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A number of approximations have been proposed to estimate basic hydrodynamic
quantities, in particular, the frequency of a limit cycle. One of these, real zero imaginary
frequency (RZIF), calls for linearizing the governing equations about the mean flow and
estimating the frequency as the imaginary part of the leading eigenvalue. A further reduc-
tion, the self-consistent model (SCM), approximates the mean flow as well, as resulting
only from the nonlinear interaction of the leading eigenmode with itself. Both RZIF and
SCM have proven dramatically successful for the archetypal case of the wake of a circular
cylinder. Here, the SCM is applied to thermosolutal convection, for which a supercritical
Hopf bifurcation gives rise to branches of standing waves and traveling waves. The SCM
is solved by means of a full Newton method coupling the approximate mean flow and
leading eigenmode. Although the RZIF property is verified for the traveling waves, the
SCM reproduces the nonlinear frequency only very near the onset of the bifurcation and for
another isolated parameter value. Thus, the nonlinear interaction arising from the leading
mode is insufficient to reproduce the nonlinear mean field and frequency.

DOI: 10.1103/PhysRevFluids.6.063901

I. INTRODUCTION

Periodic emission or translation of vortical structures is one of the most important phenomena
observed in hydrodynamic configurations. The amplitude and frequency are two essential character-
istics of these time-periodic systems. These are usually obtained either by experiment or by solving
the full Navier-Stokes equations by direct numerical simulation. The archetype of such configura-
tions is the wake of a circular cylinder, in which the visually appealing Bénard-von-Kármán vortex
“street” [1,2] appears above a Reynolds-number threshold [3,4] of 46.

When periodic oscillations such as these originate from a supercritical Hopf bifurcation, linear
stability analysis about the equilibrium solution at the threshold yields a leading eigenvalue whose
real part is zero and whose imaginary part is the oscillation frequency. Away from the threshold,
this is no longer the case. However, for the cylinder wake, linearization about the time-averaged
field has been shown to yield the nonlinear frequency [5–8] as the imaginary part of the leading
eigenvalue. Moreover, Barkley [6] noted that the real part of this eigenvalue is nearly zero, meaning
that the mean flow can be considered to be marginally stable, as had been suggested by Malkus
[9] in the context of turbulent shear flow. This property, given the name real zero imaginary
frequency (RZIF) by Turton et al. [10], has since been demonstrated to hold for several other flow
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configurations, namely, traveling waves in thermosolutal convection [10], spirals and ribbons in
counter-rotating Taylor-Couette flow [11], and (approximately) for the flow in a two-dimensional
shear-driven cavity [7,12].

We emphasize that the RZIF property is not universal for oscillating flows, since Turton et al.
[10] have shown that the standing waves in thermosolutal convection emphatically do not satisfy
this property. Nor is RZIF a prediction, since it relies on the mean flow that must be determined
by experiment or direct numerical simulation. In contrast to RZIF, the self-consistent model (SCM)
developed by Mantič-Lugo et al. [13] is predictive, or rather, it greatly reduces the computational
work required to determine the frequency. In the SCM, the mean-flow equation is approximated
by assuming that only the leading eigenmode of the linearized equation is responsible for creating
the mean-flow distortion (the difference between the mean flow and the unstable equilibrium). This
assumption is based on the fact that the temporal spectrum of the flow under investigation is dom-
inated by its fundamental frequency. The amplitude of the mode corresponding to the fundamental
frequency is chosen such that the growth rate of the linear problem is zero, thus building into the
solution the “RZ” portion of the RZIF property. For the cylinder wake, the results obtained by these
coupled equations match the mean flow and the nonlinear frequency remarkably well [13,14]. The
SCM has also been used to treat acoustic emissions in the compressible wake of a cylinder [15] and
the two-dimensional shear driven cavity [16]. Other reduced-order models in which sets of modes
or interactions are omitted have been proposed and implemented for many other hydrodynamic
phenomena, notably in aeronautics and fluid mechanics [17–34]. and in geophysics and astrophysics
[35–40]. Some of these models will be compared to RZIF and SCM in the next section.

Here we investigate the self-consistent model for the traveling wave branch in thermosolutal
convection, for which RZIF is satisfied [10]. We will demonstrate that, for this case, the self-
consistent model fails to predict the frequency or the mean flow. Higher-order terms contributing
to the Reynolds stress are necessary to reproduce the mean flow to sufficient accuracy. Therefore,
satisfaction of the RZIF property does not necessarily imply the validity of the self-consistent model.

II. RZIF AND SCM FRAMEWORK

We present in this section the equations governing the formalism of the RZIF and SCM approx-
imations. Consider a general dynamical system of the form

∂tU = LU + N (U,U ), (1)

where L and N are linear and bilinear operators, respectively, and U may depend on one or more
spatial dimensions. The operators L and N depend on a control parameter r. We assume that Eq. (1)
has an equilibrium (base) state Ub and undergoes a supercritical Hopf bifurcation at a critical value
rHopf leading to a stable limit cycle. The base state satisfies

0 = LUb + N (Ub,Ub). (2)

Classic linear stability analysis is derived by writing U = Ub + u, substituting into Eq. (1):

∂t u = LUb + Lu + N (Ub,Ub) + N (u,Ub) + N (Ub, u) + N (u, u), (3)

subtracting Eq. (2):

∂t u = Lu + N (u,Ub) + N (Ub, u) + N (u, u), (4)

and neglecting the nonlinear terms N (u, u):

∂t u = Lu + N (u,Ub) + N (Ub, u). (5)

Since Eq. (5) is linear in u and homogeneous in time, its solution is of the form u(t ) = exp[(σb +
iωb)t]ub with

(σb + iωb)ub = LUb ub, (6)
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where we have defined
LUb ≡ L + N (Ub, ·) + N ( ·,Ub).

Like L and Ub, the eigenvalue σb + iωb depends on the parameter r. When the growth rate σb crosses
zero at r = rHopf and ωb �= 0, the base state Ub undergoes a supercritical Hopf bifurcation, creating
a new limit cycle Ulc(t ), satisfying

∂tUlc(t ) = LUlc(t ) + N [Ulc(t ),Ulc(t )], (7)

and whose frequency is ωb at onset. For r beyond rHopf , the frequency ωlc of the limit cycle is no
longer equal to ωb.

We now consider the temporal mean U of the limit cycle Ulc(t ):

U ≡ 1

Tlc

∫ Tlc

t=0
Ulc(t ) dt, (8)

where Tlc = 2π/ωlc. Substituting the Reynolds decomposition U = U + u into the governing
Eq. (1), we obtain

∂t u = LU + Lu + N (U ,U ) + N (u,U ) + N (U , u) + N (u, u). (9)

The temporal average of Eq. (9) gives the equations obeyed by the mean fields

0 = LU + N (U ,U ) + N (u, u), (10)

where the nonlinear interaction term N (u, u) is the force resulting from what is called the Reynolds
stress in the context of hydrodynamics. It can also be viewed as the external force that would be
required for the mean field to be a stationary solution [6]. The mean field is computed from nonlinear
simulations because Eq. (10), unlike Eq. (2), is not a closed system. By subtracting Eq. (10) from
Eq. (9), we obtain the exact fluctuation equation:

∂t u = Lu + N (u,U ) + N (U , u)︸ ︷︷ ︸
LU u

+N (u, u) − N (u, u)︸ ︷︷ ︸
g

. (11)

A. RZIF

The RZIF procedure calls for omitting the nonlinear terms g from Eq. (11). This omission is
exact if the nonlinear self interaction N (u, u) of the deviation u from the mean contributes only to
the mean. (We will discuss this point further in Sec. IV.) This leaves

∂t u = LU u ≡ Lu + N (u,U ) + N (U , u). (12)

Since Eq. (12) is linear in u and homogeneous in t , its solutions are again of the form u(t ) =
exp[(σrzif + iωrzif )t]urzif , leading again to the eigenproblem

(σrzif + iωrzif )urzif = LU urzif . (13)

Limit cycles satisfy the RZIF property if the imaginary part ωrzif of the leading eigenmode of LU
is equal to the frequency ωlc of the nonlinear limit cycle Ulc(t ) and the real part σrzif is zero. Since
g in Eq. (11) is exactly zero only under special circumstances, RZIF will typically be satisfied only
approximately. Equations (10) and (12) comprise the linearization about the mean fields studied in
Refs. [5–8,10–12]

B. SCM

The RZIF Eqs. (10) and (13) are not predictive or closed, because the mean flow U must be
computed in some other way, sometimes from experimental data but more often by time averaging
the results of a full direct numerical simulation of the limit cycle. In contrast, the SCM developed
by Mantič-Lugo et al. [13] does not require the mean flow as an input. Instead, these authors make
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TABLE I. Specification of classic linear stability analysis about the base flow (LSA), linearization about
the mean (RZIF), and the self-consistent model (SCM). The equations in the column labeled System define the
problem, while the equations in the column labeled Property may or may not be satisfied by the corresponding
system, or may be satisfied only approximately.

Name Linearize about System Property

LSA Linear stability analysis Base flow Ub 0 = LUb + N (Ub,Ub)
(σb + iωb)ub = LUb ub

RZIF Real zero Mean flow U ∂tUlc = LUlc + N (Ulc,Ulc )

imaginary frequency Ulc(Tlc ) = Ulc(0) U ≡ 1
Tlc

∫ Tlc
0 Ulc(t ) dt ωrzif = ωlc

(σrzif + iωrzif )urzif = LU urzif σrzif = 0

SCM Self-consistent model Approximate 0 = LUscm + N (Uscm,Uscm ) + N (uscm, u∗
scm )

mean flow Uscm iωscmuscm = LUscm uscm ωscm = ωlc

the further hypothesis that the contribution from the leading eigenmode suffices to generate the
mean-flow distortion, i.e., its deviation from the base flow. According to this approximation, u in
N (u, u) in Eq. (10) is no longer the deviation from the mean of the limit cycle, but an eigenvector
uscm. Moreover, they hypothesize that uscm can be chosen (via its amplitude; see Sec. VI) such that
the real part of the eigenvalue is zero, i.e. such that Uscm is marginally stable. This leads to the
following problem:

0 = LUscm + N (Uscm,Uscm ) + N (uscm, u∗
scm ) (14a)

iωscmuscm = LUscm uscm, (14b)

where

LUscm ≡ L + N ( ·,Uscm ) + N (Uscm, ·).
Table I summarizes the linear stability problem and the RZIF and SCM approximations.

C. Semilinear or quasilinear models

To place RZIF and SCM in context, these are variants of a large family of approximations based
on partitioning the velocity field into two components, U and u. U varies, if at all, only on large
spatial or temporal scales, while u is governed by an equation that depends on U and is linear
in u. The equation for U contains nonlinear terms in u which influence U ; for the Navier-Stokes
equations, these are the quadratic terms arising from the Reynolds stress. Nonlinear terms in u
which do not contribute to U are omitted.

Such approximations can be classified according to the type of partition, i.e., what defines the set
U and u. The RZIF and SCM approximations partition in the temporal frequency domain. U is the
temporal mean and u the time-varying field. Since U is the temporal mean, it is constant, and since
u satisfies a linear equation, it is an eigenvector. These approximations are therefore not suitable for
time integration. Instead, they have been used to determine the frequency and to approximate the
spatiotemporal form of a limit cycle.

McKeon and Sharma [17] proposed a temporal partition approach in which g ≡ N (u, u) −
N (u, u) in Eq. (11) is not omitted but instead considered as an input to the transfer function or
resolvent operator (iω − LU )−1. Note that if Eq. (13) holds with σ = 0, then (iω − LU ) has a
nontrivial kernel and is therefore noninvertible. In the resolvent approach, (iω − LU ) is considered
to be invertible but to have one or a few singular values much smaller than the others. The resolvent
(iω − LU )−1 then acts as a filter by highly amplifying the component(s) in g of the corresponding
singular vector(s). The resolvent is often studied in the context of the optimal forcing problem, that
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of determining the forcing function and frequency which are maximally amplified. In its most basic
form, this problem is

0 = LU + N (U ,U ) + N (u, u), (15a)

(iω − LU )u = f eiωt . (15b)

As in the distinction between RZIF and SCM, two variants are possible: Eq. (15b) can be solved
on its own using the exact mean U , or it can use the U calculated self-consistently by the coupled
system Eqs. (15a) and (15b). The nonlinear optimal forcing problem is more exact than the linear
optimal forcing problem, since it retains in (15b) the nonlinear terms g defined in (11) as well as the
imposed forcing function f . The resolvent and generalizations of it have been used in Refs. [17–27]
to approximate the optimal forcing or the energy spectrum of complex and even turbulent flows.

A complementary approach partitions the spatial, rather than temporal, dependence of solutions
into a spatial mean 〈U 〉 and spatially varying perturbations u. These approximations are sometimes
called quasilinear (QL) models. Like projections of the governing equations onto a set of spatial
basis functions, they can be integrated in time in the same way as the original equations:

∂t 〈U 〉 = L〈U 〉 + N (〈U 〉, 〈U 〉) + 〈N (u, u)〉, (16a)

∂t u = L〈U 〉u, (16b)

where 〈 〉 is a spatial average.
One example of a spatial partition is the restricted nonlinear (RNL) model used by fluid-

dynamical researchers to study wall-bounded shear flows, in which 〈U 〉 and u are set to be the
streamwise-averaged and streamwise-varying modes [29–31]. This model has reproduced many
features of transitional and turbulent pipe flow and plane Couette flow. A similar approach is used in
Ref. [32] to study the centrifugal instability on a vortex. One important current of research interprets
transition to turbulence in wall-bounded shear flows as a skeleton of trajectories connecting steady
states, traveling waves and periodic orbits, and other low-dimensional invariant dynamical objects,
called exact coherent structures (ECS) in this context. These have been computed using the full
Navier-Stokes equations, and successfully approximated via the RNL model in Refs. [33,34].

QL models have been widely used in the geophysical and astrophysical community. Marston
et al. [35] have generalized this approach to the generalized quasilinear (GQL) approximation. In
the GQL, a larger set of modes (usually those with low wave number) is treated in the same way
as the mean, by including all nonlinear interactions involving this set, and excluding nonlinear
interactions within the remaining (usually high wave number) modes that do not contribute to the
low wave-number set. The QL and GQL approximations have been used to calculate the east-west
bands or jets on planetary surfaces [35–38]. A study of rotating plane Couette flow [39] has provided
an illustration of the ability of GQL to capture features that QL does not. Another type of mean flow
for which the quasilinear approach can be used is the ensemble average [40]. Ensemble averaging,
like temporal averaging, can also be combined with averaging over a homogeneous spatial direction
as in Refs. [17,27].

Neither RZIF nor SCM fall precisely into the category of QL or GQL methods; see Sec. V.

III. APPLICATION TO THERMOSOLUTAL WAVES

We now turn to the hydrodynamic system for which we will compare RZIF and SCM. A density
gradient in a fluid layer often leads to convection, i.e., overturning motion that tends to equalize
the density in the bulk. The density gradient is in turn usually the consequence of thermal and/or
concentration gradients; when both are present, terms such as thermosolutal, double-diffusive, and
binary are used for different variants of the problem. If the thermal and solutal effects oppose one
another, then convection can take the form of time-dependent solutions.

The thermosolutal problem studied here and in Refs. [10,41] is formulated in an idealized
two-dimensional horizontally periodic domain (x, z) ∈ [0, 2.8) × [0, 1], allowing the velocity to be
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FIG. 1. Left: instantaneous snapshot (�,C, �) of a traveling wave. � and C are the deviation of the
temperature and concentration from the linear conductive solution, and � is the stream function representing
the velocity. Center: temporal mean flow (�,C, � ). Right: deviation (θ, c, ψ ) from the mean flow. The mean
field (�,C, � ) is much smaller than the instantaneous field, so the deviation (θ, c, ψ ) is very close to the
instantaneous field.

represented as ∇ × �ey and the equations to be stated in stream-function-vorticity form. At the top
and bottom boundaries z = 0, 1, different values are imposed for the temperature and concentration,
and free-slip conditions are imposed on the velocity. There exists a motionless conductive solution
in which the temperature and concentration fields are linear functions of the vertical coordinate z.
We set � and C to be deviations of the temperature and concentration fields from the conductive
profiles.

The nondimensionalized governing equations are

∂t� − J [�,�] = ∇2� + ∂x�, (17a)

∂tC − J [�,C] = L∇2C + ∂x�, (17b)

∂t∇2� − J [�,∇2�] = P[∇4� + RT ∂x(� + SC)], (17c)

where the Poisson bracket is

J [ f , g] ≡ ey · ∇ f × ∇g = ∂z f ∂xg − ∂x f ∂zg (18)

The ratio P of kinematic viscosity to thermal diffusivity is fixed at 10 and the ratio L of solutal to
thermal diffusivity to 0.1 (these are the usual Prandtl number and inverse of the Lewis number,
respectively). The imposed concentration and thermal gradients both contribute to the density
gradient and the ratio S of their contributions is fixed at −0.5. We vary the imposed thermal gradient,
which is given in terms of the reduced Rayleigh number r, the ratio of the Rayleigh number RT to its
critical value 657.5 for this geometry and in the absence of a concentration gradient. The conductive
solution is stable for r until r = 2.05, when a Hopf bifurcation breaks the translational symmetry in
this periodic geometry, leading to the creation of branches of traveling and standing waves [42]. We
carry out our study over the range r ∈ [2.06, 3].

Figure 1 shows an instantaneous visualisation in the (x, z) plane of the exact nonlinear traveling
wave Ulc and its decomposition into the temporal mean flow U and deviation Ulc − U . We emphasize
that U is not the conductive solution, but the mean of the deviation from it, sometimes called the
distortion. Because Ulc is a traveling wave, fields at other instants in time can be obtained by a
shift in the periodic direction x, and the temporal mean is also the spatial mean in x. A detailed
study of the RZIF property in traveling and standing waves in thermosolutal convection was carried
out in Ref. [10]. Turton et al. [10] showed that the traveling waves had the RZIF property while
standing waves at the same parameter values did not. We will extend the study of the thermosolutal
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FIG. 2. (a) Growth rate and (b) frequency as a function of Rayleigh number. Exact frequencies are shown
by open circles ( ). Frequencies and growth rates obtained by linearization about the conductive base state are
represented by triangles ( ) while those obtained by linearization about the full mean field (RZIF procedure)
are represented by solid circles (•). Frequencies obtained by the SCM procedure are shown by diamonds ( ).

traveling waves to the SCM approximation. We do not include the standing waves, since the SCM
approximation presupposes the validity of the RZIF approximation.

The main result of this study is contained in Fig. 2, which shows the exact frequency ωlc of
the limit cycle, along with the real and imaginary parts of the eigenvalues of the operators LUb ,
LU , and LUscm as a function of r. The frequency ωb obtained from linear stability analysis about
the conductive base state is far from the frequency ωlc of the limit cycle, as expected, while the
frequency ωrzif obtained by RZIF, i.e., linearizing around the mean flow U , is quite close to the exact
nonlinear frequency and σrzif remains small in the entire range investigated, [2.05,3]. In contrast, the
frequency ωscm obtained by SCM matches ωlc only very close to the threshold, approximately for
r ∈ [2.05, 2.08] and deviates below it for r � 2.1. However, as r is increased further, the ωscm curve
approaches the ωlc curve, crossing it at r = 2.5 and then exceeding it substantially. For r � 2.5,
the RZIF growth rate σrzif becomes slightly positive. The SCM growth rate σscm is zero for all r by
construction.

In Fig. 3, we compare the mean concentration profile calculated by the SCM to the exact mean
profile for various values of r. (Recall that the RZIF procedure uses the exact mean profile.) We
choose the concentration, here and elsewhere, because the differences are largest for this component.
The disagreement between the SCM and exact profiles closely follows the tendency seen in Fig. 2: a
disagreement at r = 2.3, which decreases to the point of being almost negligible at r = 2.5 and then
increases again with r. We also note that the sign of the error in the mean flows reverses at r = 2.5,

(a) (b) (c) (d)

FIG. 3. Mean concentration profile calculated via SCM compared to the exact profile. (a) For r = 2.3,
the amplitude of CSCM is greater than that of Cexact . (b) For r = 2.5, the value at which ωscm ≈ ωlc, the two
profiles are almost identical. (c) For r = 2.7, the amplitude of Cscm is less than that of CExact . (d) Difference
Cscm − CExact for 2.3 � r � 2.7.
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just as was seen for the frequency in Fig. 2. Thus, the crossing of ωscm and ωlc seen in Fig. 2 at r =
2.5 is not a coincidence, e.g. two different operators sharing the same eigenvalues. The agreement
between the eigenvalues at r = 2.5 is due precisely to the fact that the SCM approximation to the
mean field is accurate at that particular value.

This case provides a counterexample to the SCM, showing that the RZIF property does not
necessarily imply the validity of SCM. The assumption that only the leading mode contributes
significantly to the distortion of the mean field does not hold.

Mantič-Lugo and Gallaire [21] have carried out a study of the optimal forcing response in the
backward facing step, comparing fully nonlinear results [retaining in (15b) the nonlinear terms
g of Eq. (11)] with linear results from the resolvent Eq. (15b), either computed from the exact
mean flow or from a self-consistent approximation to the mean using a single mode as in Eq. (15a).
Surprisingly, they find that the results from the single-mode approximation to the mean and resolvent
(comparable to SCM) are much closer to the nonlinear results than those using the exact mean and
resolvent (comparable to RZIF). This could be due to the consistency of the truncation used in
SCM, or to some difference between limit cycles and optimal forcing, or between the thermosolutal
problem and the backward-facing step, or merely to chance.

IV. FOURIER ANALYSIS: HARMONIC BALANCE

To further understand the RZIF and SCM equations, we turn to the temporal Fourier decompo-
sition of the limit cycle and of the governing equations. The statement of the governing equations
in terms of the temporal Fourier decomposition is called harmonic balance in the aerodynamic
literature [27,43–45] and it is the basis of the argument presented in Turton et al. [10]. We write the
limit cycle Ulc(t ) as

Ulc = U +
∑
n �=0

ûneinωt , (19)

where û−n = û∗
n. Figure 4 shows these Fourier components for our case of traveling waves in

thermosolutal convection. Their spatial form is dictated by the fact that a temporal Fourier decom-
position is equivalent to a horizontal spatial Fourier decomposition for a traveling wave.

We then substitute Eq. (19) into the governing Eq. (1) and separate the resulting terms of different
frequencies. The term corresponding to n = 0 is the governing equation of the mean field:

0 = LU + N (U ,U ) +
∑
m �=0

N (ûm, û−m)

︸ ︷︷ ︸
N0

. (20a)

The nonlinear term N0 appearing in Eq. (20a) is the divergence of the Reynolds stress, responsible
for the distortion and production of the mean field. The equation corresponding to each n > 0 is

inωûn = Lûn + N (U , ûn) + N (ûn,U )︸ ︷︷ ︸
LU ûn

+
∑

m �=0,n

N (ûm, ûn−m )

︸ ︷︷ ︸
Nn

. (20b)

For n = 1, Eq. (20b) becomes

iωû1 = LU û1 + N1, (21)
where

N1 ≡ N (û2, û−1) + N (û−1, û2) + N (û3, û−2) + N (û−2, û3) + . . . .

If the periodic cycle is exactly monochromatic, i.e., if û±2 = û±3 = . . . = 0, then N1 = 0 and
Eq. (21) becomes the RZIF Eq. (13) with σrzif = 0:

iωû1 = LU û1. (22)
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FIG. 4. Temporal Fourier components 1, 2, and 3 for traveling wave solution of thermosolutal convection
at r = 2.5. Fourier components of temperature θ̂ , concentration ĉ and stream function ψ̂ are shown. The
components are complex, with combinations of real and imaginary part parametrized by a phase. Here, a
single choice of temporal or spatial phase is shown.

If, as is more likely, un�2 is not zero, but is small, for example, if

||ûn|| ∼ ε|n| (23)

as discussed in Ref. [46], then N1 is of order ε3, while iωû1 and LU are of order ε, so that Eq. (22) is
approximately true. [Note that Eq. (23) does not justify neglecting Nn in Eq. (20b) for n > 1, since
inωûn, LU ûn, and Nn are all of order εn.]

The argument in terms of spectra is supported by the results of Turton et al. [10]. We recall that
standing waves are produced at the same Hopf bifurcation as the traveling waves and that the RZIF
property does not hold for the standing waves. In Ref. [10], it is shown that the spectrum of the
standing waves is far less peaked at n = 1 than that of the traveling waves. For example, at r = 2.5,
the ratio of the Fourier components of the temperature field ||θ̂2||/||θ̂1|| is approximately 10−2 for
the traveling waves and 20 times higher for the standing waves.

To be consistent, the quantitative argument based on Eq. (23) would also call for neglecting terms
N (ûm, û−m) for m � 2 compared to N (û1, û−1), leading to the SCM. The Fourier interpretation of
the SCM is that the limit cycle is represented by a temporal Fourier series, truncated to contain only
modes 0 (U ) and 1 (û1).

In Fig. 5(a) we visualize the temporal Fourier spectra ||ûn|| over the range r ∈ [2.05, 3] and for
frequencies n ∈ [1, 8]. We normalize by ||û1|| since the RZIF approximation relies on neglecting

-10

-5

0

-15

-10

-5

0

FIG. 5. Logarithmic color representation of Fourier spectra. Left: ||ûn|| normalized by ||û1||. Right: Con-
tributions ||N (û−n, ûn)|| to the mean flow normalized by ||N (û−1, û1)||.
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(a) (b) (c) (d)

FIG. 6. Modulus of first Fourier component |ĉ1(z)| of concentration field and its approximations via SCM
and RZIF for (a) r = 2.3, (b) r = 2.5, and (c) r = 2.7. The amplitudes of the RZIF profiles are undetermined,
since they are eigenvectors; here, they have been normalized to match the norms of the Fourier components.
SCM overestimates |ĉ1| for r < 2.5 and underestimates it for r > 2.5. (d) Norm ||û1|| and its approximation
via various orders of SCM as a function of r.

ûn>1 in comparison with û1. Figure 5(b) shows the amplitudes of the nonlinear terms contributing
to the mean flow ||N (ûn, û−n)||. We normalize by ||N (û1, û−1)||, since the SCM assumes that
N (ûn, û−n) can be neglected in comparison with N (û1, û−1)||. These figures show that both spectra
are highly peaked for small r and become less so as r increases, as is to be expected. Going from
n = 2 to 3, the magnitudes decrease very little, and even increase for higher values of r, a point that
will be explored further in the next section.

According to Eq. (22), the RZIF procedure does not merely approximate the nonlinear fre-
quency as the leading eigenvalue but also approximates the first temporal Fourier component via
the corresponding eigenvector. Figures 6(a)–6(c) illustrate this idea by comparing |ĉ1(z)| with
its approximations via RZIF and SCM. Since crzif is part of an eigenvector, its norm has been
chosen to match that of ĉ1, i.e.,

∫
dz |crzif (z)| = ∫

dz |ĉ1(z)|. For r < 2.5, the SCM profile slightly
exceeds |ĉ1|, while for r > 2.5 it underestimates it. At r = 2.7, the |crzif | profile has a secondary
minimum which is absent from the corresponding |ĉ1| as well as from |θrzif |, |ψrzif |, |θ̂1|, and
|ψ̂1|. (The secondary minimum is, however, found in |ĉ1| when L is increased to 0.2.) Figure 6(d)
compares ||û1|| = [

∫
dz(|t̂1(z)|2 + |ĉ1(z)|2 + |ψ̂1(z)|2)]1/2 to its SCM approximation, including its

higher-order generalizations to be described in the next section. We again see the overestimate by
SCM of |û1| for r < 2.5 and its underestimate for r > 2.5.

V. HIGHER-ORDER METHODS

We have seen that for the traveling waves of thermosolutal convection, linearization about the full
mean flow (RZIF) succeeds in matching the frequency of the nonlinear waves, while linearization
about a first-order approximation to the mean flow (SCM) does not. It seems natural to consider
whether higher-order approximations to the mean flow can lead to a better match.

A. Higher-order SCM

The SCM is a truncation of the Fourier decomposition of the exact system Eqs. (20a) and (20b)
including only components with |n| � 1. A natural idea is to truncate at the next order, |n| � 2.
Meliga [16] called this approximation second-order SCM and implemented it for the flow over an
open cavity, using a multiple scale expansion method. Truncating at this order, we obtain

0 = LU + N (U ,U ) + N (u1, u−1) + N (u−1, u1) + N (u2, u−2) + N (u−2, u2), (24a)

iωu1 = LU u1 + N (u2, u−1) + N (u−1, u2), (24b)

2iωu2 = LU u2 + N (u1, u1), (24c)
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FIG. 7. Frequency calculated by SCM methods of increasing order as a function of Rayleigh number. Exact
frequencies are shown by open circles ( ), while those predicted by the SCM are shown by diamonds: (a) first
order ( ), (b) second order ( ), (c) third order ( ), and (d) fourth order ( ).

along with a phase condition (see Sec. VI). This system has as unknowns one real (U ) and two
complex fields (u1, u2) and one unknown frequency (ω). In these equations, U does not signify the
exact mean flow and the un’s do not signify the exact Fourier components ûn but approximations
to them. We call this truncated system SCM2. We can also extend Eq. (24) to include higher-order
terms, forming third and higher order SCM approximations by truncating the exact representation
Eqs. (20a) and (20b) at order M:

0 = LU + N (U ,U ) +
∑

1�|m|�M

N (um, u−m), (25a)

inωun = LU un +
∑

1 � |m| � M
1 � |n − m| � M

N (um, un−m), 1 � n � M. (25b)

Higher-order SCM does not fit into the category of the quasilinear or semilinear models, since
nonlinear interactions between {u1, u2, . . .} that do not contribute to U are included, i.e., they
are present in Eqs. (24b), (24c), and (25b). Instead, higher-order SCM, like harmonic balance,
consists of a consistent truncation in temporal modes at increasingly higher order. The optimal
forcing problem for a flat-plate boundary layer was solved at successively higher orders of temporal
frequency by Ref. [27].

We solve system Eq. (24) or Eq. (25) by a straightforward Newton’s method (see Sec. VI). In
these equations (and only here) we have been imprecise in our notation; in theory, U , un, and ω

should all carry labels indicating that they are solutions of the Mth-order system SCMM, but such
labels would make these equations unreadable.

Figure 7 extends Fig. 2 by comparing the frequencies computed by the higher-order SCM
systems with the exact frequencies. Figure 7(b) shows that SCM2 extends the range in which
the frequency is well predicted from [2.05, 2.08] to [2.05, 2.3], above which SCM2 increasingly
overestimates the frequency. SCM3 extends the matching range up to r ≈ 2.5, as shown in Fig. 7(c),
and underestimates the frequency above this range. Figure 7(d) shows that SCM4 considerably
improves the frequency prediction throughout the r range [2.05, 3]. Since the SCMM equations
converge to the exact equations with increasing M, the corresponding frequencies must converge to
the exact frequencies.

Figure 8 extends Fig. 3 by presenting the error in the mean concentration profiles computed
by SCMM as M is increased. Figure 8(a) at r = 2.3 shows the dramatic improvement in the mean
profile as M is increased past 1, as expected by comparing Figs. 7(a) and 7(b). In contrast, Fig. 8(b)
at r = 2.4 shows that the deviation is as large for the SCM2 profile (and in the opposite direction)
as it is for SCM1. Figure 8(c) at r = 2.5 shows that, rather than improving the profile, the SCM2

approximation is even poorer than that of SCM1. The higher-order profiles converge to the correct
profile, but nonmonotonically. This trend continues for r = 2.6, shown in Fig. 8(d).
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(a) (b) (c) (d)

FIG. 8. Mean concentration profiles calculated by various orders of the SCM method compared to exact
mean concentration profile. (a) For r = 2.3, (b) r = 2.4, (c) r = 2.5, and (d) r = 2.6.

B. Incomplete RZIF

The uneven performance of SCM has motivated us to perform another numerical experiment,
namely, to build up the exact mean field by truncating the contributions to it from the exact Fourier
coefficients. We denote these approximate mean fields by U 1, U 2, U 3, . . . and linearize about them:

0 = LU M + N (U M,U M ) +
∑

1�|m|�M

N (ûm, û−m), (26a)

(σM + iωM )uM = LU M
uM , (26b)

where the ûm contributing to the mean U M in Eq. (26a) are the exact Fourier components of the
nonlinear limit cycle defined in Eq. (19). In our case, N (U M,U M ) = N (U ,U ) = 0, so Eq. (26a)
can be solved via

U M = −L−1
∑

1�|m|�M

N (ûm, û−m). (27)

We will call this the incomplete RZIF approximation.
It is useful to compare this system with the higher-order SCMM system Eqs. (25a) and (25b) and

with the exact system Eqs. (20a) and (20b). Although Eq. (26a) resembles Eq. (25a), we emphasize
that the exact Fourier components ûn of the nonlinear limit cycle Ulc are used in Eq. (26a), as
they are in the corresponding exact Eq. (20a). In contrast, the SCM Eq. (25a) uses approximate
Fourier components defined self-consistently by the coupled truncated system Eqs. (25a) and (25b).
However, Eq. (26b) omits all of the terms N1,N2, . . ., as in RZIF, whereas Eq. (25b) includes
increasingly accurate versions of these terms. Thus, the incomplete RZIF approximation Eqs. (26a)
and (26b) is a gradual approach to RZIF rather than to the full exact Eqs. (20a) and (20b). The
incomplete RZIF approximations of various orders are less accurate than the original RZIF method
of Secs. II and III, in contrast to the SCMM methods of various orders, which are more accurate than
the original SCM1 method.

Figure 9 shows the eigenvalues resulting from the incomplete RZIF approximation. First,
Fig. 9(a) shows the real parts σM as a function of r. For r < 2.5, σM ≈ 0, but for r > 2.5 and
for M = 1 and M = 2, the values of σM are quite far from zero. Note that σ2 ≈ σ1, implying that
adding the contribution from N (û2, û2) does not improve the estimated mean flow U 2. This is also
true for the imaginary parts: ω2 ≈ ω1. In Fig. 9(b), we compare ω2 to the exact frequency ωlc, the
RZIF frequency ωrzif , and the frequency from SCM2. We see that ω1 (not shown in the figure) and
ω2 are fairly accurate for r � 2.6, whereas the frequency from SCM2 is accurate only for r � 2.4.
For M = 3, Fig. 9(c) shows that the frequencies ω3 are almost indistinguishable from ωrzif and ωlc,
while those from SCM3 still deviate for r � 2.5. Note that ωM cannot exceed the accuracy of ωrzif ,
since the terms N1, N2, etc. continue to be neglected. This is emphasized in the enlargement of
Fig. 9(d), where ω3 is very close to ωrzif while remaining apart from ωlc. For r > 2.4, the frequency
from SCM4 follows a different trend.
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FIG. 9. Comparison of the incomplete RZIF and SCM methods. (a) Growth rates calculated by linearizing
about the full mean (RZIF) are represented by solid black circles ( ). Those obtained by linearizing about
U 1, U 2, and U 3 are represented by blue plus signs ( ), by blue crosses ( ), and by hollow blue boxes ( ),
respectively. The growth rates from U 1 and U 2 are almost indistinguishable, as are the growth rates from U 3

and RZIF. (b, c, d) Frequencies. Exact frequencies are represented by open red circles ( ) while those obtained
by linearizing about the full mean field (RZIF) are represented by solid black circles ( ). Those obtained by
linearizing about U 2 and U 3 are represented by hollow blue boxes ( ), and by blue crosses ( ), respectively.
Frequencies predicted by the SCM are shown by diamonds: (b) second order ( ), (c) third order ( ), and
(d) fourth order ( ). Linearization about U 3 achieves the same results as RZIF, so no further improvement is
possible. SCM4 is not as accurate.

Figure 10 shows the error in the mean concentration profiles resulting from successively truncat-
ing the Fourier series, as in Eq. (26a). These errors are considerably smaller than the corresponding
errors from the SCM analysis; the scale of Fig. 10 is a third of that of Fig. 8. We see that going from
U 1 to U 2 does not substantially decrease the error in the incomplete RZIF approximation, while U 3

achieves the accuracy of RZIF, as was seen in Fig. 9 for the eigenvalues.
The incomplete RZIF approximation removes the effect of approximating the Fourier compo-

nents, leaving only the effect of truncating the Fourier sum. The less satisfactory performance of
SCM compared to the incomplete RZIF method of the same order can thus be attributed to the
inaccuracy in SCM’s estimates of û1, û2, . . ., leading to inaccuracy in the estimated mean flow.
Including higher-order modes produced by self-consistent truncations proves less successful than
including their exact versions at the same order.

We mention that neither of the families of methods—higher-order SCM nor incomplete RZIF—
fall precisely into the category of QL or GQL methods. We recall that QL or GQL methods divide the
modes into two types, the mean (or low frequency) modes and the other (or high frequency) modes.
One set of equations involves only the projections onto low modes of low-low or high-high quadratic
terms. The other set involves only mixed low-high quadratic terms, so that the high frequency modes
obey equations which are linear in the high frequency terms. In contrast, the RZIF methods use
externally calculated (exact) fields while the SCM methods include all interactions between the
retained modes.

)d()c()b()a(

FIG. 10. Mean concentration profiles calculated by various orders of the incomplete RZIF compared to
exact mean concentration profile. (a) For r = 2.3, (b) r = 2.4, (c) r = 2.5, and (d) r = 2.6. Note that the scale
of the horizontal axis is one third that of Fig. 8, indicating greater accuracy for the results of the incomplete
RZIF method compared to the SCM.
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VI. ALGORITHMS

A. Thermosolutal convection

We first describe the methods particular to thermosolutal convection. The spatial discretization
consists of a Fourier series in the periodic direction x and a sine series in the vertical direction z
(allowed for the streamfunction because of the free-slip boundaries). Differentiation is carried out
in Fourier-sine space and multiplication in the grid space. For our parameter range and boundary
conditions, very little resolution is needed; the (x, z) rectangle is represented by a 16 × 8 grid. By
defining

U ≡ (�,C, �)T , (28)

we rewrite Eq. (17) in the compact notation used previously,

∂tU = LU + N (U,U ). (29)

We carry out time evolution by a mixed scheme, in which diffusive terms L are evolved via the
implicit Euler method and the remaining terms by the explicit Euler method,

U (t + �t ) = (I − �tL)−1{U (t ) + �tN [U (t ),U (t )]}. (30)

When the limit cycle Ulc is a traveling wave, it is a stationary state in a moving reference frame
governed by

V ∂xUlc = LUlc + N (Ulc,Ulc ), (31)

where V = λ/Tlc = ωlc/k is the wave speed, with λ the wavelength, Tlc the period, k the wave
number, and ωlc the angular frequency. The term V ∂xU can be moved to the right-hand-side and
integrated explicitly along with N . The traveling waves are computed via Newton’s method by
transforming Eq. (30) as described in Ref. [10], with time stepping providing initial estimates for
fields and wave speeds. Compensating for the additional variable of the wave speed V , a phase
condition such as

∂xŨlc(x = 0) = 0 (32)

is imposed, where Ũ is one of �,C, � at a fixed value of z. The traveling wave solution is continued
from one value of r to the next to cover the range [2.06,3].

When the limit cycle is not a traveling wave, as is the case for the cylinder wake or the standing
waves of thermosolutal convection, it must be calculated via time integration. Another possibility is
to use Newton’s method with shooting to redefine the limit cycle as a fixed point problem in a much
higher dimensional space.

B. RZIF and SCM systems

We now discuss algorithmic aspects specific to the RZIF and SCM equations. For RZIF, the limit
cycle solution is averaged over time (or equivalently, for a traveling wave, over the x direction) to
produce U . The Jacobian about U is computed and diagonalized to produce its leading eigenvalue
σrzif + iωrzif . For this small problem, matrix operations such as diagonalization and inversion for
Newton’s method can be carried out directly, but for larger problems, matrix-free iterative methods
such as BiCGSTB, GMRES, or IDR and the Arnoldi or power methods can be used.

We now turn to the SCM:

0 = LUscm + N (Uscm,Uscm ) + N (uscm, u∗
scm ), (33a)

iωscmuscm = LUscm uscm, (33b)

together with a phase condition. The unknowns are the real field Uscm, the complex field uscm, and
the scalar ωscm. We solve the coupled system Eqs. (33a) and (33b) via a straightforward Newton’s
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method. We start near the threshold r = rHopf , where Uscm = Ub (which is zero in the thermosolutal
case) and uscm = ub, ωscm = ωb. For higher r values, the initial estimate used is the solution at the
previous value of r.

Mantič-Lugo et al. [13,14] solve the SCM equations by an iterative algorithm that decouples
the two equations. Equation (33a) is treated as a nonlinear equation for Uscm with N (uscm, uscm )
as an inhomogeneous forcing term, while Eq. (33b) is treated as an eigenproblem with fixed Uscm

defining the linear operator. As it stands, Eq. (33b) is not an eigenproblem, since LUscm is expected
to have complex eigenvalues rather than pure imaginary ones. (The closely related operator LUb has
an imaginary eigenpair only exactly at the Hopf bifurcation.) In addition, Eq. (33b) does not fix a
normalization for uscm, which is required for N (uscm, uscm ) when it is used as an input for Eq. (33a).
Such considerations lead these authors to specify a norm A for uscm (or, equivalently, to multiply a
normalized uscm by A). Equation (33b) is replaced by

(σscm + iωscm )uscm = LUscm uscm, (33c)

||uscm|| = A, (33d)

where σscm and Eq. (33d) are an additional unknown and equation relative to Eq. (33b), while A is
an input value.

Determining Uscm, uscm, and ωscm for a single value of r requires looping over values of A as
follows. A is initially set to zero, since then Eqs. (33a) and (33c) are the equations governing the
base flow and leading eigenpair from classical linear stability analysis; their solution is Ub, σb + iωb,
ub. To solve the equations for a new A > 0, uscm is given norm A and substituted into Eq. (33a) to
generate a new Uscm, which is in turn substituted into Eqs. (33c) and (33d), leading to a new uscm

that is substituted into Eq. (33a). The process is continued until Uscm, σscm + iωscm, and uscm cease
to change. A is then increased and the procedure repeated, using as initial estimates the solutions for
the previous A. The calculation is halted and the solution accepted when a value of A is reached for
which σscm = 0. Thus, the real-zero portion of the RZIF hypothesis is built into the method.

However, even if Eqs. (33a) and (33c), (33d) can be individually satisfied, there is no guarantee
of convergence of the coupled system for a given A. Nor is it guaranteed that there will be a
value of A such that σ (A) = 0. When Mantič-Lugo et al. [13,14] used the decoupled algorithm
to compute the SCM approximation for the cylinder wake, they reported convergence problems, in
response to which they introduced a relaxation factor and a different normalization of N (uscm, uscm )
to improve convergence; more details about the algorithm can be found in Refs. [14,47]. With these
modifications, they were then able to accurately reproduce the frequency of the cylinder wake for
Reynolds numbers up to Re = 120.

Meliga [16] implemented the second-order SCM2 given by Eq. (24) by generalizing the approach
in Refs. [13,14], writing a series of nested sub-problems for U , u1, u2, and two auxiliary complex
fields, each solved via Newton’s method and the Arnoldi method. As in Refs. [13,14], an amplitude
A was imposed and the solution was considered to be reached when a growth rate reached zero.

In our case of traveling waves in thermosolutal convection, we were able to use the decoupled
algorithm Eq. (33a) and Eqs. (33c), (33d) for r only 2% above rHopf ; above this value, the decoupled
algorithm does not converge. In contrast, the full Newton method performed robustly for Eqs. (33a)
and (33b), as well as for the higher-order SCM system Eqs. (25a) and (25b). We note that Fani
et al. [15] also applied a full Newton method to solve the SCM for the acoustic generation of the
Bénard-von Kármán vortex street, using MUMPS to solve the large sparse linear system required
by Newton’s method. We have presented the coupled algorithm for several reasons:

(i) We wished to make contact with the literature.
(ii) Our thermosolutal problem is quite small. Although our method is considerably simpler, it is

possible that a decoupled method such as that in Refs. [13,14] or Ref. [16] might be needed for a
larger problem.
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(iii) The decoupled algorithm has the advantage of describing the amplitude saturation process,
mimicking the evolution of A in time, discussed in Refs. [48,49]. The unstable base field solution
extracts energy from the perturbations, which grow until they saturate. SCM computes the mean
field, the nonlinear frequency and the nonlinear mode along with its amplitude A without time
integration.

VII. CONCLUSION

Nonlinear equations can be interpreted as governing the coupled evolution of modes, canonically
Fourier modes. Various truncations have been proposed to either speed up computations or to gain
a greater understanding of the behavior of their solutions. A basic task, which may be considered to
be a benchmark of such truncations, is to match the frequency of a limit cycle.

RZIF consists of computing the temporal mean, linearizing the evolution operator about it, and
then calculating its leading eigenvalue [6]. This approximation has been shown to be resoundingly
successful in the archetypal case of the wake of the circular cylinder [6], the traveling waves of
thermosolutal convection [10], the ribbons and spirals of counter-rotating Taylor-Couette flow [11],
and the shear-driven flow over a square cavity [12]. Although RZIF has thus far been applied only
to limit cycles produced by supercritical Hopf bifurcations, it is plausible that it might also apply
when the bifurcations are subcritical, since the mean upon which it relies is obtained from the
nonlinear limit cycle, independently of its distance from the base flow. The search for a general
reason for this success is constrained by the existence of a clear counterexample: the standing waves
of thermosolutal convection that bifurcate at the same parameter value as the traveling waves [10].
Based on this counterexample, Turton et al. [10] proposed that the dominance of the primary Fourier
mode could serve as a criterion for success of RZIF, which pushes the question further upstream to
when and why the primary Fourier mode dominates.

RZIF confers theoretical insight but no practical advantages, since the temporal mean is calcu-
lated from a full simulation of the limit cycle. For this reason, Mantič-Lugo et al. [13,14] proposed
to close the equations by limiting them to the mean flow and the primary temporal Fourier mode
and showed that this SCM method succeeded as dramatically as RZIF on the archetypal cylinder
wake. However, Fig. 2 shows that the traveling waves of thermosolutal convection that satisfy the
RZIF property so well cannot be approximated by the SCM. Although the interaction between
higher-order modes may be omitted from the higher-order Eqs. (20b), their contribution to the
mean flow remains important: they cannot be removed from Eq. (20a) governing the mean flow.
In addition, in our example, a good approximation of the mean flow requires that the higher-order
modes contributing to it be accurately represented, as demonstrated by Figs. 7 and 9. From this
example, it would seem to be interactions, rather than modes, that can be omitted. However, other
examples, e.g., Ref. [21], argue in the opposite direction.

Despite verifying RZIF, the traveling waves of our thermosolutal convection problem verify SCM
in a very narrow interval around one parameter value and not elsewhere. The thermosolutal standing
waves that provide a counter example to RZIF are generated at precisely the same bifurcation
and with the same parameter values as the traveling waves. These counter examples provide a
warning that truncations must be carefully controlled and understood, and that doing so may prove
unexpectedly difficult.

From the example of the cylinder wake [13,14] and its compressible version [15] as well as the
shear-driven cavity [16], it is clear that the SCM works remarkably well even for fairly complex
hydrodynamic problems, while yielding a major reduction in calculation costs. The challenge is to
determine which configurations are amenable to SCM and why.
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