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Abstract Regular patterns of turbulent and laminar fluid motion arise in plane Couette
flow near the lowest Reynolds number for which turbulence can be sustained.
We study these patterns using an extension of the minimal flow unit approach
to simulations of channel flows pioneered by Jiménez and Moin. In our case
computational domains are of minimal size in only two directions. The third
direction is taken to be large. Furthermore, the long direction can be tilted at any
prescribed angle to the streamwise direction. We report on different patterned
states observed as a function of Reynolds number, imposed tilt, and length of
the long direction. We compare our findings to observations in large aspect-ratio
experiments.

1. INTRODUCTION

In this chapter we consider plane Couette flow – the flow between two infinite
parallel plates moving in opposite directions. This flow is characterized by
a single non-dimensional parameter, the Reynolds number, defined as Re =
hU/ν, where 2h is the gap between the plates, U is the speed of the plates
and ν is the kinematic viscosity of the fluid (see Figure 1). For all values of
Re, laminar Couette flow uC ≡ yx̂ is a solution of the incompressible Navier–
Stokes equations satisfying no-slip boundary conditions at the moving plates.
This solution is linearly stable at all values of Re. Nevertheless it is not unique.
In particular, for Re greater than approximately 325 (Dauchot and Daviaud,
1995), turbulent states are found in experiments and numerical simulations.
Our interest is in the flow states found as one decreases Re from developed
turbulent flows to the lowest limit for which turbulence exists.

Our work is motivated by the experimental studies of Prigent and coworkers
(2001, 2002, 2003, 2005) on flow in a very large aspect-ratio plane Couette
apparatus. Near the minimum Re for which turbulence is sustained, they find
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Figure 1. Plane Couette geometry. Plates separated by a gap 2h move at speeds ±U . The
coordinate system we use is as shown, with y = 0 corresponding to midgap.

Figure 2. Turbulent-laminar pattern at Reynolds number 350. Isosurfaces of streamwise
vorticity (ω = ±0.5) are shown at one instant in time. For clarity the bottom plate is shown
in black while the top plate is transparent. The streamwise and spanwise extent of the region
shown are 60 times the plate separation 2h.

remarkable, essentially steady, spatially-periodic patterns of turbulent and lam-
inar flow. These patterns emerge spontaneously from featureless turbulence as
the Reynolds number is decreased. Figure 2 shows such a pattern from numer-
ical computations presented in this chapter. Two very striking features of these
patterns are their large wavelength, compared with the gap between the plates,
and the fact that the patterns form at an angle to the streamwise direction.

Fluid flows exhibiting coexisting turbulent and laminar regions have a sig-
nificant history in fluid dynamics. In the mid 1960s a state known as spiral
turbulence was first discovered (Coles, 1965; van Atta, 1966; Coles and van
Atta, 1966) in counter-rotating Taylor–Couette flow. This state consists of a
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turbulent and a laminar region, each with a spiral shape. The experiments of
Prigent et al. (2001, 2002, 2003, 2005) in a very large aspect-ratio Taylor–
Couette system showed that in fact the turbulent and laminar regions form
a periodic pattern, of which the original observations of Coles and van Atta
comprised only one wavelength. Cros and Le Gal (2002) discovered large-
scale turbulent spirals as well, in the shear flow between a stationary and a
rotating disk. When converted to comparable quantities, the Reynolds-number
thresholds, wavelengths, and angles are very similar for all of these turbulent
patterned flows.

2. METHODS

Our computational technique (Barkley and Tuckerman, 2005) extends the min-
imal flow unit methodology pioneered by Jiménez and Moin (1991) and by
Hamilton et al. (1995) and so we begin by recalling this approach. Turbu-
lence near transition in plane Couette and other channel flows is characterized
by the cyclical generation and breakdown of streaks by streamwise-oriented
vortices. The natural streak spacing in the spanwise direction is about 4–
5h. In the minimal flow unit approach, the smallest laterally periodic do-
main is sought that can sustain this basic turbulent cycle. For plane Couette
flow at Re = 400, Hamilton et al. (1995) determined this to be approxim-
ately (Lx, Ly, Lz) = (4h, 2h, 6h). This domain is called the minimal flow
unit (MFU). The fundamental role of the streaks and streamwise vortices is
manifested by the fact that the spanwise length of the MFU is near the natural
spanwise streak spacing. Figure 3(a) shows the MFU in streamwise-spanwise
coordinates.

We extend the MFU computations in two ways. First we tilt the simulation
domain in the lateral plane at angle θ to the streamwise direction [Figure 3(b)].
We use x′ and z′ for the tilted coordinates. We impose periodic lateral boundary
conditions on the tilted domain. To respect the spanwise streak spacing while
imposing periodic boundary conditions in x′, the domain satisfies Lx ′ sin θ �
4h for θ > 0. (For θ = 0, we require Lx ′ � 6h.) Secondly, we greatly extend
one of the dimensions, Lz′ , past the MFU requirement [Figure 3(c)], in practice
between 30h and 220h, usually 120h.

This approach presents two important advantages, one numerical and the
other physical. First, it greatly reduces the computational expense of simulat-
ing large length-scale turbulent-laminar flows. Our tilted domains need only be
long perpendicular to the turbulent bands. In the direction in which the pattern
is homogeneous, the domains are of minimal size, just large enough to capture
the streamwise vortices typical of shear turbulence. Second, the approach al-
lows us to impose or restrict the pattern orientation and wavelength. We can
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Figure 3. Simulation domains. The wall-normal direction y is not seen; Ly = 2h. The bars
represent streamwise vortex pairs with a spanwise spacing of 4h. (The vortices are schematic;
these are dynamic features of the actual flow.) (a) MFU domain of size 6h × 4h. (b) Central
portion of a domain [on the same scale as (a)] tilted to the streamwise direction. α, α′ and β,
β′ are pairs of points identified under periodic boundary conditions in x′. (c) Full tilted domain
with Lx ′ = 10h, Lz′ = 120h, θ = 24◦. On this scale the MFU domain, shown for comparison,
is small.

thereby investigate these features and establish minimal conditions necessary
to produce these large-scale patterns.

We now present some further details of our simulations. We consider the
incompressible Navier–Stokes equations written in the primed coordinate sys-
tems. After nondimensionalizing by the plate speed U and the half gap h, these
equations become

∂u′

∂t
+ (u′ · ∇′)u′ = −∇′p′ + 1

Re
∇′2u′ in �, (1a)

∇′ · u′ = 0 in �, (1b)

where u′(x′, t) is the velocity field and p′(x′, t) is the static pressure in the
primed coordinate system, and ∇′ is used to indicate that derivatives are taken
with respect to primed coordinates. � is the computational domain. In these
coordinates, the no-slip and periodic boundary conditions are

u′(x′, y = ±1, z′) = ±(cos θ, 0, sin θ) (2a)

u′(x′ + Lx ′, y, z′) = u′(x′, y, z′) (2b)

u′(x′, y, z′ + Lz′) = u′(x′, y, z′) (2c)

The equations are simulated using the spectral-element (x′-y) – Fourier (z′)
code Prism (Henderson and Karniadakis, 1995). We use a spatial resolution
consistent with previous studies (Hamilton et al., 1995; Waleffe, 2003; Waleffe
and Wang, 2005). Specifically, for a domain with dimensions Lx ′ and Ly = 2,
we use a computational grid with close to Lx ′ elements in the x′ direction and
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5 elements in the y direction. Within each element, we usually use 6th order
polynomial expansions for the primitive variables. Figure 4 shows a spectral
element mesh used for the case of Lx ′ = 10. In the z′ direction, a Fourier
representation is used and the code is parallelized over the Fourier modes. Our
typical domain has Lz′ = 120, which we discretize with 1024 Fourier modes
or gridpoints. Thus the total spatial resolution we use for the Lx ′ ×Ly ×Lz′ =
10 × 2 × 120 domain can be expressed as NxN ′ ×NyN ×NzN ′ = 61 × 31 × 1024.

We shall always use (x, y, z) for the original streamwise, cross-channel,
spanwise coordinates (Figure 1). We obtain usual streamwise, and spanwise
components of velocity and vorticity using u = u′ cos θ + w′ sin θ and w =
u′ sin θ − w′ cos θ , and similarly for vorticity. The kinetic energy reported is
the difference between the velocity u and simple Couette flow uC, i.e. E =
1
2((u − uC)2 + v2 + w2).

We have verified the accuracy of our simulations in small domains by
comparing to prior simulations (Hamilton et al., 1995). In large domains
we have examined mean velocities, Reynolds stresses, and correlations in a
turbulent-laminar flow at Re = 350 and find that these reproduce experimental
results from Taylor–Couette (Coles and van Atta, 1966) and plane Couette
(Hegseth, 1996) flow. While neither experimental study corresponds exactly
to our case, the agreement supports our claim that our simulations correctly
capture turbulent-laminar states.

The procedure we use to initiate turbulence is inspired by previous invest-
igations of plane Couette flow in a perturbed geometry. We recall that lam-
inar plane Couette flow is linearly stable at all Reynolds numbers. It has
been found, experimentally (Bottin et al., 1998) and numerically (Barkley and
Tuckerman, 1999; Tuckerman and Barkley, 2002), that the presence of a wire
(Bottin et al., 1998) or a ribbon (Barkley and Tuckerman, 1999; Tuckerman
and Barkley, 2002) oriented along the spanwise direction causes the flow in
the resulting geometry to become linearly unstable to either a steady or a tur-
bulent state containing streamwise vortices. We simulate such a flow with a
ribbon which is infinitesimal in the x′ direction, occupies 30% of the cross-
channel direction y and spans the entire z′ direction. At Re = 500, the effect
of such a ribbon is to produce a turbulent flow quickly without the need to try
different initial conditions. Once the turbulent flow produced by the ribbon
is simulated for a few hundred time units, the ribbon can be removed and the
turbulence remains. This is the procedure we use to initialize turbulent states
for the simulations to be described below.
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Figure 4. Simulation domain. The (x′, y) grid is the actual spectral-element mesh used for
the case Lx ′ = 10. Only part of the z′ direction is shown. In practice we use 32 history points
in the z′ direction.

3. APPEARANCE OF TURBULENT-LAMINAR
BANDS

3.1 Basic phenomenon

We begin with one of our first simulations, in a domain tilted at angle θ = 24◦.
This angle has been chosen to be close to that observed experimentally near
pattern onset. The simulation shows the spontaneous formation of a turbulent-
laminar pattern as the Reynolds number is decreased. We initiated a turbulent
flow at Re = 500 by perturbing laminar Couette flow with a ribbon as de-
scribed in Section 2. Time zero in Figure 5 corresponds to the removal of
the ribbon. The flow is simulated for 500 time units at Re = 500 and the
kinetic energy E is measured at 32 points equally spaced in z′ along the line
x′ = y = 0 in the mid-channel shown in Figure 4. The corresponding 32 time
series are plotted at the corresponding values of z′. At Re = 500, there is no
persistent large-scale variation in the flow, a state which we describe as uni-
form turbulence. (This is not the homogeneous or fully developed turbulence
that exists at higher Reynolds numbers or in domains without boundaries.) At
the end of 500 time units, Re is abruptly changed to Re = 450 and the sim-
ulation continued for another 500 time units. Then Re is abruptly lowered to
Re = 425 and the simulation is continued for 1000 time units, etc. as labeled
on the right in Figure 5.

At Re = 350 we clearly see the spontaneous formation of a pattern. Out
of uniform turbulence emerge three regions of relatively laminar flow between
three regions of turbulent flow. (We will later discuss the degree to which the
flow is laminar.) While the individual time traces are irregular, the pattern is
itself steady and has a clear wavelength of 40 in the z′ direction. This Reynolds
number and wavelength are very close to what is seen in the experiments.
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Figure 5. Space-time diagram. Kinetic energy E(x′ = 0, y = 0, z′) at 32 equally spaced
points in z′ in a domain with Lx ′ ×Ly ×Lz′ = 10 × 2 × 120 with tilt θ = 24◦. The Reynolds
number is decremented in discrete steps (right). Three long-lasting and well-separated laminar
regions emerge spontaneously from uniform turbulence as Re is decreased.

3.2 Visualizations

Figure 6 shows visualizations of the flow at the final time in Figure 5. Shown
are the kinetic energy, streamwise velocity, and streamwise vorticity in the
midplane between the plates. The computational domain is repeated period-
ically to tile an extended region of the midplane. The angle of the pattern is
dictated by the imposed tilt of the computational domain. The wavelength of
the pattern is not imposed by the computations other than that it must be com-
mensurate with Lz′ = 120. The vorticity isosurfaces of this flow field were
shown in Figure 2. Spanwise and cross-channel velocity components show
similar banded patterns.

Clearly visible in the center figure are streamwise streaks typical of shear
flows. These streaks have a spanwise spacing on the scale of the plate separ-
ation but have quite long streamwise extent. We stress how these long streaks
are realized in our computations. A streak seen in Figure 6 typically passes
through several repetitions of the computational domain, as a consequence of
the imposed periodic boundary conditions. In the single tilted rectangular com-
putational domain, a single long streak is actually computed as several adjacent
streaks connected via periodic boundary conditions.

Figure 7 shows the streamwise vorticity and velocity fields between the
plates. The two leftmost images correspond to the same field as in Figure 6.
The streamwise vorticity is well localized in the turbulent regions. Mushrooms
of high- and low-speed fluid, corresponding to streamwise streaks, can be seen
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Figure 6. Turbulent-laminar pattern at
Re = 350. The kinetic energy, streamwise
velocity, and streamwise vorticity are visual-
ized in the y = 0 plane, midway between
and parallel to the moving plates. The com-
putational domain (outlined in white, tilted
at angle θ = 24◦) is repeated periodically
to tile an extended region in x-z coordinates.
Streamwise streaks, with spanwise separation
approximately 4h, are visible at the edges of
the turbulent regions.

Figure 7. Turbulent-laminar pattern at
Re = 350 viewed between the moving plates
(x′ = 0 plane). Left plot shows streamwise
vorticity. The other three plots show contours
of streamwise velocity at three times separ-
ated by 100 time units (time increasing left to
right). The vorticity plot and the first velocity
plot correspond to the field seen in Figure 6.
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Figure 8. Mean and rms velocity fields for the turbulent-laminar pattern. From left to right:
mean streamwise velocity, mean spanwise velocity, rms streamwise velocity and rms spanwise
velocity. The rms velocities are maximal in the lightest regions. Only the central half (30 ≤
z′ ≤ 90) of the computational domain is shown.

Figure 9. Space-time plot showing dynamics of the turbulent-laminar pattern. Streamwise
velocity is sampled along a spanwise cut through the flow field (the line x = y = 0 in the
reconstructed flows in Figure 6). Time zero corresponds to the time of Figure 6. The streaks
propagate away from the center of the turbulent regions toward the laminar regions.
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in the turbulent regions of flow. Dark velocity contours, corresponding to fluid
velocity approximately equal to that of the lower and upper moving plates, are
seen to reach into the center of the channel in the turbulent regions. In the
center of the laminar regions, where the flow is relatively quiescent (Figure 5),
there is very little streamwise vorticity and the streamwise velocity profile is
not far from that of laminar Couette flow. In particular, no high- or low-speed
fluid reaches into the center of the channel in these laminar regions.

In Figure 8 we show the mean and rms of the streamwise and spanwise ve-
locity components obtained from averages over T = 2000 time units. These
results show that the mean flow is maximal at the boundaries separating the tur-
bulent and laminar regions while the fluctuations are maximal in the middle of
the turbulent bands. This agrees with the experimental observations of Prigent
et al. (2001, 2002, 2003, 2005). Note further that the regions of high fluc-
tuation have approximately the same rhombic shape as the turbulent regions
shown by Coles and van Atta (1966) in experiments on Taylor–Couette flow.

Finally, Figure 9 shows a space-time plot of streamwise velocity along the
spanwise line x = y = 0. Specifically, data is taken from reconstructed flows
as in Figure 6. Time zero in Figure 9 corresponds to the field in Figure 6. Time
is taken downward in this figure to allow for comparison with a similar figure
from the experimental study by Hegseth (1996: figure 6) showing the propaga-
tion of streaks away from the center of turbulent regions. Our results agree
quantitatively with those of Hegseth. We find propagation of streaks away
from the center of the turbulent regions with an average spanwise propagation
speed of approximately 0.054 in units of the plate speed U . Translating from
the diffusive time units used by Hegseth, we estimate the average spanwise
propagation speed of streaks in his data to be approximately 0.060 at Reynolds
number 420. This space-time plot again shows the extent to which there is
some small activity in the regions we refer to as laminar.

3.3 Average spectral coefficients

We have determined a good quantitative diagnostic of the spatial periodicity of
a turbulent-laminar pattern. We use the same data as that presented in Figure 5,
i.e. velocities at 32 points along the line x′ = y = 0 in the midplane along the
long direction, at each interval of 100 time steps: 100�t = 1. We take a
Fourier transform in z′ of the spanwise velocity w, yielding ŵm. We take the
modulus |ŵm| to eliminate the spatial phase. Finally, we average over a time
T to obtain 〈|ŵm|〉. Figure 10 shows the evolution of 〈|ŵm|〉 for wavenumbers
m = 3, m = 2, m = 1, and m = 0 during one of our simulations (shown below
in Figure 11, which is a continuation of that shown in Figure 5). As before,
the vertical axis corresponds to time, and also to Reynolds number, which was
decreased in steps of �Re = 10. We average successively over T = 10,
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Figure 10. Evolution of 〈|ŵm|〉, which is an average over time T of the modulus of the
Fourier transform in the z′ direction of 32 spanwise velocity samples taken along the line (x′ =
0, y = 0). The components with wavenumber m = 3 (solid curve), m = 2 (long-dashed curve),
m = 1 (short-dashed curve) and m = 0 (dotted curve) can be used as a quantitative diagnostic
of a turbulent-laminar pattern. For example, the dominance of the m = 3 component indicates
a pattern containing three turbulent bands. From left to right, the average is taken over T = 10,
T = 30, T = 100, T = 300, and T = 1000.

T = 30, T = 100, T = 300, and T = 1000 and observe the short-term
fluctuations gradually disappear, leaving the long-term features which will be
discussed in the next section. We have chosen T = 500 as the best compromise
between smoothing and preserving the detailed evolution.

4. DEPENDENCE ON REYNOLDS NUMBER

We have investigated in detail the Reynolds-number dependence of the θ =
24◦ case. To this end, we have carried out two simulations, shown in Fig-
ure 11. In each the Reynolds number is lowered at discrete intervals in time,
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Figure 11. Two time series at θ = 24◦. The Reynolds number is lowered in steps, but at
different instants to generate the two evolutions shown. For each case, we show w at 32 points
along the z′ direction on the right and the spectral components 〈|ŵm|〉 on the left. Left: uniform
turbulence is succeeded by the formation of three bands, then two, then a single band (a localized
state) and finally by laminar Couette flow. Right: two bands disappear almost simultaneously
at Re = 320. The remaining band moves toward the left, periodically emitting turbulent spurs,
of which one finally becomes a second turbulent band.

but following a different sequence in the two cases. For each case, we present a
space-time diagram of E(x′ = 0, y = 0, z′, t) at 32 values of z′. The Reynolds-
number sequence is shown on the right of each diagram and the time (up to
T = 59, 000) on the left. Each space-time diagram is accompanied by a plot
showing the evolution of its average spectral coefficients, as defined above.

Careful observation of Figure 5 already shows a laminar patch beginning
to emerge at Re = 390, consistent with experimental observations: Prigent
et al. (2001, 2002, 2003, 2005) observed a turbulent-laminar banded pattern
with wavelength 46 and angle 25◦ when they decreased Re below Re = 394.
The space-time diagram on the left of Figure 11 shows a continuation of this
simulation. (Here, the Reynolds numbers intermediate between 500 and 350
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are not shown to reduce crowding.) We see a sequence of different states: uni-
form turbulence and the three-banded turbulent-laminar pattern already seen
are succeeded by a two-banded pattern (at Re = 310), then a state containing
a single localized turbulent band (at Re = 300), and finally laminar Couette
flow. These features are reflected in the average spectral coefficients. The
flow evolves from uniform turbulence (all components of about the same amp-
litude) to intermittent turbulence, to a pattern containing three turbulent bands
(dominant m = 3 component) and then two turbulent bands (dominant m = 2
component), then a single band (dominant m = 1 and m = 2 components),
and finally becomes laminar (all components disappear).

In the simulation on the right, the Reynolds number is decreased more
slowly. A state with three bands appears at Re = 390. (Although a lam-
inar patch already appears at Re = 400, it is regained by turbulence when Re

is maintained longer at 400; this is not shown in the figure.) Based on the pre-
vious simulation shown on the left, we had expected the three turbulent bands
to persist through Re = 320. However here, instead, we see a rapid loss of two
bands, leaving only a single turbulent band. This band moves to the left with
a well-defined velocity, emitting turbulent spurs toward the right periodically
in time. Finally, after a time of T = 36000, one of these spurs succeeds in
becoming a second turbulent band and the two bands persist without much net
motion. It would seem that the loss of the second band was premature, and
that at Re = 320 one band is insufficient. We then resumed the simulation on
the left, maintaining Re = 320 for a longer time, and found that two bands
resulted in this case as well. Both simulations show two bands at Re = 310,
one band at Re = 300, and laminar Couette flow at Re = 290.

4.1 Three states

The turbulent-laminar patterned states shown in Figure 11 are of three qualitat-
ively different types (Barkley and Tuckerman, 2005). We demonstrate this by
carrying out three long simulations, at three different Reynolds numbers, that
are shown in Figure 12. In this figure, the energy along the line x′ = y = 0 for
the 32 points in z′ has been averaged over windows of length T = 500 to yield
a value shown by the shading of each space-time rectangle.

The simulations at Re = 350 and Re = 300 are carried out by increasing
the long direction of our domain, Lz′ , in regular discrete increments of 5 from
Lz′ = 50 to Lz′ = 140. At Re = 350, a single turbulent band is seen when
Lz′ = 50. This band divides into two when Lz′ = 65 and a third band appears
when Lz′ = 130: the periodic pattern adjusts to keep the wavelength in the
range 35–65. This is close to the wavelength range observed experimentally
by Prigent et al., which is 46–60. When the same protocol is followed at Re =
300, no additional turbulent bands appear as Lz′ is increased. We call the state
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Figure 12. Simulations at Re = 350, Re = 300, and Re = 410 illustrating three qualitatively
different regimes. For the simulations at Re = 350 and Re = 300, Lz′ is increased from 50 to
140. The state at Re = 350 is periodic: the turbulent band divides as Lz′ is increased to retain
a wavelength near 40. The final kinetic energy profile Ē(z′) is bounded away from zero. The
state at Re = 300 is localized: a single turbulent band persists, regardless of domain size and
Ē(z′) decays exponentially to zero away from the band. The simulation at Re = 410 is carried
out at Lz′ = 40. The state is intermittent: laminar regions appear and disappear and the average
spectral coefficients corresponding to m = 1 (solid) and m = 0 (dashed) oscillate erratically.
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at Re = 300 localized and note that turbulent spots are reported near these
values of Re in the experiments. The small Lx ′ of our computational domain
does not permit localization in the x′ direction; instead localized states must
necessarily take the form of bands when visualized in the x-z plane.

The instantaneous integrated kinetic energy profile

Ē ≡
∫

dx′ dy E(x′, y, z′)

is plotted at the final time for both cases. For Re = 350, Ē does not reach
zero and the flow does not revert to the simple Couette solution between the
turbulent bands, as could also be seen in the earlier visualizations (Figures 7,
9). In contrast, for Re = 300, Ē decays to zero exponentially, showing that the
flow approaches the simple Couette solution away from the turbulent band. In
this case, there is truly coexistence between laminar and turbulent flow regions.

The simulation at Re = 410 illustrates another type of behavior. In a domain
of length Lz′ = 40, laminar or, rather, weakly-fluctuating regions appear and
disappear. The spectral coefficients corresponding to m = 1 (wavelength 40)
and m = 0 oscillate erratically. Similar states at similar Reynolds numbers are
reported experimentally by Prigent and coworkers (2001, 2002, 2003, 2005),
where they are interpreted as resulting from noise-driven competition between
banded patterns at equal and opposite angles, a feature necessarily absent from
our simulations.

5. DEPENDENCE ON ANGLE

5.1 Angle survey

We have explored the angles with respect to the streamwise direction at which
a turbulent-laminar pattern may exist. The results are plotted in Figure 13. We
keep Lz′ = 120 and Lx ′ = 4/ sin θ . The transition from uniform turbulence to
laminar Couette flow occurs via intermediate states which occupy a decreasing
range of Re as θ is increased. The sequence of states seen for increasing θ

at Re = 350 is qualitatively the same as that for decreasing Re at θ = 24◦:
uniform turbulence at θ = 0◦, a turbulent-laminar pattern with three bands at
θ = 15◦ to θ = 24◦, two bands for θ = 30◦ and θ = 45◦, a localized state for
θ = 66◦, and laminar Couette flow for θ◦ ≥ 72. Thus far we have obtained
patterns for angles between 15◦ and 66◦ and the number of bands decreases
with angle.

Experimental data from Prigent and coworkers (2001, 2003, 2005) is also
shown in Figure 13. The wavelengths, angles, and Reynolds numbers reported
ranged from λz′ = 46.3 and θ = 25.3◦ at Re = 394 to λz′ = 60.5 and
θ = 37◦ at Re = 340. In these ranges of angle and Reynolds number, we
observe a similar trend, since our wavelength (constrained here to be a divisor
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Figure 13. Patterns as a function of Reynolds number Re and θ , the angle between the Lx ′
direction of our rectangular computational domain and the streamwise direction. The domain is
of size Lx ′ ×Ly ×Lz′ = (4/ sin θ)× 2× 120. For each angle, upper and lower limits in Re are
shown for each regime. T: uniform turbulence (lower limit in Re). I: intermittent turbulence.
3: pattern containing three turbulent-laminar bands, each of approximate wavelength 40. 2:
pattern containing two bands of approximate wavelength 60. L: pattern containing one turbulent
region, possibly localized. C: laminar Couette flow (no patterns observed below this Re). Open
symbols show experimental observations of Prigent et al. Triangles: patterns with wavelength
between 46 and 50. Squares: patterns with wavelength between 50 and 60.

Figure 14. Evolution for θ = 90◦. Two simulations at Re = 400 are shown, in domains
with Lx ′ = Lz = 4. The domain shown on the right has Lz′ = Lx = 220; that on the left
has Lz′ = Lx = 6, close to the minimal flow unit (the two are not shown to scale). The large
domain supports a transient pattern as an intermediate state between uniform turbulence and
laminar Couette flow, whereas the turbulence persists in the small domain.
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of Lz′ = 120) increases from 40 to 60 as the number of bands decreases from
3 to 2. Between Re = 325 and Re = 280, experiments showed spots, which
may correspond to some of the states we have labeled as localized in Figure 13.
At present, we do not systematically distinguished localized states from others
containing one turbulent region but which may not behave like Figure 12. The
threshold for intermittency is also difficult to define and to determine.

The most striking difference between our computations and the experi-
mental data is that the range of angles over which we find periodic turbulent-
laminar patterns (from θ = 15◦ to at least θ = 45◦) is far greater than that seen
in the experiment. Patterns with angles outside of the experimental range are
likely to be unstable in a large domain in which the angle is unconstrained.

Our computational technique requires that the size of the domain be in-
creased as θ decreases according to Lx ′ = 4/ sin θ in order to respect the
spanwise vortex or streak spacing; see Figure 3. Hence the computational cost
increases with decreasing θ and for this reason we have not as yet investig-
ated θ between 15◦ and 0◦. For θ exactly 0◦, this trigonometric constraint is
lifted, since the streamwise vortices and streaks would not extend diagonally
across the rectangular domain, but parallel to its boundaries. As θ increases,
the domain size Lx ′ = 4/ sin θ decreases, as does the computation cost. For
θ between 45◦ and 90◦, for which Lx ′ is between 5.7 and 4, we reduce the
number of spectral elements in the x′ direction from 10 to 4 (see Figure 4).

5.2 Long streamwise direction

For θ = 90◦, the domain has a long streamwise direction Lz′ = Lx and a
short spanwise direction Lx ′ = Lz. Figure 13 shows that, for θ = 90◦ and
Lx = 120, we obtain direct decay from uniform turbulence to laminar Couette
flow at Re = 385. We have varied Lx and show the results in Figure 14. When
Lx = 220, the turbulence is extinguished at Re = 400; a transient pattern of
wavelength 110 can be seen. But when Lx = 6, we find that the turbulence
persists down to a value of Re ≈ 370. We recall that the minimal flow unit
was proposed by Hamilton et al. (1995) as the smallest which can support the
streak and streamwise-vortex cycle and maintain turbulence; the flow becomes
laminar when either of the dimensions are reduced below their MFU values.
However, Figure 14 shows that turbulence can also sometimes be extinguished
by increasing Lx . Simulations in domains with a long streamwise and a short
spanwise dimension have also been carried out by Jiménez et al. (2005) with
the goal of understanding the role of the streamwise dimension, e.g. streak
length.
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5.3 Long spanwise direction

In the case θ = 0◦, the domain has a long spanwise direction (Lz = Lz′ = 120)
and a short streamwise direction (Lx = Lx ′ = 10). In decreasing the Reynolds
number by �Re = 5 after each interval of T = 1000, we observe turbulent
regions far below Re = 300, terminating only at Re = 210, as shown in
Figure 15. At several times, the turbulence seems ready to disappear, only to
spread out again. In order to confirm this surprising result, we have carried
out longer simulations at each of these low values of Re. Turbulence persisted
over T = 4200 (in the usual advective time units) at Re = 220, over T = 3000
at Re = 225, and even over T = 15000 for Re = 230.

Experiments (Dauchot and Daviaud, 1995) and numerical simulations in
large domains (Lx×Ly×Lz = 128×2×64) (Lundbladh and Johansson, 1991)
and numerical simulations in periodic minimal flow units (Lx × Ly × Lz =
4 × 2 × 6) (Hamilton et al., 1995) have produced long-lived turbulence only
for Re > 300. A number of studies (Schmiegel and Eckhardt, 1997, 2000;
Faisst and Eckhardt, 2004; Eckhardt and Faisst, 2005) have examined turbulent
lifetimes as a function of initial perturbation amplitude, Reynolds number, and
quenching rate (rate of Reynolds number decrease) in minimal flow units. In
these studies, turbulence with a lifetime greater than T = 2000 was counted
as sustained; experiments (Dauchot and Daviaud, 1995), however, are carried
out on timescales several orders of magnitude longer than this. Schmiegel and
Eckhardt (2000) studied the effect of quenching rate on turbulent lifetimes.
For rates of Reynolds number decrease comparable to ours, they found that
turbulence could in some cases subsist to Re = 280 or 290 for times on the
order of T = 1000 to 10000; for rates that were ten times faster than ours,
turbulence was occasionally sustained to Re = 240.

If we compare our results to the previous simulations, then the conclusion
would be that turbulence is favored by a short streamwise direction Lx = 10
and a long spanwise direction Lz = 120. When either of these two conditions
are lifted, the turbulence disappears. We note, however, that our simulations
do not systematically vary the initial conditions and thus do not determine the
probability of long-lived turbulence at these low Reynolds numbers near 220.

We also note that Toh and colleagues (Toh and Itano, 2005; Toh et al., 2005)
have recently reported results from simulations of Couette flow in domains
with long spanwise extent compared with the MFU geometry. These simula-
tions are for higher values of Re than those considered here.

We observe an approximately periodic oscillation in time, shown on the
right of Figure 15. The oscillation period of about 200 time units has the same
order of magnitude as the minimum turbulent cycle (Hamilton et al., 1995),
but further analysis of our results is required before we can identify the streak
and streamwise-vortex cycle in our flow.
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Figure 15. Evolution for θ = 0◦ with Lx ′ = Lx = 10 and Lz′ = Lz = 120. Re is lowered
by steps of �Re = 5; not all intermediate values of Re are shown. The flow continues to have
turbulent regions far below Re = 300. Left: evolution over the entire domain, showing the
formation and disappearance of turbulent domains. Right: evolution of w(x = 0, y = 0, z =
60, t), showing irregular periodic cycles.

6. SUMMARY

We have used an extension of the minimal-flow-unit methodology to study
large-scale turbulent-laminar patterns formed in plane Couette flow. Turbulent-
laminar patterns are obtained as solutions to the Navier–Stokes equations in do-
mains with a single long direction. The other dimensions are just large enough
to resolve the inter-plate distance and to contain an integer number of longitu-
dinal vortex pairs or streaks. We have presented various visualizations of the
computed turbulent-laminar patterns as well as space-time plots illustrating the
formation and dynamics of these patterns. The time-averaged modulus of the
spatial Fourier spectrum is shown to provide a quantitative diagnosis of the
patterns. Periodic, localized, and intermittent states occur in our simulations
where similar states are observed experimentally.

We have explored the patterns’ dependence on Reynolds number, domain
length and tilt angle. The patterned states do not appear to depend sensitively
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on how the turbulence is initialized nor on the route taken to a particular point
in parameter space. It is, however, possible that some parameter combinations
may support different numbers of turbulent bands (although we have not yet
observed this). All states are bistable with respect to laminar Couette flow and
if parameters are changed too abruptly, then reversion to laminar Couette flow
occurs.

It appears that large-scale patterns are inevitable intermediate states on the
route from turbulent to laminar flow in large aspect-ratio Couette flow. A key
open question is what mechanism causes laminar-turbulent patterns. These
patterns are not only interesting in and of themselves, but may provide clues to
the transition to turbulence in plane Couette flow.
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