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Numerical Methods for

Differential Equations in Physics



Curyvilinear Coordinates

Cylindrical coordinates (7, 8, z) (sometimes called (p, 0, z))

x = rcosf r? = x? + y?
y =7rsinf 0 = atan2(y, x)
=z z =z

Spherical coordinates (7, 8, ¢) (sometimes called (7, ¢, 6))

x = rsinfcos ¢ r? = x? + y? + 22 e VAL
y = rsin 0 sin ¢ 0 = atan2(\/z2 + y2,2) [ :’ X 1Y
b ¢
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z =7cos6 ¢ = atan2(y, x)
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Differential operators in cylindrical coordinates contain %
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Tensor product

F@y) = fendty" onbetter f(z,y) = FrnTk(2)Tu(y)

k.n k,n

Cylindrical coordinates

f(r,0) =) fomrte™
k.m

Despite their seemingly innocuous form, these are not analytic at the origin!
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f(r,0) =r f(r,0) = cos(0)



xFy" = (r cos O)k(r sin 9)"’
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Wavenumber in 6 multiplying »*+7
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is same parity and restricted to
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Trigonometric functions with wavenumber m contain m oscillations.

As r decreases, oscillations are compressed over decreasing circumference.
Requirement that radial function multiplying e*™° begin with »™ (that it
have an m-th order zero) leads to sufficiently fast damping of oscillation
amplitude near origin.



Same result can be demonstrated via differentiation:
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Not singular at x = 0, since k — 1 < 0 — k = 0. But:

o 0 10 o
7 im0 — - 7 im0
\V (r e ) (er—ar + eer_(‘?O) \V (r e )

= (erJ + egim)rj_leime
Singular at » = 0 for 5 = 0, m # 0. (Require 3 > m.)
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Need m = +j orm = £(j5 — 2) for 5 < 4. Etc.



For f to be infinitely differentiable, require
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e We know that monomials 7/ are a badly conditioned basis. They are
small almost everywhere in the interior. Matrix transforming between
f (r;) and monomial coeffcients is badly conditioned.

e What about »™T}(r) (called Roberts functions)?

f(r,0) = Z Z ™ fim T (r)e™®

m=—oo

i=0
J + m even

Also badly behaved, again because '™ exaggerate the boundary.

e Bessel functions:

{infen-(G) L imtsrn
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Eigenfunctions of the Laplacian: A.J,,(Ar)e™’ = —— m(Ar)e™d

Correct relations between r exponent m + 23 and 6 wavenumber m.
But convergence rate of coefficients in Bessel series is only algebraic.



e One-sided Jacobi basis W™ (r)e"™ = rmP((;.’Tm) p(2r% — 1)
Has good propreties, but too difficult to deal with.

e Instead, impose only parity —> f not analytic:

oo o’e) ' : v 1
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J + m even

Turns out to be wasteful but not harmful.

Coefficient of non-analytic functions are carried around and computed but
do not mix with the coefficients of the analytic basis functions. This is even
true if parity is not imposed. (Then 3/4 of the functions are non-analytic.)



If using finite differences in r, require at r = 0

dfm

for meven f,, = a4+ cr®+ ... (nolinear term) —> dL(r =0)=0
T

formodd f,,=0br+... (no constant term) —> f,(r =0) =0

How to incorporate BCs at » = ry = 0 into finite difference operator?

&2 f
—5(r2) & af(rs) + BF(r2) +7F (1)
& f

2z (1) = af(r2) + Bf(r) F(ro) = 0

%(ﬁ) ~ of(rz) + (B +7)f(r1) f'(ro) =0 = f(ro) = f(r1)

Can use Cartesian five or nine-point finite-difference stencil at » = 0,
polar coordinates elsewhere. Or omit point at » = 0.



Full disk
BC at r,,; and regularity at r;,

Cluster points at outer boundary,
not at the origin

Either » € [0,1] and 6 € [0, 27]
orr € [—1,1]and 0 € (0, 7]

Annulus: no singularity
Use finite differences or Chebyshev
polynomials in r and Fourier series in 6

Map [rin, Tout] to [—1, 1]
BCs at r;,, Tout-



What about vector components (u”, u?, u*)?
All of (u”, u¥, u?) are like scalars and must obey rules above.

u" = cos(0)u” + sin(0)u?
u® = —sin(9)u” + cos(0)uY

Expanding u* and Y leads to
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3—|—modd 7 + m odd



Vector Laplacian couples ©” and u?:

24 e AR
Al u = =0 — = 0 Uu =g
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Diagonalize the two-by-two block:
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Spherical Coordinates and Spherical Harmonics

Spherical harmonics:

Ye,m = Ne"™P}"(cos 6)

Behavior near poles:

P;"(cos §) ~ sin™ 0

Spherical 0 at poles is like  near
center of disk: polar cap

. —£(£+1)
Many useful relations, such as: AY;,,, = —Y,
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8000 = Y,;™(8, ¢) Y, sin@dO do
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As m increases, roots/extrema/variation of polynomials concentrate at ori-
gin (equator). Counteracts accumulation of longitude lines (e™?) at poles.

— Areas sampled equally over entire sphere via oscillations of P,



Pseudospectral method: transform to grids
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N £ N
F0,0) =Y frPr(cos0)e™ = Y [ 3 frP(cos) | e

=0 m=—¢ m=—N \f4=|m|

g

Fin(6)
27 Ny
fm(6) = i £(0,0) e ™0dp = Y f(0,¢;) e P AP
j=1

No(m)

= / fm(0) P;"(cos0) sinf db ~ Z fm(0;) P;"(cos 0;) sin 6; ]\?gﬂj
. par —
FFT in ¢ direction ’

T f hysical grid vi
ransform to physical grid via { weighted sum (matrix mult) in @ direction

Grid is equally spaced in ¢ but more concentrated in 6 near equator.

Optimal grid for each m would be Ny, roots of P;"(cos 8)/sin™ 6,
but want same 6 grid for each m, so use N roots of Legendre poly Py,.
Retain f;" for £ € [m, N]|



Orientation and role of m
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So m depends on orientation w.r.t. z-axis as well as on variation, unlike £.
Rotating (z, z) — (—x, z) changes m, but AY,” = &YK’” Vm
Distinguished choice of z axis if there is rotation.



Fornberg: finite differences on an equally spaced grid

s (5+£) eos(5-4) &b B

1 - 1

e k2 cos O P S
h%cos2 0 N h2cos2 0
" h?cos?8
A f 1 0 < 58 f ) n 1 9%f
= ~-— [ cos@—= = —
surface cos 6 00 00 cos 0 0¢?
cos (0 - —) ~
Here 0 is latitude, measured from equator
Eopad h=Apk=AD



Solve Poisson’s equation with finite differences on equispaced (0, ¢) grid
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FiG. 8. Solution of Poisson’s equation on a sphere using second-order finite differences. (a) Function f (g, 6) =
— cos2 6[(sin ¢ + cos ¢) (20 cos®  — 15) + sin2¢(10cos? 6 — 6)] shown on domain ¢ x 6 = [—x, w] x [—% z]

(b) Numerical solution to Poisson’s equation %’;- = lans% + Es‘rs %‘5— = f(g, 6) obtained by second-order FD
on the displayed grid. (c) Error in the numerical solution above — difference to the analytic solution u(p, ) =
cos* 6 [sin(o +cosg + % sin(2w)] (displayed on the same scale as the numerical solution).

u(0, ¢) = cos* O[sin ¢ + cos ¢ + % sin(2¢)]
Agurfacett = — cos? (sin ¢ + cos ¢) (20 cos?  — 15) + sin(2¢) (10 cos? 6 — 6)

Start with wu, calculate f = Agurfacet, then test.



Fornberg: Fourier-Fourier for wave equation

CASE 1 CASE 2
DIRECTION OF CHARACTERISTICS
 SOLID-BODY ROTATION )
ON SPHERICAL SURFACE
IN (9,0)-PLANE 8
(AXES AS IN FIGURE 3)
e
NSNSz
GOVERNING EQUATION
IN (¢, 6)-PLANE a(e,® = -1 a(p,8) = —sing tan®
& = a0 22 + blo.0) g b(p.0) = O b(9.0) = - cos¢
PEQUATIONS FOR CHARACTERISTICS
iN (¢,0)-PLANE, PARAMETERIZED of) = ¢t o(f) = arctan (tan go/ cost)
THROUGH TIME = ¢. 0(f) = 8o 0(f) = arcsin (cos gaxsint)
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East-West wave (along equator)



\Gnm DENSITY
METHOD 8x16 16x32 32x64

1 \F [ "'"7 \ h
Mgy
T

U
N4

2\
(
5 '//;/l/;,““\\ R
LTI LF

North-South wave (over pole)



Hyperbolic Equations: Characteristics

/

First-order wave equation:
Ut = CU, Uk X,
Analytic solution: traveling wave

u(x,t) = u(x + ct, 0) uﬂ

X

The wave equation carries the initial condition through time.

Generalization: 0 = u; + g(x,t, u)u,

0 n dx
=u — Uy,
P dt

u is constant along curve x(t) such that ‘;—f = g(x,t,u):
du Ou Oudzx

dt 8t+8wdt -




Burger’s equation: u; + uu, = 0

u(x,0) u(x,0)
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