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Inclining a fluid layer subjected to a temperature gradient introduces a profusion of
fascinating patterns and regimes. Previous experimental and computational studies form
the starting point for an extensive numerical bifurcation study by Reetz & Schneider
(J. Fluid Mech., vol. 898, 2020, A22) and Reetz et al. (J. Fluid Mech., vol. 898, 2020,
A23). Intricate trajectories passing through multiple steady and periodic states organize
the dynamics. The consequences for chaotic patterns in large geometries is discussed.
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1. Introduction: inclined layer convection

The phenomenon of thermal convection is known to all: warm fluid rises and cool
fluid falls. But fluid cannot rise and fall in the same locations; the way in which the
rising and falling locations are arranged in space provides the archetypal example of
pattern formation. Reetz and coworkers (Reetz & Schneider 2020; Reetz, Subramanian
& Schneider 2020) explore a generalization of Rayleigh–Bénard convection in which the
confining plates held at different temperatures are inclined at an angle γ with respect to
gravity. From a physical point of view, the immediate consequence is a shear flow in the
direction of inclination, upwards along the warmer plate and downwards along the cooler
one. From a mathematical point of view, the inclination renders the fluid layer anisotropic,
distinguishing the direction of inclination and that perpendicular to it. As the Rayleigh
number is increased, inclined convection undergoes a first transition from a featureless
base state B to straight rolls. For compressed CO2 with a Prandtl number of 1.07, these
rolls are buoyancy-driven, with axes parallel to the inclination (longitudinal rolls, LR,
seen in the title figure) for γ � 78◦, and shear-driven, with axes perpendicular to the
inclination (transverse rolls, TR, seen in the title figure) for γ � 78◦ (e.g. Gershuni &
Zhukhovitskii 1969; Chen & Pearlstein 1989), as shown in figure 1. The limiting case in
which the bounding plates are vertical (γ = 90◦) and the imposed temperature gradient is
horizontal is sometimes called natural convection.
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FIGURE 1. (a) Evolution from base state B to longitudinal rolls LR to wavy rolls WR (inset
i), followed by a sequence of widening oscillations leading to a heteroclinic cycle between the
oblique wavy roll state OWR and its image under a shift τxy in x and y (inset ii). The trajectory
is projected onto the coordinates (D/I, I), where D is the viscous dissipation and I is the energy
input. (b) Temperature isosurfaces of WR and OWR. Adapted from Reetz & Schneider (2020).

The problem of inclined layer convection received a boost from experimental
observations of exotic regimes such as crawling rolls and transverse bursts by
Daniels and coworkers (Daniels et al. 2000; Daniels & Bodenschatz 2002; Daniels
et al. 2003). These were followed by numerical and theoretical simulations of these
patterns by time stepping (Daniels et al. 2008) and by Floquet and Galerkin analyses
(Subramanian et al. 2016).

2. Overview: a numerical bifurcation study

Reetz and coworkers (Reetz & Schneider 2020; Reetz et al. 2020) have sought the
bifurcation-theoretic origin of these exotic patterns. Their motivation is in part because
of the features that inclined layer connection shares with wall-bounded shear flows such as
plane Couette flow and pipe flow. These shear flows were not known to have any non-trivial
solutions until their resistance to bifurcation-theoretic approaches was breached by Nagata
(1990) and Clever & Busse (1992), who continued solutions from Taylor–Couette flow and
Rayleigh–Bénard convection to plane Couette flow. Shortly thereafter, travelling waves in
pipe flow were computed by Faisst & Eckhardt (2003) and Wedin & Kerswell (2004).
Since then, dozens of solutions have been computed (e.g. Gibson, Halcrow & Cvitanović
2008), all unstable.

These multiple solutions are thought to be of more than zoological interest, since
Cvitanović & Eckhardt (1991) and Kawahara, Uhlmann & van Veen (2012) have proposed
that turbulence in shear flows could be viewed as a collection of trajectories ricocheting
between these multiple solutions via the connections between them. Indeed, for pipe flow,
Hof et al. (2004) compared exact solutions with snapshots during the evolution of the flow.

Reetz & Schneider (2020) focus on several key states and dynamical regimes. One
example is a sequence of bifurcations at γ = 40◦ from the base state to longitudinal rolls to
wavy rolls to oblique wavy rolls. The oblique wavy rolls participate in a robust heteroclinic
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FIGURE 2. (a–h) Eight invariant states in vertical layer convection (γ = 90◦), all at Rayleigh
number 21 266, computed by continuation. (i–l) Four snapshots from direct numerical
simulations of the turbulent regime at the same parameters. Adapted from Reetz et al. (2020).

cycle, shown in figure 1. Reetz et al. (2020) expand on these results by surveying
the parameter space of Rayleigh number and inclination angle to construct complete
bifurcation diagrams and interpreting the transitions in the context of the large-aspect-ratio
experiments. They have computed eight different invariant solutions all at Rayleigh
number 21 266 and angle γ = 90◦, where the longitudinal rolls (LR) do not exist: the
transverse rolls (TR) already mentioned, and various periodically modulated versions of
the longitudinal rolls. Carrying out direct numerical simulations at the same parameter
values, they extracted snapshots that resembled these states, as shown in figure 2.

3. Future: from bifurcation diagrams to turbulence?

There is no doubt that patterns and temporal behaviour are controlled and explained
by the plethora of underlying dynamical objects – fixed points and travelling waves,
periodic orbits and heteroclinic cycles. The ability to compute such objects for the full
three-dimensional Navier–Stokes and Boussinesq equations has resulted from advances in
several fields: first, the spectacular growth of dynamical systems theory and symmetry
(e.g. the monographs by Golubitsky, Stewart & Schaeffer (1988) and by Kuznetsov
(1998)) following the discovery of deterministic chaos; second, the increasing power
of computation; and third, the incorporation of matrix-free methods for linear algebra
(Dijkstra et al. 2014) into algorithms for tracking dynamical objects. See, e.g., Marques
et al. (2007) and Borońska & Tuckerman (2010) for computational bifurcation studies of
convection. However, the application of the theories of Cvitanović & Eckhardt (1991) and
Kawahara et al. (2012) to a turbulent hydrodynamic state would require the computation
of an even larger number of dynamical objects, on a scale that is not yet possible. The
challenge is to bridge the gap between bifurcation theory and the large-scale statistical
phenomenon of turbulence.
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