two-vortex
state exists, indicating that the vortex farther from the
equator is infinitesimal at omnset. Our curves againm sys-—
tematically exceed most of Wimmer's data, beginning at about
5% at Re = 900 and increasing with Re to 10% at Re = 1200.
In our favor, though, we note that the three "1's” above Re
= 900 which 1lie <closest to our curve are taken from a
separate experiment in which "in the lower range of Re the
angular velocity is changed very carefully and slowly"”
(Wimmer 1976). These are. then likely to be the true steady

values, and our agreement with them is extremely good.
4.4 Internal tests

The exact equations of motion satisfy the integrated

laws of conservation of angular momentum and comservation of

energy. For any scalar F, we adopt the notation
| -

AF = F(t")-F(t') and JF = [ F(t)dt. Multiplying both sides
tl

of the ¢ component of the Navier—-Stokes equations through by
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rsin@ (the distance from the axis of rotation), and

integrating over volume and time, we get

AA = fA = [[x,-<,] (4.4)

where the angular momentum is

A=/ rsine uydv (4.5)
and the torques are
du, n
S L oruime | 228 %]
T, < Re / rsine L ar = ds (4.6)

where the integral for Ti is evaluated at Ri'

We calculate ti(t) at each step, and integrate in time
to O(At)z by using the trapezoidal rule. f[fz-le should be
equal to AA to order (At)z, where A is computed directly by
numerical integrationm of equation (4.3). The energy conser-—

vation law is

AE = J[kat = [ [Ein—é 1 dt (4.7)

dis
The rate of energy input is proportional to the angular

velocity times the torque at the inner wall

— 320,t, (4.8)

(The factor of 2 arises from the non-dimensionalization

(4.1)), The viscous dissipation of energy is

2 -
Edis ol Jw.vVueav - E_

(4.9)

=1 -, 16n &
Re ¢ T30+ J Iy x ul"av)

Again using the trapezoidal rule to integrate in time, equa-
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tion (4.5) should be correct to O(At)z.

We have found that AA-SA and AE-SE, as well as the

errors in A and E themselves, vary like (At)*.

In addition, for each numerical initial value experi-
ment, the fractional errors (AA-SA)/AA and (AE-fE)/AE should
be small compared to AA and AE themselves. It is a more
stringent test if the flow changes a great deal. 1In Table
4.2, we present data for the values of these quantities for
such a run, a transition from a zero— to a one— vortex
state. The parameter values are those we will actually wuse:
At = inner rotatiomn period / 70, Ne = 128, and Nr = 32. The
units of Table 4.2 are those we will unse elsewhere: AA is
non-dimensionalized by *R.Q, 2n/Q,,while AE has been divided

by the energy of the Stokes solution.

The initial state for the data in Table 4.2 is a steady
zero—vortex state at Re = 650. The Reynolds number is set
abruptly to Re = 700 by lowering the viscosity. From revolu-
tion O to 7 there is a systematic undershoot and ovérshoot.
as a meta—-stable zero-vortex state is reached. From revolu-
tion 7 to 27 there are slowly decaying oscillations about
the meta—-stable state, and from revolution 27 to 80 the
change from a zero— to a one-vortex state takes place. Since
the values of A and E oscillate, we have divided the run

into periods in which they change monotomnically.

The conservation tests are not only a check of the
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internal consistency of the code, but also of the temporal
resolution. This is important since we will describe the
evolution of the transitions in time as well as the steady
states. The spatial resolution of Nr = 16 and N0 = 128  has
also been checked, by comparison with runs at‘higher resolu-
tion. It has been noted (Bartels 1982) that results are
especially sensitive to the resolution in ©. Recall that we
study the entire hemisphere ©O0 < © {( n whereas previous
numerical simulations have assumed equatorial symmetry and
used only 0 ¢ ® < n/2 . However, the spectral method we use

should require fewer spectral coefficients than the number

of sample points required by finite difference calculations.

Our results are of three types: transitions, eiganvéc-
tors, and steady states. We find that the transitions occur-
ring either when NB is set to 256, or when Nr is set to 32
are the same as those occuring with our 16 by 128 resolu-
tion. An eigenvalue calculated with Ny = 256 points agrees
to five significant digits with the eigenvalue calculated
using Ng = 128. We find that for Re % 1200, the sesslutdan
of 16 by 128 is adequate, yielding steady states which are
identical to those produced using a finer (16 by 256) reso-
lution. However, the use of Nr = 8 and N0 = 64 at Re = 1200

yields different, and therefore erroneous, results,



Figure 4.1

Figure 4.2

Figure 4.3

Torque / Stokes torque for Re  600. Solid line
shows torques of states numerically computed by
this study, O0's are the experimental torques of
Wimmer (private communication). Note that the
experimental points exceed 1 by about 7% as Re

approaches 0.

Torque [/ Stokes torque for 200 { Re £ 1200.
Numerically computed zero—, one—, and two— vor-
tex states are on the solid curve, short—-dashed
curve, and long~dashed <curve respectively.
Wimmer's values (private communication), with
0.07 subtracted from each, are located at the
numerals 0, 1, and 2, indicating the number of
vortices.

Vortex sizes inm units of the gap size. The
short—-dashed <curve is the size of the vortex inmn
the numerically computed one—vortex states. The
long-dashed <curve is the size of the vortex
nearest the equator in the numerically computed
two-vortex states. The size of the second vor-
tex in the two-vortex state is the difference
between the solid curve and the long-dashed
curve. Note that the solid and 1long-dashed
curves almost meet at Re = 740, indicating that
the second vortex is infinitesimal at onset.
Wimmer's experimental points (private communica-
tion) are indicated by numerals representing the
number of vortices in the state.
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TABLE 4.1
AUTHCR o STABILITY FORMATION STABILITY
OF ONE OF ONE OF TVWO
NUMERICAL
this st}dy 0.18 49.2 49.8 56.5
Schranfz 0.17647 48.4 = ~55.6
Bartelg 0.176417 50.9 —————— 55.6-59.3
Bonnet 0.17647 ——— i 51.9-66.7
Astaf'eva 0.11 45.8 e ~48.3
Sowarth 0.18 i 46.8 —_———
Walton 0.18 - 44 .8 -
Yakushin' 0.1 —-— 50.6 R—
EXPERIMENTAL
Wimmer, 0.18 47.7-48.5 49.6-49.9 57.3-57.9
Buhler 0.154 ~48.3 ~48.3 ~54 .4
Yavors%gya 0.11 44 .7+.6 44.7+.6 ~47.8
Munson a8 0.135 —_——— £ ~48.1 —_——
Khlebutin 0.19 i 44 .7+1.6 i
0.1225 —_——— 53.6+3.8 ————
best fit S 49.0 ————
REYNOLDS NUMBERS _
this ssudy 0.18 645 652 740
Vimmer 0.18 625-635. 650-653 750-758

3
Table 4.1

and stability of Taylor vortices

FORMATION
OF TWO

56.5

~55.6
55.6-59.3
51.9-66.7

~48.3

61.1-61.9

~47.8

740
800-810

Critical Taylor numbers (Ta = Reo ) for formation
in spherical Couette flow.

Shown are the lowest values of Ta for which formation of the

one—vortex
stable,
and for which the two—vortex state is stable.

.state occurs,

Schrauf 1983

Bartels 1982

Bonnet and Alziary de Rogquefort 1976
Astaf'eva, Vvedenskaya, and Yavorskaya 1978
according to formula in Sowarth and Jones 1983
according to formula in Walton 1978
Yakushin 1969

Wimmer, private communication

§nh1er, private communication
1Yavorskaya,'Belyaev, and Monakhov 1977
Munson and Menguturk 1975

Khlebutin 1969 included is his best
five gap sizes

B 09 0 g 6w ok W RN M

12

fit to data

for which the one—vortex state is
for which formation of the two— vortex state occurs,

from
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TABLE 4.2
t' t* AA JA-AA lratiol AE JE-AE |ratiol
0 2 -2.x10""% -4.x107*" 2.x107" -3.x10"° -9.x10"" 3.x10""
-3 . 11 -7 — - T p—

2 7 9.x10"° —4.x10 5.510 7.x10 2.x10 3.x10
-3 =11 1 1 -8 p— |

7 27 -1.x10"° -9.x10 9.210 -9.x10"° -4.x10 4.310
-3 -_1l0 - e X -7 s

217 80 -2.x10 -2.x10 1.x10 -1.x10 3.x10 3.x10

Table 4.2 Tests of conservation of angular momentum and
energy. During each time interval [t', t" 1,
the exact solution satisfies AA = [ A and
AE = [ E, Data is taken from the numerical
experiment described im section 6.3, in which a
Zzero— to one— yortex transitiom occurred. AA is
in uonits of nR,0Q, while AE is in wuwnits of the
Stokes energy.
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PART II: DESCRIPTIVE RESULTS

5. DESCRIPTION OF FLOWS

In this chapter, we describe steady axisymmetric spher-

ical Comuette flows at various values of the Reynolds number
" .

Re = R,08,/v . As mentioned previounsly, the gap ratio wused

here and throughout the thesis is o

(R,-R,)/R, = 0.18 .
The figures we will present are results of our numerical

calculation as described in chapter 3.
3.1 Basic Flow

As stated previously, the azimuthal velocity of spheri-
cal Couette flow is the dominant component and is approxi-
mately equal to Stokes flow at 1low Reynolds number. The

Stokes solutiomn is

2
ny = (ar + B/r ) sin® (5.1)
3 3
o,R, R,R,
where & =~y 3 and B = =%
R,-R, R,-R,

so that the angular velocity depends only on radius:

1 8
;;{%5 = a + B/r3 (5.2)

To understand the meridional motion, consider the flow
near the poles, where the geometry resembles that between
parallel differentially rotating disks. Ekman pumping
causes fluid to be thrown outward centrigugally along the
rotating disk (inner sphere) and pulled from the center of

the stationary disk (outer sphere). The fluid moving down



from the north pole along the inner sphere meets fluid mov-
ing wup from the south pole at the equator. The upwar&- and
downward— moving streams join into an outward equatorial
jet, called the equatorial outflow boundary. The jet divides
at the outer sphere to flow in opposite directions towards

the poles. Outflow boundaries are radial lines along which

u 0 and u_ > 0 ; analogously, inflow boundaries have

3]

By = 0 and L < 0. Inflow and outflow boundaries are
clearly visible im laboratory visualization studies, since
they <can be observed from the surface of the outer sphere.
The fluid in the northernm and southern hemispheres does not
mix. We shall henceforth refer to the large—-scale meri-
dional circulation in each hemisphere as a large basic vor-—
tex. The superposition of the azimuthal flow with the

weaker meridional motion yields fluid paths which are

spirals.

In an expansion of spherical Couette flow in Reynolds
number, the lowest order term is Stokes flow (5.1), which is

azimuthal. The first order correction um is meridional:

u, = V= ( ey f(r) sin20 ) . (5.3)
where f(r) = E cnrn

The meridional velocity components are

u_ = —(f"' + £f/r) sin20 = f/r (3co0s20 + 1) (5.4)

T %o
Figures 5.1a and 5.1b depict this basic three-—

dimensional flow at Re = 600. Both 5.1a and 5.1b are pro-
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jections of the flow onto the r-© plane at fizxed ¢. (Only
one r—-© slice is mnecessary for all ¢ since the flow is
axisymmetric.) In this chapter, the gap width is exaggerated
for clarity of the features (the radial interval [1,1.18] is
mapped linearly to [1,2]). The tick marks along the outer
sphere are spaced so that the circumferential distance
between tick marks is equal to one gap width, providing a
guide to the scaling. The tick marks along the inmer sphere
are spaced at intervals of n/16 radians. The long pair of

tick marks denote the equator.

Figure 5.1a shows the projected strgamlines of the
meridional floﬁ. Steamlines whose circulation is positive
(counter—-clockwise) are solid contours and those whose c¢cir-
culation is mnegative ﬁclockwise) are dashed contours. The
streamfunction is antisymmetric in © for an equatorially
symmetric flow. The solid streamline at the equator is the
outflow boundary between the two hemispheres of opposite
circulation The spacing between contour 1lines is only a
qualitative guide to the magnitude of the meridional flow
since, rather than spacing the contours at equal intervals
of the stream function values, we have used a tanh mapping
of the stream function, when necessary, to exaggerate weak
features. Figure 5.1b shows the contours of constant angu-
lar velocity. Unlike the me¥idiona1 streamlines, these lines
are not tangent to the velocity. Instead they indicate the
surfaces of equal magnitude of the angular velocity which

decreases qpnotonically from the inner to the outer sphere.
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Energy spectra convey useful information about a flow.
We are interested in the © dependance, so we decompose u
into vector spherical harmonics IL.L+I.M which, when multi-
plied by spherical Bessel functions of r, are eigenfunctions
of the vector laplacianm. Using the mnotation of Edmonds

(1960) (see also Morse and Feshbach, 1953)

u(r,0,¢) = (r) Y (enﬁ)

u
L=0 M=-L I=-1,0,1 L-L*I.M Lo L LN

(5.5)

For an axisymmetric flow field, the azimuthal velocity is

u, (r,0) = g a5 X () (5.6)
and the meridional velocity is
u_ (r,0) = z Spper () Ypopa1.0 (O (5.7)
The energy can be decomposed into
E = E¢ + Em (5.8)
where
2
E, - 2 Eg (L) = g [ % (5.9)
and
_ - P
Em = g Em (L) = g I 2 B, L+1 (5.10)

The integrals are to be taken over [R,,R,]. There is no L =
0 component in a divergence—free velocity field with homo-—

geneous normal boundar conditions.

For an equatorially symmetric flow, the sums in (5.6)



e

and (5.9) only contain terms with odd L, while the sums in
(5.7) and (5.10) are over even VL. Then, E(L) arises
exclusively from azimuthal flow if L is odd (E(L) = E¢ (L) )
from meridional flow if L is even (E(L) = E_ (L)). Since Ey
(L) and Em (L) differ in structure and magnitude, they are
shown seperately.‘ The solid line in Figure 5.1c¢c and all
subsequent spectra is the azimuthal spectrum E¢ (L), the
dashed line the meridional spectrum Em (L). The label "L
symmetric” is to be interpreted as: for L odd, the value of
E(L) is to be found on the solid (azimuthal) curve, while
for L evem it is to be found on the dashed (meridional)
curve. The spectrum of an equatorially antisymmetric state,
where the situation is reversed, will bear the label "L
antisymmetric”, meaning that E(L) is on the solid (azimu-
thal) curve for L even, and on the dashed (meridiomnal) curve
for L odd. We will not show "mixed spectra”, those of an
asymmetric flow, in which each E(L) is a sum of azimuthal

and meridional components.

Figure 5.1c shows the energy spectrum of the basic flow
at Re = 600. The total energy has been non-dimensionalized
by the energy of the Stokes flow, and the graph is loga-

rithmic.

5.2 Pinches

As the Reynolds number is increased, the basic flow
develops what Bonnet and Alziary de Roquefort (1976) called

a pinching of streamlimnes. A pinch is characterized by
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saddle point in the stream function, or equivalently, a
stagnation point in the meridional projection of the wvelo-
city field. The stream functiom has two local maxima per
hemisphere. Vortical motions occur near the equator. How-—
ever, these are not Taylor vortices: their circulation is of
the same sign as the large basic vortex and there is no
inflow or outflow boundary separating the voriical motions
from the rest of the basic flow. In a pinch, there is
radial flow, but it does not extend to the surface of the
sphere, so the pinch is not an obvious feature to a labora-
tory observer. We emphasize this distinction because of con-
fusion in the published literature (cf., review article by

Roesner, 1977).

We find that pinches occur for ﬁe 2> 630, but that the
development of pinches is not accompanied by large or abrupt
changes in the dependance on Re of physical properties of
the flow, such as the torque. The extent of each pinch is
about one gap width from the equator. Figure 5.2a and 5.2b
are pictures (amalogous to la and b) of the basic flow at Re
= 650 with pinches. Figure 5.2¢ is the spectrum of this
flow, which has a 1local maximum at a wavenumber L = 20 .
This value of L corresponds to the 1length scale of the

pinches, L = 2aR,/2(R,-R,) = nR,/(R,-R,) = 20,

Hereafter, we will refer to the basic flow, with or
without pinches, simply as a zero-vortex state. For Re 2

1200, another stable axisymmetric state without Taylor vor-
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tices wexists, which we will not describe in this chapter.
This state will always be referred to as the supercritical
Zzero-vortex state, to distinguish it from the basic zero-

vortex state.

3.3 Taylor vortices

We now consider the Taylor vortex flows occurring at o
= 0.18. Sawatzki and Zierep (1970) and VWimmer (1976)
observed two axisymmetric, equatorially symmetric steady
states with Taylor vortices: the one— and two- vortex
states. Figure 5.3 shbws_the one—-vortex state, which has one
Taylor vortex in each hemisphere, at Re = 900. Figure 5.4
sho%s the two-vortex state, with two Taylor vortices per
hemisphere, at the same Re = 900. It is not surprising that
the Taylor vortices should ﬂe located mnear the ;quator,
since it is only in the equatorial region that the geometry
between concentric spheres resembles that between concentric
cylinders. In addition, the local Reynolds number
Re(6) = R:ﬂlsinefv, which measures the 1local centrifugal-

force, is highest at the equator.

Looking at Figures 5.3a and 5.4a, we see that the size
of the vortices is on the order of one gap width. _Vortices
meet without shearing, since the circulation altermnates 1in
sign, The straight radial contours are tﬁe inflow and out-
flow boundaries separating the Taylor vortices from each
other and from the large basic vortices. Note that the

equatorial boundary is outwards for the two-vortex state,
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but inwards for the ome-vortex state. The equatorial inflow
boundary was seen and explained by Wimmer and Sawatzki and
Zierep: If the large basic vortices are to retaimn their sign
of circulation, there must be outflow boundaries between
them and their neighboring Taylor vortices. This simple con-
siderafion yields the correct direction of the equatorial

boundaries.

In Figunres 5.3b and 5.4b, the distortion of the sur-
faces of <constant angunlar velocity from spheres is quite
noticeable, especially at the inflow and outflow boundaries.
This demonstrates the ad%ection of angular momentum by the

Taylor vortices.

.The spectra of the one— and two- vortex states are
shown in Figures 5.3c and 5.4¢c. We see that_the azimuthal
energy continunes to dominate the meridional energy. The
spectra of the one—- and two— vortex states have "scal-
lopped” shapes. This suggests a convolution of a Gaussian
or similar function with the spectrum of a periodic fumnc-
tion. Convolution of spectra corresponds to multiplication
in physical space; the velocity field must be periodic Qith
a modulated amplitude. We see then gualitatively that
"scallopped” spectra are to be expected from a velocity

field with vortices located only at the equator.

We examine a one-dimensional model problem which gives
rise to a scallopped spectrum., Let g(®) be the odd periodic

extension of a Gaussian function centered at g.
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gfé) = f: [g]% Z (-1)® exp[ _,igzﬁﬁfianl: ] (5.11)

Its Fodrier transform is

I' 2 z'l k-1
6(k) = exp| - o ] 1) - , k odd (5.12)
= 0 » kK even
Let
h(®) = sin ( k,. 0 ) (5.13)

The spectrum of the product g(®) h(®) is the square of the

convolution of G(k) with H(k) = &
k.k,

2 2
E(k) = exp[ - (k-k,) a | , k-k, odd (5.14)
Now let h’ be a more <complicated periodic functiom with

wavenumber k,

B'(6) = ) exp(-bnk,) sin(nk,0) (5.14)
= _

The spectrum of the product g(®) h’'(0) is

(5.15)

2
E'(kx) = ; exp{ - ﬁr ({k-nk°)2+(k—mk°)z) - bk, (n+m) }
n,m

(The sum is to be taken over n, m such that k-nk, and k-mk,
are odd). If k, is large enough so that the points k-nk,

are well separated, the spectrum is approximately

(5.16)

E'(k) = ) exp[ - ((k-nk,)" - 2bmk, | , k-nk, odd
n

which has exponentially decreasing rounded maxima located at



k = nk,
and sharp minima at
kG
= =2, b
k 2 * T3 * nk,
a

Equation (5.16) has the qualitative form of

trum of the one-vortex state (Figure 5.3¢c).

(5.17)

(5.18)

the spec—

If k, is

smaller, or if h is the sum of two periodic functions with

different wavenumbers, more complicated spectra cam occur.

The two-vortex state (Figure 5.3d), for example, has a

doubly-scalloped structure.
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Figure 5.3
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Figure Captions —— Chapter 5

The basiec flow at Re = 600. The gap width is

exaggerated. Figure 5.1a shows the meridiomnal
streamlines. The solid and dashed streamlimnes
denote positive and negative c¢irculation,

respectively. Figure 5.1b shows the contours of
constant angular <velocity. PFigure 5.1¢ is the
energy spectrum of the flow. The solid and
dashed c¢urves denote the azimuthal and meri-
dional components, respectively.

The basic state with pinch at Re = 650. Figures
5.2a, b, and ¢ show the meridional streamlines,
contours of <constant angular velocity, and
energy spectrum, as in Figure 5.1.

The one-vortex state (one Taylor vortex in .each
hemisphere) at Re = 900. Figures 5.3a, b, and ¢
show the meridional streamlines, contours of
constant angular velocity, and energy spectrum,
as in Figure §5.1.

The two—-vortex state (two Taylor vortices in
each hemisphere) at Re = 900. Figures 5.4a, b,
and ¢ show the meridional streamlines, c¢ontours
of constant angular velocity, and energy spec-
trum, as in Figure 5.1.
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6. DESCRIPTIONS OF TRANSITIONS

Before analyzing the transitions physically and
mathematically, it is important to describe them in detail.
The equilibrium states have been described experimentilly
(Sawatzi and Zierep 1970, Wimmer 1976) and numerically (Bon-
net and Alziary de Rogquefort 1976; Bartels 1982; Schrauf
1983). However, the path by which one state changes into
another has never been shown. Numerical results are a use-
ful addition to experimental results in this regard, since
the laboratory observer is restricted to viewing the outer
sphere. Numerical simulations are also versatile, able to
begin with either anmn unstable equilibrium (as is wuwsual in
analytic studies or non-equilibrium state (the usual case in

experimental studies).

In this chapter, we will show pictures of the time
development of four types of transtioms. These are: the
zero— to two—, the ome— to zero—, the zero— to ome—, and the
two— to omne— <vortex transitioms. The first two have been
reproduced numerically, while the third has not previously
been simulated. We will see that there are a number of con-
ceptual problems associated with the ;ero— to omne— vortex
transition, and we will show how these are resolved. The
two— to one— vortex transition has until recently (Buhler,
private communication) escaped experimental notice. We will
see that it has much in common with the zero— to one— vortex

transition. The two— to zero- vortex transition is not dis-



cussed separately since it is merely the reverse of the
zero— to two— vortex transition. A one- to two— vortex tran-
sition is known to occur experimentally (Wimmer 1976), but

we have not numerically simulated it.
6.1 Zero—- to two— vortex

The zero— to two— vortex transition is readily produced
in the laboratory and has been previously simulated numeri-
cally (Bartels 1982, Bonnet and Alziary de Roquefort 1976)
but its time development has not been described. We will
describe the zero— to two— vortex tramsition that takes
place at Re = 800 and o = 0.18 . In Figure 6.1, we show six
snapshots of the meridional flow. To allow the picture to
be drawn to scale, and display both sides of the equator,
only the sector x/2 + n/8 of the arc is shown. The markers
along the outer sphere are located at intervals of one gap
width along the §phere. The markers along the inner sphere
are at intervals of n/64 radians. Each is labelled by the
time in revolutions of the inner sphere from the start of

the run.

The flow executes a fluid mechanical version of the
biological maxim "Ontogeny Recapitulates Phylogeny": its
evolution in time resembles the succession of steady states
with increasing Reynolds number. The initial state (not
pictured) at T = 0 is the Stokes flow (mot an equilibrium
state). By T = 1, the large basic vortices have formed; the

meridional flow has the gqualitative features of eqnation
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(5.4). At T = 2, pinches have begun to form because of the

centrifugal forces at the equator.

By T = 3, the pinches have grown more prominent and
stretched. As weach pinch separates from its basic vortex,
the flow becomes unstable to formation of recircmlation vor-
tices (see Taneda 1979 for general discussion of recircula-
tion vortices). This is in fact what happens: By T = 4,
each pinch has broken off from its 1arée basic vortex and a
new and very weak recirculating vortex -has formed in the
space between them. (The formation of recirculationm vortices
will also be discussed in sectiom 6.3, since it occurs in
the =zero— to one— transitionmn as well.) In the descriptions
to follow, the term "recirculating vortex” will be used to
mean any Taylor vortex whose circulation is opposite to the

large basic vortex of its hemisphere.

The recirculating vortices have grown considerably in
size and strength by T = 5. The flow is close to its steady
state, attained by T = 20. The timescale for the transition
is dynamical, not viscous, since it occurs in a few revolu-
tion times. It-is a local phenomenon; the transition time is

insufficient for information to propagate from the poles.

Figure 6.2 shows the same evolution in time of the
radial velocity profile nr(i.e) at the mid-shell
R = (R,+R,)/2. Each profile is 1labelled by the time, in

revolutions, at which it occurs is given along the abscissa,

and the distance from the equator is shown on the ordinate
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in wunits of gap size (omnly the equatorial region is shown).
Within each profile, distance along the abscissa also meas-
ures the magnitude of the velocity. All the profiles have
the same scale, so the figure provides a2 quantitative com-
parison of the magnitude of the meridional flow at different
"times and locations. The maximum meridional velocity in the
figure is o _(max) = .088 in units of the maximum azimﬁthal
velocity R,ﬂl. The local Re based on the gap width and
nr(max) is 12, about the Reynolds number at which recircula-
tion vortices form in two dimensional flows. Note that
radial velocity profiles do not distinguish gqualitatively

between vortices and pinches.

Figure 6.3 shows the integrated physical quantities <t
(the torque at the inner sphere) and A = fl-t, (the time
derivative of angular momentum) as a function of time. The
torque T, increases as the pinches and vortices form, redis-
tributing angular momentum. Graphs showing the variation of
T, and A with time are signatures of the different transi-—

tions; when the same transition takes place at a different

Re, the graphs change quantitatively but not qualitatively.

6.2 One- to zero—- vortex

-

The progression of this transition, shown in Figure
6.4, is straightforward. The initial condition is the steady
one-vortex state at Re = 645. When the Reynolds number is
lowered to 644, the recirculating equatorial vortices mono-

tonically decrease im energy. The transition ©proceeds
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almost imperceptibly until about T = 50. By T = 70, the

equatorial vortices have become noticeably weaker and
smaller. At T = 76, they have disappeared altogether.
Pinches are then formed, and equilibrium reached by T = 80.

The transition is slow; the time scale is viscously dom-

inated.

Figure 6.5 makes especially clear the <change at the
equator from an inflow to an outlow boundary. At T = 76,
when the vortices have disappeared but the pinches have not
yet formed, there is an outflow boundary seen in Figure 6.4,
but Figure 6.5 shows it to be very weak. The radial outflow
increases as the pinch is formed. The maximum meridional
velocity is .034 . 1In Figure 6.6, we see the torque gradu-

ally decreasing as the recirculating vortex dimimnishes,

reaching a minimum at T = 76, The pinch then forms, redis-—
tributing angular momentum and thereby increasing the
torque.

6.3 Zero- to one- vortex

We begin by speculating on how the one-vortex state
might ©be formed im 1ight of the two transitions we have
described so far. Suppose the pinch broke off to become a
vortex, as im the zero— to two— vortex transition of Figure
6.1, but that this was not accompanied by the formation of a
second recirculating vortex. Then the circulation of the
vortex would have the wrong sign: recall that the circula-

tion of a Taylor vortex must be opposite to that of a
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neighboring Taylor vortex or large basic vortex. Tranmsition

to the ome—vortex state cannot happen this way.

Suppose instead that the zero— to one— vortex transi-
tion was the reverse of the one— to zero- vortex transition.
From Figure 6.4, we see that this would require the genera-—
tion of a pair of vortices at the equator, which is a strong
outflow boundary in the zero—-vortex state. It has been
noticed (Marcus 1983, Mullin 1982) that vortices separated
by outflow boundaries are tightly bound. It is difficult to
insert mnew pairs of vortices at an outflow boundary, which

would separate the bound vortices (Mullin 1982),.

In the preceding paragraphs, we have examined two pos-—
sible scenarios for the zero— to one— vortex transition and
rejected them both. The first —-—- ©breaking off a -pinch
without forming a recirculating vortex -- does not yiéld the
one-vortex state as described in sectionmn 5.3. The second —-
generation of a vortex pair at the equatorial outflow boun-
dary —— is geometrically possible, but physically unlikely.
How then does this tramsitionm occur? It has been comnjec-
tured that the zero- to ome-vortex transitiom takes place
either mnon-axisymmetrically or non—-equatorially symmetri-
cally (Yavorskaya et al. 1978, Bartels 1982), but neither

possibility has been investigated.

In Figure 6.7 we show the evolution im time of the
zero— to one— vortex transitiom at Re = T700. The initial

state is the steady zero-vortex state at Re = 650. It is
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necessary here to allude to the mechanism of the tramsition,
to be explained in the next two chapters. This ;ransition is
caused by a linear instability of the zero—-vortex state at
Re = 700. The flow spemnds about 10 revolutions relaxing to
the zero-vortex state at Re = 700, and another 20 revolu-
tions changing imperceptibly, as the initially infinitesimal

perturbation grows to threshold value. The actual transi-

tion, starting at about T = 30, is insensitive to whether
the initial condition is the stable Re = 650 or the unstable
Re = 700 zero-vortex state.

Having explained this, we can say that the sequence in
Figure 6.7 begins at T = 30 with the Re = 700 zero-vortex
state. There is a large vortex and pinch in each hemisphere.
The pinch in the northern hemisphere moves away from the
large basic vortex and moves across the equator (T = 37).
Two wedge—shaped recirculating zones form, oﬁe at each wall
(T = 39.4). These meet (T = 40) to become the recirculating
vortex of the northern hemisphere and separating the pinch
from its basic vortex. This is the same process that occurs
in the zero—- to two— vortex transition, but here the pinch
breaks off in only one hemisphere. The former pinch contin-
ues to move down (T = 42), eventually becoming the vortex
associated with the sounthern hemisphere (T = 70). The re-

establishment of symmetry is gradual.

The spontaneous breaking of symmetry is clearly seen in

Figure 6.8 as the equatorial outflow boundary moves down,
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and is eventually replaced by an inflow boundary. The max-

imum value of uw_ in Figure 6.8 is .066 .

In Figure 6.9, the initial rapid increase and overshoot
of T, and A are characteristic of an abrupt increase in Re
of about this magnitude, rather than of the transition. The

system then settles into the unstable Re = 700 zero-vortex

equilibrium.

One consequence of the transition mechanism is that the
amount of time spent by the numerically simulated flow in
the unstable equilibrium is not physically meaningful. The
time, spent in the unstable state depends on the growth rate
of the instability but also on its initial value. The ini-
tial valﬁe. in turn, depends on factors such as the numeri-
cal resolution and round-off error amd is therefore mnon-
physical. Numerical error—introducing processes are the
analogunes of experimental perturbations --— this is why an
initial value <c¢ode can function 1like an experiment inmn
responding to instabilities -~ but there is =no reason to
suppose the rate of introduct;on of perturbations to be the
same;. For calibration purposes only, we note that for Re =
800 when mno asymmetric transitioms are occurring, with our
usual resolution of 16 radial Chebyshev coefficients and 128
angular Fourier coeffic?ents, the energy of the antisym-—
metric part of the flow is about 10"** of the total energy.
This is the initiai energy of the "infinitesimal” perturba-—

tion used by the simulation.
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When the transition finally happems it is extremely
rapid, accompanied by a sudden increase in |A]l . The inner
torque T, increases monotonically to its final value while
the vortices are formed. It is relatively insensitive to
the re—establishment of symmetry: angular momentum is tran-
sported by the vortices regardless of their position rela-

tive to the equator.

6.4 Two- to one- vortex

The two— to one— vortex transition, also asymmetric,
has mnot received mnearly as much atteantion as the zero— to
one— vortex transition. In fact, it has never been men-
tioned in either the numerical or the published experimental
literature, although it can be seen in Buhler'’'s transition
diagram (private communication). -The absence of-the two— to
one— vortex tramnsition in the numerical literature is easily
explained bDy its asymmetry. The 1lack of mentiom in the
experimental literature could be due to the fact that this
transition occurs only im a very small range of Reynolds

number 740 < Re < 775.

Figure 6.10 shows the time evoluntion of the transition
from a two-vortex state to the ome-vortex state at Re = 750.
We have started at T = 0 with the stable Re = 800 two-vortex
state as an initial comndition, and have abruptly decreased
Re to 750. Much of what we have said about the zero— to
one— vortex transition applies to the two— to one- vorfex

transition, also caused by a linear instability. That is,
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the actual transition, starting at about T = 50, is unaf-

fected by whether the initial condition is the one we have

actually used —-— the two-vortex state at Re = 800 -- or the
two—-vortex state at Re = 750, which is unstable.
At T = 50 in Figure 6.10 we show the unstable Re = 750

two—-vortex state. Note that the recirculating vortices are
narrow, their circumferential extent less than 40% of the
gap width. As shown in Figure 4.3 and discussed by Wimmer
(1976) and Yavorskaya (1977), the size of vortices is a
function of Re. We may conjecture that the recirculation
vortices at Re = 750 are unstable because their small size

subjects them to shearing forces.

The recirculating vortex of the southern hemisphere
grows smaller (T = 57) so that the large basic vortex aid
the equatorial vortex approach one another (T = 58). (The
recirculating vortex still exists, but is represented by a
blank area because it is too weak to <contain a contour
line.) Unlike those in steady .states, the vortex boundaries
are not radial lines. Eventually the recirculating vortex
disappears altogether (T = 60), leaving the equatorial vor-
tex to become a pinch associated with the large polar vor-
tex. The recirculating vortex of the northern hemisphere

expands (T = 65) and both vortices move across the equator

till a symmetric configuration is re-established (T = 90).

Figure 6.11, very similar to Figure 6.8, reminds us

that the radial velocity profiles do not distinguish between
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the pinches of zero—-vortex state and the recirculating vor-
tices of the tw07vo£tex state. The mazximum value of ur in
Figure 6.11 is .078 . The asymmetry of the transition is
clearly visible. We may speculate, in the same way as we
did for the zero— to one— vortex transition, about how the
transition could take place symmetrically. It would not
suffice for the small recirculating vortices to disappear
since then vortices of the same sign would be nFighbors,
therefore not Taylor vortices. The only remaining alterna-
tive would be for the vortices on either side of the equator
to disappear. Again this seems physically unlikely, not only

on the grounds of destroying an outflow boundary, but also

because of the size and strength of the equatorial vortices.

Figure 6.12 shows that the change in T, does not bekin
until after T = 60, indicating that the angular momentum
transport is not greatly affected by the disapp;arance of
the recirculating vortex of the southern hemisphere into a
pinch. It is rather the increase in size of the recirculat—
ing vortex of the mnorthern hemisphere that causes T, to
increase. The same disclaimer applies as was made for the
Zzero— to one— vortex transition: the amount of time spent in

the unstable two-vortex state has no physical significance.
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Meridional flow during the zero— to two— vortex
transition. Snapshots of the meridional flow,
each labelled with the time in inner sphere
revolutions. Only the sector =n/2 + n/8 is
shown.

Radial velocity profiles during the zero— to
two—- vortex tramnsition. a_ ((R,+R,)/2,0) as a

function of © (ordinate, units of one gap size)
and as a function of time (abscissa, units of
one inner sphere revolution). All profiles are
scaled to the maximum meridional velocity during
the transition, ur(max) = .088 Q,R,.

Torques during the zero— to two- vortex transi-
tiom. The torque at the inner sphere, and the
inner sphere torque minus the outer sphere
torque are shown as a function of time.

Meridional flow during the one— to zero— vortex
transition.

Radial velocity profiles during the one— to
zero— vortex tramsition. o (max) = .034 Q,R,.

Torques during the ome— to zero— vortex tramnsi-
tion.

Meridional flow during the zero— to one— +vortex
transition.

Radial velocity profiles for the zero— to one-
vortex transition. ur(max) = .066 Q,R,.

Torques during the zero— to omne— vortex transi-
tiom.

Meridional flow during the two— to one— vortex
transition.

Radial velocity profiles during the two— to one-
vortex tramsition. wu _(max) = .078 Q,R,.

Torques during the two- to ome- vortex transi-
tion.
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PART IIXI: ANALYSIS OF RESULTS

Now that we have described the steady flows and the
transitions between them, it is best to consider the global
dependence of the steady flows on Reynolds number. Since it
is impossible to present a graph of the infinite—dimensional
flows as a function of Re, bifurcation diagrams are formed
by projecting the flows onto some one-dimensional quantity.
Sch}ahf (1983), who completed an extensive steady-state cal-
culation of this problem, chose to represent each flow by

5 2
its torque (non-dimensiomnalized by %3191’ T.

Figure 7.1 is a graph of v vs. Re for our numerically
compu;ed flows. All results to be presented'in this chapter
refer to steady flows. The torques .of 'zero—vortex states
are located on the solid curve, those of one-vortex states
are on the short—-dashed curve, and the two—vortex states are
on the long-dashed curve. Except in regions of rapid change,
flows were computed at intervals in Re of 10 or 25. The
curve connects the calculated points withont any smoothing.
A striking feature, discovered independently by Schrauf and
by our study, is that the zero-vortex states and two-vortex
states lie on the same curve. We find Re = 740 as the value
separating zero-vorfex states from two-vortex states. We

showed in Figure 4.3 that the recirculation vortices
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(defined in the previous chapter as the Taylor vortices hav-
ing circulation opposite to the hemisphere’s basic vortex)
are extremely small for Re near 740. As Re is increased,
the recirculation vortices grow radically in size and inten-—
sity, thereby increasing the torque. Because of the rapid
change near 740, flows were computed for seven values of Re

in 730 £ Re < 745.

Schrauf discovered that the omne-vortex states lie on a
branch separate from that containing the zero— and two—- vor-
tex states. This result, clearly reproduced in Figure 7.1,
‘elucidates some of the as—-yet-unezplained phenomena in pre-—
vious experiments and initial value calculations. We find
Re = 645 as the lowest valuwe of Re for which a steady one-

vortex state exists. . -

The one-vortex branch and the zero- and two—- vortex
branch do not intersect, despite the coincidence of torques
at Re = 790. VWe mean to distinguish here between a branch
-- a set of flows, varying continuwously with Re —— and the
projection of a branch, onto the t-Re plane imn this <case,
whicﬁ we have <called a curve. The intersection of two
curves does not imply an intersection in the two correspond-
ing branches of flows, since intersections occur far more
frequently in the projected space than in the infinite-
dimensional space of flows. When schematic bifurcation
diagrams are used, rather than physical quantities, they are

drawn so that no such fortuitous intersections occur.
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Figure 7.2 shows a section of t vs. Re on a larger
scale. The arrows in Figure 7.2 indicate schematically the
transitions between branches. The arrows connect the imitial
and final states of three of the transitions described in
the previous chapter. The one—~ to zero—- vortex transition
when Re is lowered from 645 to 644 occurs because the solu-
tion "falls off" the one—-vortex branch when the branch
ceases to exist. The zero— to one— vortex transition at Re =
700 and the two— to one— vortex transition at Re = 750 arise
from an equatorially antisymmetric instability, to be dis—
cussed in the next chapter, of the branch <containing the
zero— and two— vortex states. Antisymmetric components were
suppressed to enable the computation of unstable zero— and
two- vortex &equilibria. All three transitions are time-—
dependent processes, taking the flow through regions which
are mnot steady solutioms. The change from a zero— to a
two-vortex state is not a tramsition im the same sense,
since it does not involve moving from one solution branch to

another.

7.2 Branches and turning points

To understand how Figure 7.1 fits into Schrauf'’s larger
bifurcation diagram, we include here a mathematical digres-—
sion on branches and bifurcations in the Navier—Stokes equa-
tions. Our sources, to which we refer the reader for proofs,
details and more references, are the works of Joseph (1981),

Sattinger (1973), and Benjamin (1976,1978a,1978b,1982). 1In
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spherical and cylindrical Couette flow, as in many hydro-
dynamic problems, several different steady solutions exi;t
at the same Reynolds number. At low Reynolds number, how-
ever, it is a general property of the steady Navier—-Stokes
equations that the solution is wunique (Serrin 1959). The
primary branch, in Benjamin's nomenclature, is the unique
continunation of this low Re solutiom to high Re. Any other
branch, called a secondary branch, must have a turning poin?
(also called a one—-sided bifurcation) below which it ceases
to exist. Figure 7.3 is a schematic bifurcation diagram
showing a primary branch (a), and a secondary branch (b)
with a turning point (c). Turning points may occur else-
where, for example on a primary branch (d), or at the high-—

Re 1imit of a branch (e).

A bifurcation point is the intersection of two
branches. If a bifurcation coincides with a turning point
of one of the two bramches, it can be a sub-critical (f) or
a super—critical (g) bifurcation. Sorokin (1961) and Benja-
min (1976) showed that in the absence of exceptional sym-
metry, trans—critical bifurcations (h) (not coinciding with
a turning point) are far more common. Perturbations of the
equations or boundary conditions can lead to the decoupling
of a bifurcation (i,j). The stability of a branch <changes
upon crossing either a bifurcation point or a turning point
(see Joseph), although the stability may also change else-
where (Sattinger). In 7.3(a)-(j), the solid lines denote

stable branches, the dashed lines unstable branches, in



accordance with this rule.

One of the observable distinctions between the dif-
ferent types of bifurcations is the occurence of hysteresis.
At a super—-critical bifurcation, there can be no hysteresis:
in raising Re, transition from the primary to the secondary
branch takes ©place because the primary flow becomes
unstable, and in lowering Re, transition from the secondary
to the primary branch occurs because the secondary branch
ceases lto exist at this point, which can unambiguously be
called Rec‘ At a sub-critical or trams-critical bifurcation,
or when a bifnrca}ion has been decoupled, the value of Rec

will depend on whether Re is increased or decreased.

The global strucfure of steady solutions is best deter-
mined by a steady—-state solver, which traces the branches
regardless of their stability. Solutions can be <calculated
which are not actually attained by evolutiom in time
(unstable solutions in particular) and yet play an important
mathematical role, much as the anaiytic continuation of real
functions into the complex plane can yield important infor-
mation aboumt the original real functions. The role of an
init{al—valne solver is complementary; it <calculates the
evolution in time of the flow along the steady branches, or

‘from one branch to another, which a s{eady~state solver can-

not do.

We can now apply these ideas to spherical Couette flow.

The branch containing the zero— and two— vortex states is
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the primary branch, which is the unigque solution for Re ¢
645. The one—-vortex states form a secondary branch. VWe
have said that a secondary branch must terminate at a turmn-
ing point 1linking it to the complementary unstable part of
the branch. Although we canmot calculate unstable states,
we can locate turning points since, as pointed out by Benja-
min (1978a,b), measurements (i.e. projections of the flow)
along the " stable part of a branch should have a slope
approaching the vertical as a turning point is approached.
Although his discussion ref;rs to experiment, it applies
equally well to its numerical equivalent, an initial wvalue
solverxr. Indeed, the one-vortex curve in Figure 7.1 has a
near—-vertical tangent as Re decreases to 645, (Four points
have been <calculated in the interval 645 { Re  650.) The

dependence of vortex size on Re in Figure 4.3 shows the same

behavior.

To follow the secondary branch containing the one-
vortex states past its turning point, we turn to Schrauf'’s
study. His bifurcation diagram shows a complementary bran;h
of unstable one-vortex states joining the stable one-vortex
branch at the turning point. According to Schrauf, the
secondary branch containing the one-vortex states never
intersects the primary branch; there is no bifurcation point
of any kind. Schrauf also found a plethora of turmning
points, and of other branches, stable and unstable, in addi-

tion to the ones we have described.



1.3 Relation to cylinders

—_—

The qualitative nature of these results is not entirely
unexpected, in 1light of Benjamin’s (1978a, 1978b, 1982)
theoretical and experimental work on transition in finite
cylinders. The classical mathematical model of cylindrical
Couette flow, (Kirchgassner and Sorger 1968, Kogelman and
DiPrima 197Q) which is in very good agreement with experi-
ments with long cylinders, assumes cylinders of infinite
length; Transition to Taylor vortex flow takes place through
a super—critical bifurcation, and no hysteresis should

occur.

Benjamin argues that the finiteness of the cylinders
has the effect of decoupling the bifurcation so that one
branch of the Taylor-vortex solution is joined to the pri-
mary branch below Rec and the other branch of the Taylor-
vortex solution is joined to the unstable part of primary
branch above Rec' It is usuval for a bifurcation to be decou-
pled by -"imperfections”, of which there are two in finite
cylinderg: the integer constraint po;ed by the finite
length, and the Ekman pumping caused by the endplates. These

effects are of course also present in spheres.

In Benjamin's model, transition to Taylor-vortex flow
with the preferred number of vortices —— that yielding vor-
tices closest to circular -- takes place continuously. Flows
with one more pair or one fewer pair of vortices are located

on a disconnected secondary branch. This is exactly what
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happens in the spherical case, the two—-vortex states being
located on the primary branch and the one-vortex states

occupying a secondary branch,



Figure 7.1

Figure 7.2

Figure 7.3
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Figure Captions -— Chapter 7

The torques of steady states as a function of
Reynolds number for 600  Re £ 900. The solid
curve shows torques of zero-vortex states, the
short-dashed curve those of one-vortex states,
and the short-dashed curve those of two-vortex
states. Note that the curves representing zero-
and two— vortex states join continuwoumusly, and
that the one-vortex states are on a different,
unconnected curve.

Same as Figure 7.1, for 620 { Re < 800. The
arrows at Re = 644, Re = 700, and Re = 750 show
schematically the one— to zero—, zero— to one-,
and two— to one— vortex transitions discussed in
chapter 6.

Schematic bifurcation diagrams. Branches: pri-
mary (a) and secondary (b). Turning points
(c,d,e). Bifurcations: sub-critical (f), super-
critical (g), and transcritical (h). Decoupling
of bifurcations (i,j).
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We have found the instability that initiates transition
to the one—-vortex branch. The primary branch is stable to
all equatorially symmetric perturbations. However, for 651
{ Re ¢( 775, the branch is linearly unstable to an equmatori-—
ally antisymmetric perturbation. After the antisymmetric
perturbation grows to a threshold valwe, the actuwal transi-
tion occurs via the highly nonlinear process described in
chapter 6. The final state is the (symmetric) ome-vortex
state. As we have seen in chapter 7, the interval 651 ¢ Re
775 of the primary branch includes both zero—-vortex and
two—-vortex states: the zero- to omne-vortex tramnsition and
the two— to one-vortex transitiom are aspects of the samé

phenomenon.

8.1 Growth rates and the Window

The growth rate (in units of inverse revolution times)
of the "antisymmetric perturbations as a functionm of Re is
shown as the curve in Figure 8.1. These were calculated by
the procedure described in section 3.5. The exact Reynolds
number at which the growth rate first exceeds zero is Re =
652, in agreement with Wimmer’'s experimental data to 3 sig-
nificant digits. The growth rate them increases with Re
until Re = 735, where it reaches its maximum value of 0.68,
or equivalently an e—folding time of 1.5 revolutions,. Then
the growth rate sharply decreases, becoming negative at Re =

775. It is interesting to note that the growth rate
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achieves its maximum value at approximately the same Re at
which the second recirculating vortex app;ars (see Figure
4.3) and exactly at the Re at which the torque of the pri-
mary branch obtains its minimum value (see Figure 7.1). We
conjecture that the rapid decrease in growth rate as a func—
tion of Re for Re > 735 is due to the stabilizing and angu-
lar momentum transporting properties of the second recircu-

lating vortex.

We may call the interval 651 ¢( Re ¢ 775 a "window"”
from the primary branch to the one-vortex branch. Once the
one-vortex bramch is attaineﬁ. there is no difficulty
remaining on it; if the Reynolds number is raised or lowered
(to a value for which the ome-vortex branch still exists,
i.e. Re > 645), the flow changes smoothly to the one-vortex
state corresponding to that Reynolds number. But the branch
can only be reached if the time spent in the window,
weighted by the growth rate at each Reynolds number, is
large enough for the antisymmetric perturbation to reach the

threshold level necessary for transitiom to occur.

This window, then, is the matﬁematical explanation -for
Wimmer's phenomenological finding. He found that the fimal
state attained for Re > 600 depended strongly on the time
taken for spinup of the inner sphere, but that "attention
need be paid only to the acceleration im the immediate
vicinity of the critical Reynolds number” (Wimmer 1976). A

long spin-up time genmerated the one-vortex state, while a
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shorter spin-up time generated the two—-vortex state at the

same Reynolds number.

We can calculate an approximate lower bound on the
amount of time required in Wimmer'’s apparatus for tramsition
to the one-vortex state to occur. We know that R, = 6.8 cm
and assume the viscosity to be of order v = .01 cmzlsec R
At Re = 735, the Reynolds number of fastest growth, the e-
folding time is 1.5 revolutions, which is 1 minunte. Assume
an initial amplitude for perturbations that is 10_‘ of the
velocity (King, private communication). For the perturba-
tion ‘to gro; to a level of 10"1, the approximate threshold
value necessary for transitiom, requires 15 minutes. With
an initial amplitude of 10_2. transition should require 3
minugtes. Wimmer's (1976) data indicates that the time

required in his experiment for transition to the one-vortex

state is 3 to 9 minutes.

Our model predicts that the zero— and two—- vortex
states of +the primary branch should never be the final
steady state for Reynolds numbers in the window 651 ¢ Re <
175 If sufficient time is not allotted for transitiom to
occur, these unstable equilibria may be mistaken for stable
states. The model does not preclude the stability of zero-
or two— vortex states omn other possible secondary branches,
which may exist, in light of Schrauf’s (1983) description of

the complexity of the branches.



The eigenvectors and eigenvalues we have found are
those of the operator Q(U) corresponding to the Navier-—

Stokes equations linearized about the steady state U

(8.1)
(Q(U)) (u) = - (a - V) U - (U . V) ua - VP + v Vz u

The domain of G(U) is restricted to fields uw satisfying

V.uaa=20 (8.2)

and the boundary conditions

4 s By (8.3)

It is possible to form the linear operator Q(U) and
find its eigenvectors and eigenvalues even if U is-not a
steady solutiom. This is equivalent to investigating the
stability of the Navier—Stokes equations with an external

force

2
iz = (U . V) 0-vV U (8.4)
or, alternatively, to using U as an approximation to a
steady state. We have found another set of eigenvectors and
eigenvalues, which we call Stokes eigenvectors and Stokes

eigenvalues, by wusing the Stokes solution, defined in

chapter 5, as U .

The crosses on Figure 8.1 are the Stokes eigenvalues
for various values of Re. We see that the Stokes eigen-

values are close to the true eigenvalues for 650 ¢ Re ¢ 700.
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In particular the 1lowest Reynolds mnumber for which the
growth rate is positive is 648 for Stokes flow, as compared
with 652 for the true primary flow. Mathematically, this
indicates that the eigenvalue problem depends much more
strongly on Re as a parameter than via the basic flow. Phy-
sically, this result imndicates that.the meridional part of
the basic flow does not play an important role in the onset
of instability, and that the instability is the same as that
which occurs in the formation of Taylor vortices inm cylindr-
ical Couette flow. Yakushin’s (1969) analysis, in which he
computed the =eigenvalues and eigenvectors for the Stokes
flow, is shown to be a good approximation to the instability
that actually occurs. He cannot see the window effect; he
does not allow for qnalitative change of the primary flow,

and the growth rate only increases with Re.

Considerations of equatorial symmetry have played an
important role in previomns linear stability analyses of both
spherical Couette flow and fiﬁite cylinders. The operator
Q(U) corresponding to the Navier—Stokes equatioﬁs linear-
ized about a symmetric state U, with symmetric boundary

conditions, commutes with the equatorial reflection operator

(R (ﬁr.ne,u¢)) (r,0,8) = (“r'—“O’uﬁ) (r,n-0,9) (8.5)
Therefore its eigenvectors have a definite parity and con-
sideration c¢an be restricted to eigenvectors which are
either symmetric or antisymmetric. An asymmetric (of mnei-

ther parity) eigenvector must be the sum of eigenvectors of
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opposite parity with the same eigenvalme, so is ©possible
only if an eigenvalue is degenerate: Yakushin found that
unstable eigenfunctions occurred inm pairs, each <consisting
of an antisymmetric amnd a symmetric eigenfunction whose
eigenvalues intertwine as Re is varied. That is, the eigen-
values are almost degenerate. Blennerhassett and Hall

(1979%) found the same result for finite cylinders.

An eigenvalue - eigenvector solver is, however, insuf-
ficient for studying transition to the one—-vortex branch.
Using only linear stability analysis, we would know that the
basic branch is unstable to an aniisymmetric perturbation of
the Taylor-vortex form, but not the evolution of the flow
dne to this instability, nor its eventual steady—-state des-—
tination. This drawback is evident when we c¢ompare our
results to the stability analyses of Yakushin (1969) and
Munson et al. (1971,1975). They found that the eigenvectors
with the lowest critical Reynolds number were antisymmetric,
but believed that experimental wverification would require

the final states to be asymmetric.
8.3 Eigenvectors

We now show the antisymmetric éigenvectors of the
operator Q(U) defined by equations (8.1-8.3) for various-
flows U. Section 3.5 explains the method of calculation
that was used. For illustrative purposes, we begin by show-
ing the Stokes eigenvector -— the instable eigenvector cal-

culated by using the Stokes flow as an approximation to the
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steady state —— at Re = 700, Figure 8.2a shows the meri-
dional streamfunction, 8.2b the contours of constant angular
velocity, and 8.2c the spectrum of the Stokes eigenvector.
Like the other eigenvectors, the Stokes eigenvector has the
form of a modulated stack of Taylor vortices. The meri-
dional flow, shown in Figure 8.2a, has the form of vortices.
The vortex boundaries (inflow or ouﬁflow boundaries) appear
as solid radial streamlines. As explained in chapter 5, the
meridional streamfunction is symmetric for an antisymmetric
flow field. Fluid flows across the equator in antisymmetric

velocity field, .

Flow along a Taylor vortex itself (without the addition
of the primary flow on which it is to be superimposed) fol-
lows a spiral, not circular, path. There is not only meri-
dional flow but also azimuthal flow, shown in Figure 8.2b.
We emphasize that, despite its resemblance to Figure S;Za.
Figure 8.2b is of an entirely different nature. Figure 8.20
does not indicate vortices, but the magnitude of the angular
velocity. The angular velocity alternates in sign (direc-—
tion), and has its maximum amplitude at or near the vortex
boundaries. -The solid radial lines in Figure 8.2b indicate
the contours of zero angular velocity of the eigenvector,
which pass through or near the vortex centers. In the parts
of the arc that are not shown, the vortex structure contin-—
ues with the same periddicity, but becomes progressively

weaker as the poles are approached.
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From the spectrum of Figure 8.1l¢c, we see that the
azimuthal velocity is in fact the larger of the two com-—
ponents. According to the analysis of spectra in section
5.3, each of the velocity components is the product of a
Gaussian or other smoothly peaked function and of a single

vector spherical harmonic.

Figure 8.3 sho?s the primary flow at Re = 700, and Fig-
ure 8.4 the antisymmetric eigenvector to which it is
unstable. At Re = 700, the primary flow is a zero-vortex
state, and the instability initiates the zero— to omne—- vor-
tex transition described in chapter 6 (see Figure 6.7).
Figure 8.5 is the primary flow at Re = 750, and Figure 8.6
its unstable eigenvector. At Re = 750, the primary flow is
a two-vortex state, and the eigenvector initiates the zero-
_to two— vortex transition shown in Figure 6.10. The two
eigenvectors and are very similar to each other. They
resemble distorted versions of the Stokes eigenvector. The
true eigenvectors are highly concentrated at the equator; as

a result, their spectra are broad.

Note that the contours of zero angular velocity of the
perturbations are not radial linmes. They are close to per-—
pendicular to the contours of constant angular momentum of
the primary flow (i.e. parallel to its gradient). We show
this by superimposing the contours of zero angular velocity
of the eigenvectors, with the angular momentum contours of

the Stokes or primary flows. Figures 8.7a - ¢ 'show the
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superimposed <contours for the Stokes flow at Re = 700, the
primary flow at Re = 700, and the primary flow at Re = 750,

respectively.



Figure

Figure

Figure

Figure

Figure

Figure

Figure

The growth rate of the antisymmetric eigenvector
to which the primary state is unstable, as a
function of Reynolds number. The c¢crosses are
the growth rates of the antisymmetric eigenvec-—
tor of the Stokes flow. Growth rates are in
anits of inverse revolution times.

The antisymmetric eigenvector of the Stokes flow
at Re = 1700, The sector n/2 + n/8 is shown.
Figures 8.2a, b, and ¢ show the meridional
streamlines, contours of constant angular velo-
city, and energy spectrum,

The primary flow (a zero—-vortex state) at Re =
700. Figures 8.3a, b, and ¢ show the meridional
streamlines, contours of constant angular velo-—-
city, and energy spectrum.

The antisymmetric eigenvector of the primary
flow at Re = 700, Figures 8.4a, b, and ¢ show
the meridional streamlines, contours of constant
angular velocity, and energy spectrum.

The primary flow (a two-vortex state) at Re =
750. Figures 8.5a, b, and ¢ show the meridional
streamlines, contours of constant angular velo-
city, and energy spectrum.

The antisymmetric eigenvector of the primary
flow at Re = 750. Figures 8.6a, b, and ¢ show
the meridional streamlines, contours of constant
angular velocity, and energy spectrum.

The contours of zero angular velocity of the
antisymmetric eigenvector superimposed on the
contours of constant angular momentum of the
primary flow. Figures 8.7a,b,and c¢_ are the
superimposed contours for the Stokes flow at Re
= 700, the primary flow at Re = 700, and the
primary flow at Re = 750, respectively.
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9.1 Symmetric and antisymmetric energy

In analyzing the asymmetric transitions, we are faced
with the problem, mentioned in chapter 7, of wanting to pro-
ject infinite dimensional flows onto a one dimensional quan-
tity. The integrated angular momentum or torque are not
appropriate for studying symmetry and antisymmetry, since
only the symmetric modes contribute to the integrals. The
energy, however, is ideal, since it has both a component
arising from the symmetric part of the velocity field and a
component arising from the antisymmetric part of the velo-—
city field. These two component we c¢all the symmetric
energy and the antisymmetric energy. Despite its quadratic
nature, the total energy is the sum of the two, since cross

terms vanish upon integration.

The utility of decomposing the energy into its sym-
metric and antisymmetric parts is immediately seen in Figure
9.1 . -Here we have shown the symmetric energy, the antisym-
metric energy, and the total energy. as a function of time
during the zero— to ome- vortex transition described in sec-
tion 6.3. The scale for the symmetric and total emergy,
shown by the long-dashed curve and the solid curve, respec—
tively, is given on the left axis. The antisymmetric energy
is much smaller than the symmetric enmergy. To enable them
to be shown on the same grﬁph, a translated scale has been

used for the antisymmetric energy, which is given omn the
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right axis. Since the two scales are translations of one
another, changes in the symmetric and antisymmetric emnergies
have the same magnitude in the graph and can be easily com-
pared. Each of the energy curves is mnormalized by the
Stokes flow energy, and the time is givenm in inner sphere

revolutions.

The antisymmetric energy is initially zero, grows to a
maximum valwe of .015, and decreases again to zero. The
symmetric energy decreases sharply, them increases. Its
final one—-vortex state value is 0.999, less than the initial
zero—-vortex staée'&alne of 1,011 . The total =energy just

decreases monotonically from 1.011 to 0.999 .

To gain some understanding of this behavior, we embark
on an analysis of the interaction between the symmetric and
antisymmetric par;s of the flow. Separating the Navi;r-
Stokes equations into their symmetric and aﬁtisyﬁmetric

parts, we get

5o = ug x (Vxug) +u, x (Vxu,)+ vv’ns - VP (9.1)

2
3t "= By X (V x ns) + g x (V x nA) +vVouw, - VPA (9.2)
where ug and uw, are the symmetric and antisymmetric parts
of the flow, respectively, and Ps and PA the symmetric and

antisymmetric components of the pressure head.

Two features are immediately apparent:
1) Without the introduction of an antisymmetric perturba-

tion, a symmetric flow remains symmetric for all time, since
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the growth of the antisymmetric component is proportiomal to
itself.

2) There can be no steady antisymmetric solutiom to a prob-
lem with symmetric boundary conditions, since the absence of
a symmetric part renders the antisymmetric equationm linear,
and a linear equation with symmetric boundary conditions and
forcing mﬁst have a symmetric solution. However, steady
asymmetric solutions are mnot disqualified (and have been

observed in finite cylinders by Benjamin and others).

Taking the dot products of each of (9.1) and (9.2) with
their respective velocities and integrating over the entire

volume, we derive

dEg 3 .
ot - " Erp ~ Dg * Epy (9.3)
3E,
B - ETR = By (9.4)
where EIN is the (necessarily symmetric) energy input
E .y = 0,7, (9.5)

(The factor of % arises from the mnon-dimensionalization

(4.1).) Dg is the symmetric dissipation

D, = E

1 #
s IN -~ Rg J ®s ¢+ V oug av

(9.6)

. 16x 2
o ( 3 J Iy =z usl dv )

and DA is the antisymmetric dissipation
- i A I 2
Dy=-gsfu, - Ve, av=g-/ IVl av (9.7

The energy transfer function, defined by
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ETR u [ u, - ug x (V x u,) 4av (9.8)
measures the transfer of energy from the symmetric to the
antisymmetric part of the flow., The integrand in the energy
transfer function is the triple product of the antisymmetric
velocity, the antisymmetric vorticity, and the symmetric
velocity. Note, however, that it is onl& the integral of the
triple product which is significant because (9.5) does not
include terms that vanish upon integration over ©. The local_

energy transfer function is

T, - wg x (V x uA) tu, - ow, x (V x us) -V - (uAPA)
(9.9)
The second term vanishes if (9.9) is calculated as a func-—
tion of O, the third vanishes if (9.9) is calculated as a

function of L, the wave number in O.

Returning to Figure 9.1, we see that the increase in
antisymmetric energy at the beginning of the transition mir-
rors the decrease in symmetric energy and vica versa at the
end of the transition. This suggests that energy is
transferred from the symmetric to the antisymmetric modes at
onset of the transition and from the antisymmetric to the

symmetric modes as symmetry is re—established.

If we compute the energy transfer ETR’ shown in Figure
9.2, we see that the second part of this scemario is not
correct. The energy transfer is always positive: energy 1is
never transferre& from the antisymmetric part of the flow to

the symmetric part.
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How then does the antisymmetry decrease? From equation
(9.4), we see that EA is the differen?e between ETR and D,
Throughout the transition, ﬁTR - DA (the curves could not be
distinguished if both were graphed). EA is therefore much

smaller than either, with a maximum value of 0.003 (in units

of Stokes energy / revolution time).

Al ¢ Eqp = D,

At the beginning of the tramsition, the transfer is slightly

lE (9.10)
greater than the dissipation and at the end, it is slightly
less; The flows ns_and v, have changed in such a way as to
no longer favor energy transfer. This accounts for the slow
re-establishment of symmetry, since the antisymmetry

decreases on a viscous timescale.

a purely azimuthal equilibrium

9.2 Energy transfer fro

The significance of the energy transfer fumnctionmn is not
limited to the transfer between symmetric and antisymmetric
modes. Consider the decomposition of a flow into U, an
equilibrium'state. and uw, a perturbation. The energy E of

the perturbation obeys

9E _ ¢ -
st = Erg - D ) (9.11)
where
E=/3%ua . uadVv (9.12)
ETR = fa .0 x (Vx u) dVv (9.13)
D=L /1y xawl®av (9.14)
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Suppose that U = U¢ is axisymmetric and purely azimu-
thal, e.g. the Stokes solution in e¢ylindrical or spherical
Couette flow, and let m be an azxisymmetric perturbation. A
meridional perturbation uw_ generates a vorticity which is

exclusively azimuthal. Then

_ Uy x (Vxu ) =0 (9.15)
so that the triple product in (9.12) is zero. The perturba-
tion must have an azimuthal component 84, which generates a
meridional vorticity V x oy for energy transfer to take
place. On the other hand, the azimuthal perturbation, L

is parallel to the basic flow U¢

vy x Uy =0 (9.16)
and will also yield a zero triple ﬁroduct. Ve see that both
the meridional and azimuthal components are essential for
the transfer of energy from the basic flow U¢ to the per-
turbation w. This reflects a general property of energy
transfer to a perturbation: the perturbation must have a
component perpendicular to the basic flow, a;d a vorticity
component perpendicular to both, in order for its energ} to
gTowW. Its 1limnear growth rate is proportional to the

integral of the triple product.

In spherical Couette flow, this analysis is not exact,
since the basic flow U has a meridional component but in
fact, the meridional component'Um is very small and its
contribution to the energy transfer function negligible

relative to that of U¢.



Figure 9.1

Figure 9.2

Energy as a function of time during the zero- to
one— vortex transition. The axis on the left is
the scale for the total energy and the energy of
the symmetric part of the flow, which are shown
by the solid and long-dashed curves, respec-—
tively. The axis on the right is the
(translated) scale for the &energy of the
antisymmetric part of the flow, shown by the
short—-dashed curve. Energies are non-—
dimensionalized by the Stokes emnergy.

The energy transfer rate from the symmetric to
the antisymmetric components "~ of the flow as a
function of time during the zero— to one— vortex
transition. The transfer functiom is mnon-
dimensionalized by (Stokes energy / Revolution
period).
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10. CONCLUSION

In this chapter, we summarize the ‘results of the
thesis. At the same time, we raise a number of unanswered

gquestions that follow from our results.

In Part I, we introduced the problem of Taylor vortex
formation in spherical Couette flow. We described our spec—
tral, axisymmetric initial value <code. Its results were
shown to be consistent, in good agreement with experiment,
and sufficiently resolved. Using the code, we have <calcu-
lated the flows presenfed in Part II. By waiting until con-—
vergence, as was done in other initial wvalue studies, we
generated the steady states of spherical Couette flow. But,
more importantly, we have described the variety of transi-—
tions that occur in the range 644 ¢ Re { 800. Because they
had not previously been simulated numerically, the equatori-
ally asymmetric transitions —— the zero— to one— and two— to

one— vortex tramsitions —— are particularly interesting.

There is né doubt that transitions to the ome-vortex
state are asymmetric. Buhler (private communication)
informed us that he had observed the same time evolution
experimentally : "in one hemisphere two-vortice; occur and
the deformation in the other hemisphere disappears. Gradu-
ally the two vortices move into the equatorial region. This

transition is not symmetric with respect to the equator,

only the final state”.
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The question naturally arises, why should the transi-
tion be asymmetric? A partial answer is provided by the
observation that inflow and outflow boundaries differ in
fundamental ways. (This was briefly alluded to in chapter
6.) The experimental results of Mullin (1982) on formation
of Taylor vortices in cylinders suggest a transition similar
to the one we have found in spheres. Cylinders, too, tend
to have an even number of Taylor vortices, with inflow boun-

daries at the top and bottom (but not always).

Mullin observed visually that transitions from an odd
number of pairs of vortices (i.e. 6 vortices) to an even
number of pairs (i.e. 8 vortices) took place asymmetrically.
Had the transitiom taken place symmetrically, it would have
required the insertion of a pair of vortices at the equator,
an outflow boundaryk He suggests that it is because vortex
pairs are strongly linked at outflow boundaries that these

transitions take place asymmetrically.

Marcus’'s (1983) numerical work on non-axisymmetric
cylindrical Counette flow also attests to the difference
between inflow and outflow boundaries. The outflow jet is
always stronger tha; the inflow jet and the separation
between the vortices much greater at the inflow ©boundary
than at the outflow boundary. Marcus has shown that travel-
ling azimuthal waves result from an instability of the out-

flow jet.

The pinches are still rather mysterious objects. Ve
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have defined pinches, and determined the Reynolds number at
which they first occur, but do not have a detailed nunder-—
standing of them. It is <c¢lear that their reason for
existence is the same as that of Taylor vortices: they
redistribute angular momentum between radial shells near the
equator. In a pinch, however, streamlines mnear the walls
approach the stagnation point (of the meridional flow), then
reverse their radial direction and return to the walls.
What is the restoring force that causes the fluid elements
to reverse their radial direction? That is, wh;t determines

that a pinch will form at a given Re rather than a Taylor

vortex?

What is the role of pinches in the tramsitiom process?
In the transitions from the zero-vortex state to either of
the one- or two— vortex states, we have seen that pinches
act as precursors of Taylor vortices. In dividing from a
basic vortex, a pinch leaves stagnant regions near the walls
that functiomn 1like wedges, in which recirculation vortices
arise and join. After the formation of recirculation vor-
tices the original pinches become Taylor vortices. Yet, the
zero— to one— vortex tramnsition resembles that which occurs
in cylindrical Couette flow between infinite cylinders: the
Taylor numbers are close, the eigenvectors very similar.
There are no pinches in cylindrical Couette flow, suggesting

that the role of the pinches cannot be as c¢entral as it

appears visually in spherical Couette flow.
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We turn now to Part III. We have shown the variation
of th; torque of the steady flow states with Reymnolds
number, and in so doing, the structure of the solution
branches. The steady zero—vortex states evolve continuously
into steady two—-vortex states as the Reynolds mnumber is
increased, while the one-vortex states lie on an unconnected
secondary branch. These results agree well with Schrauf's
(1983) extensive steady—-state survey. Further comparison of
his results with those .of initial value <codes would be
desirable. Many of the branches he has discovered are unex-—
plored by experiment or imitial value codes -—-- it is not
known what flow history, if any, will produce them. The
bifurcation diagram seems to derive, by bifurcation decoun-
pling and continuous distortion of the branches, from a
simpler one. It would be interesting to find homotopy
parameters that map the diagram into a simpler one -—-
finally, perhaps, into the simple supercritical ©bifurcation
of idealized cylindrical Couette flow. Schrauf has already
made progress in this area by finding bifurcation diagrams

for different gap sizes o.

In chapter 8, we have seen how an interval -- the
"window"” of the zero— and two- vortex branch (the primary
branch) is unstable to an equatorially antisymmetric pertur-
bation. We have calculated this antisymmetric eigenvector
and its eigenvalue as a function of Reynolds number, and
seen how the eigenvalue decreases and finally becomes nega-—

tive as the two-vortex state becomes well established. What
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remains to be understood is the relation between the primary
flows and the eigenvalues and eigenfunctions. The maximum
growth rate occurs at Re = 735, at which the torque is a
minimum, and near Re = 740 at which two-vortex states first
appear. Why do the maximum growth rate and minimum torque
occur at Re = 735 rather than Re = 740 ? It seems clegr
that the formation of the two—-vortex st;te along the primary
branch must be responsible for the decrease of the growth
rate of the antisymmetric instability. It would be
interesting to prove this and to find the mechanism respon-

sible for the stabilization of the primary branch.

Other questions are raised im chapter 9. Do there
exist steady asymmetric states? Why does the antisymmetry
die out in Fhe transitions to.the one—vortex state? We have
seen in chapter 9, that the emnergy transferred from the sym-
metric part of the flow to the antisymmetric part of the
flow decreases as the transition progresses. Clearly, this
must be due to a change in the flow, particularly the sym-
metric part of the flow, as it changes from a zero-vortex
state to a one-vortex state. Again, the mechanism for this

remains unknown.

In studying the evolution in time of the tramsition to
the omne-vortex state, we have utilized the full power of a
nonlinear initial value code. With a steady-state solver,
though we would know of the existence of the one vortex

branch, we would not know if and when (for what values of
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Re) transitionm to it occurred, nor how. With an eigenvalue -
eigenvector solver, we would find the instability of the
primary branch to an antisymmetric eigenvector, but not the
time development of the transition initiated by this insta-
bility, mnor that its final destination is the one-vortex
state. It is the combination of time—-dependent calculations
with complementary steady—-state and linear results that has
enabled us to obtain a good understanding of the transitions

in spherical Couette flow.
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