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Taylor–Couette flow is inevitably associated with the visually appealing toroidal
vortices, waves, and spirals that are instigated by linear instability. The linearly stable
regimes, however, pose a new challenge: do they undergo transition to turbulence
and if so, what is its mechanism? Maretzke et al. (J. Fluid Mech., vol. 742, 2014,
pp. 254–290) begin to address this question by determining the transient growth over
the entire parameter space. They find that in the quasi-Keplerian regime, the optimal
perturbations take the form of Taylor columns and that the maximum energy achieved
depends only on the shear.
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1. Introduction

Taylor–Couette flow is an ideal test case for hydrodynamics – its Drosophila
(van Gils et al. 2012) or its hydrogen atom (Tagg 1994). It has been extensively
investigated and its parameters can be varied at will (at least numerically) to
combine shear, rotation and curvature. Inner-cylinder-only rotation, the vertical
axis of figure 1(b), is a textbook example of a now well-understood sequence of
symmetry-breaking bifurcations. The validation of the Navier–Stokes equations is
often thought to date from the observation in 1923 by Taylor of the formation of
the now-famous toroidal vortices he had predicted for the linear instability. In later
research, increasingly ornate and beautiful experimental patterns were discovered
(e.g. Coles 1965; Andereck, Liu & Swinney 1986) and corresponding numerical,
asymptotic, and theoretical calculations reproduced and explained these patterns,
again with remarkable accuracy.

In contrast, outer-cylinder-only rotation, the horizontal axis of figure 1(b), is an
example of currently unexplained (sometimes called subcritical or bypass) transition
to turbulence (Coles 1965; Borrero-Echeverry, Schatz & Tagg 2010) despite linear
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FIGURE 1. (a) Sketch of Taylor–Couette geometry and (b) of the (Rei, Reo) plane, from
Maretzke, Hof & Avila (2014). The parametrization of Dubrulle et al. (2005) divides the
plane into four regimes, according to the value of the rotation number RΩ . The linearly
stable regime I encompasses the outer-cylinder-rotation axis and II is the quasi-Keplerian
regime. Regime III contains the linearly unstable co-rotating region, while the counter-
rotating regime IV contains both stable and unstable portions.

stability. Transient growth was proposed in the 1980s and 1990s as a response
to this puzzle in plane-parallel shear flows, e.g. plane Couette and Poiseuille
flow (Boberg & Brosa 1988; Trefethen et al. 1993). Although the eigenvalues
governing perturbations are all negative, temporary linear growth in the energy
norm may nevertheless take place if flows are initialized with combinations of certain
eigenvectors. Optimal perturbations are the initial conditions which achieve maximum
growth. For plane-parallel shear flows, Squire’s famous theorem established that upon
increasing the Reynolds number, the perturbations which first become linearly unstable
are two-dimensional, meaning that they vary only in the streamwise and cross-channel
direction. The optimal perturbations are also (or almost) two-dimensional, but in
different directions, varying mainly in the spanwise and cross-channel directions.
Indeed, spanwise-periodic structures (vortices and streaks) are a prominent feature of
turbulent shear flows in experiments and numerical simulation. These are also present
in other theories of transition, in particular the self-sustaining process of Waleffe
(1997). A useful analogy can be drawn with the usual Taylor vortices, with the
correspondence (streamwise ↔ azimuthal) and (spanwise ↔ axial); see e.g. Nagata
(1998) and Faisst & Eckhardt (2000).

Another subset of the stable regime, termed quasi-Keplerian, region II of figure 1(b),
has attracted attention as a model for accretion disks (Pringle 1981), currently one of
the most controversial topics in theoretical astrophysics. Ensembles of stellar matter
rotating under gravitational attraction must lose angular momentum at a rate sufficient
to collapse inwards. One line of research views this stellar matter as an incompressible
fluid rotating with a Keplerian velocity distribution; the issue then becomes that of
whether its low ‘molecular’ viscosity can be replaced by a much higher ‘turbulent’
viscosity. Turbulent viscosity requires turbulence, of course, raising the question of
whether a Keplerian velocity profile is hydrodynamically stable (Yecko 2004; Busse
2007; Balbus 2011; Paoletti & Lathrop 2011; Avila 2012). When maintained by
rotating cylinders in Taylor–Couette flow, the Keplerian profile is linearly stable. Can
it nevertheless undergo transition to turbulence as do planar shear flows, or is another
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FIGURE 2. Axial cut of an optimal perturbation in the quasi-Keplerian regime and the
evolution from it in time. The field is axially symmetric and, in the plane perpendicular
to the axis, has a spiral shape which changes orientation over the course of time via the
Orr mechanism. From Maretzke et al. (2014).

mechanism involving other physical phenomena, such as the magneto-rotational
instability (Balbus & Hawley 1991) the strato-rotational instability (Le Bars & Le
Gal 2007), or radial throughflow (Dubrulle et al. 2005; Gallet, Doering & Spiegel
2010) required? It is in this context that the stability of the quasi-Keplerian regime
of Taylor–Couette flow has taken on significance.

2. Summary of Maretzke et al. (2014)

The first calculations of transient growth for Taylor–Couette flow were carried out
for counter-rotating cylinders, region IV of figure 1(b), by Hristova et al. (2002), who
considered axisymmetric perturbations in the plane Couette limit of exact counter-
rotation and nearly equal radii, and by Meseguer (2002), who investigated the linearly
stable region in which transition to turbulence had been observed by Coles (1965).

Maretzke et al. (2014) have accomplished a tour de force by surveying the transient
growth for the entire stable three-parameter space of Taylor–Couette flow. In this task,
they have been guided by the reparameterization proposed by Dubrulle et al. (2005),
replacing the usual inner and outer Reynolds numbers Rei and Reo by a shear
Reynolds number Re and a rotation number RΩ , based on the difference and ratio
between the angular velocities, respectively, of the two cylinders (see figure 1). By
astute variation of Re, RΩ and the radius ratio η, Maretzke et al. (2014) have been
able to catalogue the optimal growth and wavenumbers for all three stable regimes.
In the course of their survey, they discovered that in most of the quasi-Keplerian
regime, transient growth is optimized by perturbations that vary with the azimuthal
angle but are independent (or nearly so) of the axial coordinate; see figure 2. The
Taylor–Proudman theorem predicts that rapidly rotating flows are axially invariant
and, indeed, Maretzke et al. (2014) find that this effect is strongest for larger RΩ ,
near the solid-body-rotation line. Thus, the optimal perturbations are approximately
perpendicular to the axisymmetric stacked tori of Taylor vortices.

Motivated by this discovery, Maretzke et al. (2014) studied the case of axially
independent perturbations asymptotically using WKB theory. They arrive at the
startling conclusion that the associated linear problem depends only on Re and not on
RΩ . The fate of axially independent perturbations necessarily provides a lower bound
of the energy that can be attained by optimal growth. This bound is independent
of ReΩ and scales like Re2/3 (see Yecko 2004) multiplied by a universal function
of η. New exact results for basic flows are few and far between. Here, Maretzke
et al. (2014) have accomplished two extremely powerful reductions, from three
non-dimensional parameters to two and from three spatial directions to two.
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3. The future

The transient growth calculation of the Taylor–Couette problem by Maretzke et al.
(2014) is exhaustive, powerful and general. The question is that of its applicability.
It remains to be established whether and how quasi-Keplerian Taylor–Couette
flow undergoes transition to turbulence. Transient growth alone cannot lead to
sustained transition (Waleffe 1997). What is its role in predicting transition to
turbulence? If traces of columnar vortices are seen in experiment or simulations
in the quasi-Keplerian regime, in the same way that streamwise vortices and streaks
are seen in transitional regimes in planar shear flows, this would provide evidence
for the relevance of transient growth.
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