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Coinciding local bifurcations in the Navier-Stokes equations
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Abstract – Generically, a local bifurcation only affects a single solution branch. However,
branches that are quite different may nonetheless share certain eigenvectors and eigenvalues, lead-
ing to coincident bifurcations. For the fluidic pinball, two supercritical pitchfork bifurcations,
of the equilibrium and the periodic solutions, occur at nearly the same Reynolds number. The
mechanism of this kind of non-generic coincidence is modelled and explained.

Copyright c⃝ 2021 EPLA

Introduction. – Vortex shedding, symmetry breaking,
and self-sustained oscillations are very common in fluid
flows [1–3]. In terms of dynamical systems theory, vortex
shedding in the wake of an obstacle usually results from
a Hopf bifurcation, either supercritical, as in the cylinder
wake flow [4,5] and in the wake of axisymmetric bodies [6],
or subcritical, as in a stalling wing [7]. Symmetry-breaking
pitchfork bifurcations may also occur, again either super-
critical, as in bluff body wake flows [8], or subcritical, as
in a symmetric channel with an expanded and contracted
section [9] and in spherical Couette flow [10]. Many shear
flows at high Reynolds numbers feature coherent struc-
tures similar to the patterns engendered by instabilities of
the base flow at low Reynolds numbers. For instance, the
von Kármán streets of vortices found in the wake of cylin-
ders in cross-flow develop at Reynolds numbers as small
as O(102), where the flow is laminar, while the alley of
vortices in the wake of islands in oceans are still observed
for Reynolds numbers as large as O(108), where the flow is
fully turbulent. This is also true for the Kelvin-Helmholtz
instability [11] and Taylor-Couette flow [12]. New states
may arise via secondary instabilities of the base flow as the
Reynolds number is increased. Examples are the subcriti-
cal pitchfork bifurcation of turbulent vortex shedding [13]
and secondary transitions of the cylinder wake [14,15].

Generically, a local bifurcation only affects one solution
branch (as its name implies) and cannot affect the stability
of other solution branches. Quite intriguingly however, a
recent study of the fluidic pinball configuration has shown
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that two local bifurcations occur almost simultaneously,
i.e., at nearly the same critical Reynolds number [16].
Both are supercritical pitchfork bifurcations; the first is
that of the symmetric steady solution of the flow, while
the second is that of the limit cycle associated with the
cyclic release of vortices in the wake of the cylinders. Since
it is non-generic, this coincidence should not have been
observed in the wake flow, and the literature on this coin-
cidence is surprisingly sparse [17].

In this letter, we model and explain in detail the non-
generic coincidence of these two local pitchfork bifurca-
tions in the fluidic pinball.

Flow configuration. – The fluidic pinball configura-
tion consists of three fixed cylinders of diameter D whose
axes are located at the vertices of an equilateral trian-
gle of side 3D/2 in the (x, y)-plane and which are oriented
perpendicularly to this plane. The domain is the rectangle
[−6D, 20D]× [−6D, 6D]. One vertex of the triangle points
upstream and the midpoint of the back two cylinders is
chosen as the origin. The upstream flow, of uniform ve-
locity U∞ at the inlet of the domain, is in the x-direction.
A variety of flow patterns is found in this configuration
as the Reynolds number and spatial arrangement are var-
ied [18–20]. We solve the incompressible Navier-Stokes
equations

∂tu + ∇ · u ⊗ u = ν∆u − ∇p, (1)

using a second-order finite-element discretization method
of the Taylor-Hood type [21], on an unstructured grid of
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Fig. 1: Bifurcation diagram for the fluidic pinball. Solid curves
indicate stable branches and dashed curves indicate unstable
branches. Bold curves indicate branches of periodic solutions
and thin curves indicate steady solutions. The symmetric
and asymmetric periodic solutions are presented by their time-
averages ūvk and ū

±

vk. Vorticity fields are color-coded in the
range [−1.5, 1.5] from blue to red. The red arrows show the
possible transitions between them. The critical Reynolds num-
bers are detected with linear or Floquet stability analysis of the
corresponding solutions.

4225 triangles and 8633 vertices and implicit third-order
time integration [22]. The Reynolds number is defined by
Re = U∞D/ν, where ν is the kinematic viscosity of the
fluid. A no-stress condition is applied at the outlet of the
domain.

Reflection symmetry in y proves to be an important
part of this scenario. For a velocity field u = (u, v)
we define the y-reflection operator R via R(u, v)(x, y) ≡
(u, −v)(x,−y). For a symmetric field, u is even and v is
odd in y. The spanwise vorticity ∂xv − ∂yu used to repre-
sent the flows in our visualizations manifests y-reflection
symmetry by being odd in y. Eigenvectors obtained by lin-
earizing about a reflection-symmetric state are necessarily
either symmetric or antisymmetric. Antisymmetric eigen-
vectors are associated with pitchfork bifurcations that lead
to two symmetrically related asymmetric branches if they
are real. If they are complex conjugate pairs, they are
associated with Hopf bifurcations that lead to limit cycles
satisfying the spatio-temporal symmetry Ru(t) = u(t +
T/2). Symmetric real eigenvectors are associated with
transcritical bifurcations and complex conjugate eigenvec-
tors are associated with Hopf bifurcations leading to limit
cycles that remain symmetric throughout: Ru(t) = u(t).

The bifurcation diagram is sketched in fig. 1. For low
Reynolds number, there is a unique solution ub, called the
base flow. Depicted in fig. 2(a), it is steady and reflection-
symmetric with respect to y = 0. This solution under-
goes a supercritical Hopf bifurcation at Re1 ≈ 18 to a
pair of y-antisymmetric eigenmodes, leading to cyclic vor-
tex shedding in the wake flow. The resulting T -periodic
limit cycle, shown via the instantaneous visualization in
fig. 2(b), is the von Kármán vortex street and has the

(a) (b)

(c) (d)

Fig. 2: Vorticity fields of the base flow ub, a snapshot of the
von Kármán vortex street uvk(t), at Re = 30 > Re1, the asym-
metric steady solution u

+ and a snapshot of the asymmetric
von Kármán vortex street u

+
vk(t), with the base-bleeding jet

deflected to the top, at Re = 80 > Re2, color-coded as in
fig. 1.

spatio-temporal symmetry uvk(t + T/2) = Ruvk(t) [23].
For this reason, we will call this limit cycle symmet-
ric, despite the fact that the instantaneous flows are not
symmetric.

At Re = ReSS
2 ≈ 68, the base flow undergoes another

bifurcation, a supercritical pitchfork that breaks reflec-
tion symmetry by deflecting the base-bleeding jet up or
down. Two asymmetric branches are generated: u+ with
upwards deflection, shown in fig. 2(c), and its y-reflection
u− = Ru+, with downwards deflection.

Like the steady base flow, the periodic von Kármán vor-
tex street uvk also undergoes a supercritical pitchfork bi-
furcation, also involving deflection of the base-bleeding
jet, as shown in fig. 2(d). This bifurcation occurs at
ReLC

2 ≈ ReSS
2 and leads to two limit cycles u±

vk that we call
asymmetric because they lack the spatio-temporal sym-
metry. Before symmetry breaking, the vortex shedding is
initiated downstream after the stagnation point of the jet.
After symmetry breaking, the vortex shedding is initiated
behind one of the back two cylinders, and the stagnation
point disappears.

Stability analysis. – In order to better understand
this coincidence of ReLC

2 ≈ ReSS
2 , we conducted linear

stability analysis of the base flow. As shown in fig. 3(a), a
real eigenvalue has crossed the imaginary axis at ReSS

2 =
68 ± 1. We also performed Floquet analysis of the von
Kármán vortex street. Figure 3(b) shows that a Floquet
multiplier λ = e(σ+iω)T crosses the unit circle at +1 and
the critical value determined is ReLC

2 = 69 ± 1, which is
very close to ReSS

2 .
Figures 4(a), (b) show the deviation of the von Kármán

vortex street from the base flow at Re = 70 > Re2

at two instants separated by a quarter-period, together
with the corresponding Floquet modes in fig. 4(c), (d).
Figure 4(e) is the eigenmode responsible for the pitch-
fork bifurcation of the base flow. These correspond to the
positive real eigenvalue of fig. 3(a) and the Floquet mul-
tiplier crossing the unit circle at λ = +1 of fig. 3(b). The
spatial structures of these modes resemble one another,
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Fig. 3: (a) Leading eigenvalues of the base flow and (b) leading
Floquet multipliers of the von Kármán vortex street, both at
Re = 70. Red circles mark the coincident eigenvalues.

Fig. 4: (a), (b): deviation of the von Kármán vortex street
from the base flow uvk(t) − ub at two instants separated by
T/4; (c), (d): the corresponding Floquet modes, and (e) the
eigenmode with real eigenvalue of the base flow, at Re = 70.
For (a)–(d), the spatio-temporal symmetry u(t+T/2) = Ru(t)
implies that the next two instants are obtained by y-reflection
and sign change (color reversal) of these vorticity fields. In
(e), the spanwise vorticity is even in y, corresponding to a flow
which is antisymmetric with respect to y-reflection symmetry.

indicating that the two pitchfork bifurcations are closely
related and correspond to the same physical mechanism,
i.e., the base-bleeding jet which is dominant in the near
wake throughout the development of the von Kármán vor-
tex street. The pitchfork bifurcations originate locally
within the three cylinders of the fluidic pinball mecha-
nism, while the von Kármán vortex street originates in
the wake of the three cylinders taken as a whole and ap-
proximated by a single obstacle. Figures 4(a), (b) show
that the difference between the von Kármán vortex street
and the base flow is nearly zero near the three cylinders,
which makes it plausible that both flows undergo the same
local instability within the pinball mechanism.

The real eigenvalue of the base flow ub and the real
part of the Floquet exponent σ + iω of the von Kármán
vortex street uvk are plotted in fig. 5 as functions of the
Reynolds number. The fact that the curves in fig. 5 remain
parallel confirms that the jet’s instability mechanism is
independent of the downstream flow. Both eigenvalues

Fig. 5: Evolution of the real eigenvalue of the base flow ub

(solid curve with crosses), and the real part of the Floquet
exponent of the von Kármán vortex street uvk (dashed curve
with squares) with the Reynolds number.

increase with Re, eventually causing both uvk and ub to
undergo symmetry-breaking pitchfork bifurcations at very
close though distinct values of Re that deviate the central
jet upwards or downwards.

A simple model for the coincidence. – We now
write down a simple model for this phenomenon. Con-
sider a system that undergoes successively a supercritical
Hopf bifurcation and, for a higher value of the control pa-
rameter µ, a supercritical pitchfork bifurcation. In the
fluidic pinball, µ is the Reynolds number Re. The sys-
tem involves three degrees of freedom, the two that are
involved in the Hopf bifurcation, written in polar form as
reiθ and that involved in the pitchfork, z. The generic
form of such a system reads:

⎧

⎨

⎩

ṙ = (µ − µ1 − r2− χrz2)r,
θ̇ = ω0+ r2− χiz2,
ż = (µ − µ2− z2− χzr2)z.

(2)

The basic state r = 0 = z undergoes a Hopf bifurcation
at µ = µ1, leading to a limit cycle with r =

√
µ − µ1,

z = 0, and a pitchfork bifurcation at µ = µ2, leading to
asymmetric steady states with z = ±

√
µ − µ2. Solutions

with r > 0 and z ̸= 0, i.e., asymmetric limit cycles, exist
for µ > µc, where

µc ≡ µ2+
χz

1 − χz
(µ2− µ1). (3)

If χz = 0, then µc = µ2, i.e., the pitchforks of the limit
cycle and of the basic state take place at the same critical
value, and if |χz| ≪ 1, they occur almost simultaneously
in µ. The non-generic property of coincident bifurcations
is a direct consequence of χz ≈ 0.

The eigenvalues of system (2) are easily calculated from
its Jacobian. The basic state has eigenvalues µ − µ1 and
µ−µ2 in the r and z directions, respectively. The Floquet
exponents of the symmetric limit cycle are the eigenvalues
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Fig. 6: Elementary modes of the fluidic pinball at Re = 70.
See text for details.

of system (2) with θ removed, that are −2(µ − µ1) and
µ − µ2− χz(µ − µ1). The second Floquet exponent will
closely track eigenvalue µ − µ2 of the basic state, as in
fig. 5, if |χz(µ − µ1)| remains small compared to µ2.

Least-order Galerkin model for the coincidence.

– We can derive system (2) from the corresponding least-
order Galerkin model [16] slaving the Reynolds-stress-
related modes. As stated there, the dynamics for Re >
Re2 requires at least a 5th-order Galerkin expansion. The
ansatz for the velocity field reads

u(x, t) = ub(x) +
5

∑

i=1

ai(t)ui(x), (4)

where ub(x) is the symmetric base flow of the Navier-
Stokes equations. The elementary modes ui(x) are shown
in fig. 6. Details on the identification of the individual
modes can be found in [16].

The first two modes u1,2, associated with the vortex
shedding, are taken to be the two leading modes from
Proper Orthogonal Decomposition (POD) in the perma-
nent dynamical flow regime [24]. The shift mode u3 is
the difference between the mean flow ūvk of the periodic
regime and the base flow ub [5]. Mode u4 is given by
u4∝u+ − u−. Analogously to u3, mode u5 is the differ-
ence between the average (u+ + u−)/2 of the asymmetric
steady solutions and the base flow ub.

The degrees of freedom a1, a2, a4, are active, while a3

and a5are slaved to a1, a2and a4. In the neighborhood of
the second bifurcation threshold (Re ≈ Re2), the dynam-
ical system reads

da1/dt = σa1 − ωa2, σ = σ1 − βa3+ ξra5, (5)

da2/dt = σa2+ ωa1, ω = ω1 + γa3+ ξia5, (6)

da3/dt = σ3a3+ β3(a
2
1 + a2

2), (7)

da4/dt = σ4a4− β4a4a5+ ξza4a3, (8)

da5/dt = σ5a5+ β5a
2
4, (9)

which is equivalent to the system (2) if σ3≪ 0 and σ5≪ 0.
Indeed, if these conditions are satisfied, the slaved modes

Table 1: Critical Reynolds numbers for the two bifurcations
and associated χz when the cylinder gap is varied. For each
gap, χz is determined from the Galerkin projection close to the
threshold at Re = ReLC

2 + 1.

L/D Re1 ReSS
2 ReLC

2 χz

1.4 18 79 80 0.0099
1.5 18 68 69 0.0168
1.6 20 63 63 0.0186

a3∝a2
1 + a2

2 and a5∝a2
4 provide the cubic nonlinearities

of system (2) with a1 + ia2 = reiθ and z ≡ a4. The
coefficients of system (5)–(9) can be directly computed by
a Galerkin projection of the Navier-Stokes equations on
the bifurcation modes u1...5. At Re = 70, close to Re2,
χz = 0.0168, confirming that it is small.

Discussion. – To check the robustness of the coinci-
dence, we changed the distance between the cylinders from
L/D = 1.5 to 1.4 and 1.6. The critical Reynolds numbers
for the Hopf and pitchfork bifurcations, together with the
associated χz, are recorded in table 1. In all three cases,
the two pitchfork bifurcations still closely coincide, con-
firming the robustness of this phenomenon with respect
to a change in one of the control parameters (here the
cylinder gap).

For these cases, the three cylinders work as a single
bluff body. The base-bleeding jet focuses on the near
flow, which breaks the symmetry but does not separate
the bluff body wake. When L/D is sufficiently large, how-
ever, the three cylinders no longer form one compact body.
Two vortex streets appear and compete with each other.
A new mechanism then changes the flow dynamics com-
pletely with varying gap distance; we refer interested read-
ers to [20].

We argue that coincident bifurcations like that observed
in the fluidic pinball at Re = Re2 should be observed
in other flow configurations, and more generally in other
nonlinear partial differential equations, when competing
and independent instability mechanisms are present.
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