
Chapter 11
Computational Challenges of Nonlinear
Systems

Laurette S. Tuckerman

Abstract We survey some of the major types of dynamical-systems computations
that can be carried out for two or three-dimensional systems of partial differential
equations. In order of increasing complexity, we describe methods for calculating
steady states and bifurcation diagrams, linear stability and Floquet analysis, and
heteroclinic orbits. These are illustrated by computations for Rayleigh–Bénard con-
vection in a cylindrical geometry, the Faraday instability of a fluid layer, the flow
past a cylinder and over a square cavity, flow in a cylindrical container with counter-
rotating lids, and Bose–Einstein condensation. We discuss some mathematical ques-
tions raised by these computations and the need for improved numerical tools.

11.1 Time Integration

Many dynamical systems of interest in the sciences and engineering can be written
as

∂tU = F (U ) = LU +N(U ) (11.1)

where U consists of one or more time-dependent functions of spatial variables x ,
(x, y) or (x, y, z), and F combines algebraic and differential operators. In (11.1),
the evolution operator F has been decomposed into a linear operator L, while N
contains any other terms. Examples of such dynamical systems are the Navier–
Stokes equations, the Boussinesq equations, the Swift–Hohenberg equation, and the
Nonlinear Schrödinger equation. L is often the Laplacian ∇2 but may also be a
higher-order differential operator, as in the case of the Swift–Hohenberg equation,
and it may contain other types of terms, such as buoyancy forces.
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Themostwell-known and fundamental role of computation in nonlinear dynamics
is that of a perfect experiment: following the evolution ofU (t) in time from an initial
condition U0. Geometries and forces can be implemented perfectly, without noise,
and parameters can be scanned, even taking on values that are not physically real-
izable. In addition, numerical solutions provide all of the details of the system, e.g.
the velocity or temperature at every point in space. Research communities in com-
putational physics, chemistry, and engineering all have their own preferred methods
for discretizing partial differential equations in space and time.

Numerical integration in time can be seen as replacing the temporally continuous
dynamical system (11.1) by a temporally discrete system. The best choice of method
is dictated by the nature of F . If (11.1) is a Hamiltonian system, then methods that
conserve volume in phase space are essential. If L represents a highly dissipative
operator, then implicit methods are required for its integration. This is a vast topic
and here we will consider only the simple first-order Euler implicit-explicit scheme:

U (t + "t) = U (t)+ "t (LU (t + "t)+N(U (t)))

leading to

U (t + "t) = B"tU (t) ≡ (I − "tL)−1(I + "tN)U (t) (11.2)

Scheme (11.2) will be used as a building block for other algorithms. When the goal
is time integration, other schemes that are more accurate than (11.2) can be used.

11.2 Steady States and Bifurcation Diagrams: Cylindrical
Convection

Dynamical systems can be organized around objects of increasing complexity: steady
states, periodic orbits, and then tori, heteroclinic orbits, and so on. The study of the
steady-state problem might seem prosaic, but in fact it is anything but that. For
motivation, we present in Figs. 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, and 11.8 the
results of experimental and numerical investigations of Rayleigh–Bénard convection
in a fluid-filled cylinder whose radius is twice the height and whose upper and lower
boundaries are maintained at different temperatures.

The governing equations of this system are the Navier–Stokes and Boussinesq
equations:

∂t H + (U · ∇) H = Ra Uz + ∇2H (11.3a)

Pr−1 (∂tU+ (U · ∇)U) = −∇P + ∇2U+ Hez (11.3b)

∇ · U = 0 (11.3c)
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Fig. 11.1 Patterns observed in the experiment of Hof et al. a–h are all observed at Ra = 14 200. a
three rolls, b two rolls, c inverted two rolls, d four rolls, e inverted four rolls, f mercedes, g inverted
mercedes, h axisymmetric pattern. i is a rotating pattern at Ra = 26 600 while j is a pulsed spoked
pattern at Ra = 33 000. Dark areas correspond to hot (rising) and bright to cold (descending) fluid.
Reproduced from [1]. ©1999 by the American Institute of Physics

The conductive temperature profiles is linear in the vertical direction; H is the devia-
tion of the temperature from this profile whileU is the velocity and P is the pressure.
Ra is the Rayleigh number, which is a nondimensional measure of the tempera-
ture difference imposed between the upper and lower plates, and Pr is the Prandtl
number, which is the ratio of the kinematic viscosity to the thermal diffusivity. The
boundary conditions for the velocity correspond to no-penetration and no-slip on the
horizontal plates and sidewalls:

U = 0 for z = ±1/2 and for r = 2. (11.4a)

The boundary conditions on the temperature correspond to perfectly conducting
horizontal bounding plates and perfectly insulating sidewalls:

H = 0 for z = ±1/2 and ∂r H = 0 for r = 2 (11.4b)

In their experiments, Hof et al. [1] observed a multiplicity of distinct patterns—
tori, dipoles, roll patterns squeezed into a baseball-like shape, and a three-fold pattern
that they named mercedes—at the same Rayleigh and Prandtl numbers, as shown in
Fig. 11.1. Boronska & Tuckerman were able to reproduce these states [2] and found
additional states as well by numerical time integration via, e.g. (11.2), of the spatially
discretized equations (11.3a)–(11.4b) in a domain with resolution Nr × Nθ × Nz =
40 × 120 × 20 ≈ 105, i.e. state vectors of size M ≈ 4 × 105. These time-dependent
simulations are summarized in Fig. 11.2.

An understanding of the origin of these states and their connections and ranges of
existence and stability can only be obtained from a full bifurcation-theoretic study.
This was done byBoronska&Tuckerman [3] in a large-scale calculation viamethods
that wewill describe below. The bifurcation diagram that we have computed is shown
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two-tori torus

mercedes four rolls

pizza dipole

two rolls three rolls

CO asym three rolls

Fig. 11.2 Overview of the patterns observed in time-dependent simulations of convection in a
cylinder with insulating radial wall. Initial simulations used a small perturbation of the conductive
state at the Rayleigh numbers indicated by stars and lead to the patterns listed on the boxes. The
Rayleigh numberwas then raised or lowered, either gradually, or abruptly as indicated by the arrows.
The panels on the right show the temperature field in the midplane, with rising warm fluid indicated
by light colors and descending cold fluid by dark colors. Reproduced from [3]

in Fig. 11.3. As complicated as it appears, it is still incomplete: many other branches
exist that have not been followed and so have been omitted.

Below the convective threshold, the system has symmetry O(2) × Z2, derived
from the azimuthal rotation and reflection symmetry of the cylinder, and the Boussi-
nesq reflection symmetry. Basic principles of bifurcation theory then dictate that
branches bifurcating from the conductive state must have a trigonometric depen-
dence on θ with some azimuthal wavenumber m, and Fig. 11.4 shows that this is
indeed the case.

In Figs. 11.5 and 11.6, we follow the branches emanating from them = 0 (axisym-
metric) and m = 3 bifurcations. Figure11.5 shows surprising and specific features:
the branch that bifurcates from the conductive state disappears again after undergo-
ing a saddle-node bifurcation, and a second disconnected set of axisymmetric states
exists. Figure11.6 shows the tortuous path taken by the m = 3 branch, from its birth
at a bifurcation from the conductive state (breaking the O(2) symmetry) followed
by a second pitchfork bifurcation (breaking the remaining Z2 symmetry) and then
two saddle-node bifurcations, finally leading to the mercedes states.

We now explain the computational method by which the bifurcation diagrams in
Figs. 11.3, 11.4, 11.5 and 11.6 have been calculated. Steady states are solutions to

0 = F (U ) (11.5)



11 Computational Challenges of Nonlinear Systems 253

Fig. 11.3 Bifurcation diagram for cylindrical convection. There are 17 branches of steady states, as
well as the conductive branch (shown as the short-dashed horizontal line).We call the branches pizza
(solid green), four-roll (long-dashed turquoise), two-tori (solid red; 2), torus (long-dashed magenta;
2), marigold (solid blue), mitsubishi (short-dashed purple), cloverleaf (long-dashed purple) and
mercedes (solid blue), three-roll (solid black), tiger (long-dashed brick), asymmetric three-roll
(solid brick; 2), two-roll (solid blue; 2), and CO (long-dashed red), where (·; 2) indicates related
pairs of branches. Dots indicate turning points or pitchfork bifurcations. No information about
stability is provided in this diagram. Reproduced from [3]

Fig. 11.4 Primary
bifurcations from conductive
state. The first four critical
wavenumber and Rayleigh
numbers are (m = 1,
Ra = 1828; black), (m = 2,
Ra = 1849; green), (m = 0,
Ra = 1861; red), and
(m = 3, Ra = 1985; blue)
for the radius-to-height
aspect ratio or 2 with
insulating radial walls.
Reproduced from [3]
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Fig. 11.5 Axisymmetric branches displayed via a schematic partial bifurcation diagram. Pitchfork
bifurcations at Ra = 1862 and 2328 from the conductive state lead to the two-tori branches, which
are themselves connected via a saddle-node bifurcation at Ra = 12 711; the upper one is stable for
2300 ≤ Ra ≤ 5438. A turning point at Ra = 3076 leads to the one-torus branches; the upper one
is stable for Ra ≥ 4918. Reproduced from [3]

The main way to find steady states, i.e. to solve (11.5), is via Newton’s method

FUu = F (U ) (11.6)

U ← U − u

where the subscriptU designates, here and elsewhere, the linearization of an operator
about U . The main challenge is the solution of the linear system (11.6). Indeed,
calculating the solutions of linear systems and the eigenvectors of large matrices is
the main bottleneck in numerical computations for studying dynamical systems.

Combining (11.1) and (11.6), Newton’s method calls for solving the linear system

(L+NU ) u = (L+N)U (11.7)

where NU is the linearization of N about the steady state U . Linear systems can
be solved directly or iteratively. For the calculations shown in Figs. 11.5 and 11.6,
the domain is represented by nearly 105 points and the state vector is of size M =
4 × 105. Inverting a matrix of this size directly is usually impossible for a discretized
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Fig. 11.6 Branches originating from them = 3 bifurcation displayed via a schematic partial bifur-
cation diagram. TheMarigold branch is created via an m = 3 circle pitchfork bifurcation from the
Conductive branch at Ra = 1985. A pitchfork bifurcation at Ra = 4103, creates the Mitsubishi
branch. A saddle-node at Ra = 18 762 produces the Cloverleaf branch, and another saddle-node at
Ra = 4634 leads to the Mercedes branch. The thick line for Ra > 5503 indicates the only stable
regime, a portion of the Mercedes branch. Reproduced from [3]

PDE in two or three spatial dimensions, since inversion takes a time proportional to
M3.

The class of iterative methods called Krylov methods generalize the conjugate
gradient (CG) method to matrices that are not symmetric definite and include the
algorithms GMRES [4], BiCGSTAB [5] and IDR [6]; interested readers should con-
sult these references. These methods construct a solution from the Krylov vectors,
formed by taking successive products of the matrix and the right-hand-side vector.
In order to simplify the notation, we write the problem we wish to solve as

Ax = b (11.8)

The general idea is to act repeatedly with A in order to form vectors

b, Ab, A2b, . . . AK−1b (11.9)

These vectors—or orthonormalized versions of them—are called Krylov vectors and
their linear combinations comprise the Krylov space. Krylov methods approximate
the solution x within the Krylov space:



256 L. S. Tuckerman

x ≈
K−1∑

k=0

ck Akb (11.10)

In the worst-case analysis, if the number K of Krylov vectors attains the sizeM of the
vectors, then generically the Krylov space spans RM and x can always be expressed
via (11.10). Since a general matrix-vector product requires O(M2) operations, the
operation count for constructing M Krylov vectors is O(M3), the same as for a direct
method.

The challenge is thus to make the Krylov method less time-consuming. A first
savings is realized from the fact that matrices derived from spatially discretizating
PDEs are not arbitrary: the time required to act with them (rather than inverting
them) is typically closer to M than to M2. A second economy is realized by reducing
K ≪ M . The number K of Krylov vectors required to approximate the solution
depends on the condition number of the matrix, basically the ratio of its largest to
its smallest eigenvalue. By preconditioning, i.e. by acting on both sides of (11.8)
with an operator that approximates the inverse of A, the ratio between maximum and
minimumeigenvalues is reduced. Thematrix in (11.7) is badly conditioned, primarily
(in the cases of interest to us) because L is. We multiply (11.7) by (I − TL)−1 T ,
where T is a large timestep. This acts to counterbalance L and leads to

(I − TL)−1 T (L+NU )u = (I − TL)−1 T (L+N)U

(I − TL)−1(I + TNU − I + TL)u = (I − TL)−1(I + TN − I + TL)U
[
(I − TL)−1(I + TNU ) − I

]
u =

[
(I − TL)−1(I + TN) − I

]
U

[
BU,T − I

]
u = [BT − I ]U (11.11)

where BU,T ≡ (I − TL)−1(I + TNU ). (We will omit subscripts when they seem
unnecessary) Equation (11.11) shows that steady states, which are the roots of (L+
N), are also roots of the operator (BT − I ), where BT is obtained from a single
Euler timestep (11.2), for any value of T . A large value of T , on the order of T =
100 or 1000, serves to insure that (I − TL)−1 T ≈ −L−1. Solving (11.11) using
method BiCGSTAB for the cylindrical convection problem above then requires a
much smaller (30–800) number of Krylov vectors K than the system size M =
4 × 105. This method, called Stokes preconditioning (because L is associated with
the Stokes problem in hydrodynamics), has been presented and used in, e.g. [7–15].

Another method for finding steady states also relies on time-integration, using
the operator BT/"t

"t − I , meaning that T/"t timesteps are taken with a timestep of
conventional size, e.g. "t ≈ 0.01 for a typical non-dimensionalized hydrodynamic
stability problem. Since for "t ≪ 1,

U ("t) ≈ B"tU (0) =⇒ U (T ) ≈ (B"t )
T/"t U (0)

U (T ) −U (0) ≈
(
(B"t )

T/"t − I
)
U (0)
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steady states are also roots of
(
(B"t )

T/"t − I
)
(in the limit "t → 0), and the corre-

sponding Newton step is

( (
BU,"t

)T/"t − I
)
u =

(
(B"t )

T/"t − I
)
U (11.12)

We call this the integration method. Each operator action of (11.12) requires T/"t
timesteps, rather than the single timestep required by the action ofBT − I . However(
(B"t )

T/"t − I
)
is better conditioned than BT − I and so fewer Krylov vectors are

required to represent the solution.
Theories depicting transitional turbulence as chaotic trajectories visiting unstable

steady states and traveling waves [19] have inspired the calculation of a large number
of such states, mostly by method (11.12), e.g. [16]. (In this context, unstable steady

Fig. 11.7 Upper row: Steady state in plane Couette flow. Lower row: Traveling wave in pipe flow.
Left column: depiction of flow. Middle and right columns: Performance of Newton’s method, with
timings measured by the number of timesteps taken. U is considered to be a steady state when
||G(U )|| < 10−13. Dots show the number of timesteps at the end of each Newton step, while
numbers show the time T used in either a single large timestep (Stokes method) or for multiple
timesteps (integration method). Middle column: performance of Newton’s method using the Stokes
method (11.11). Convergence is much faster when T is increased, showing the effectiveness of
Stokes preconditioning. Right column: performance of Newton’s method using the integration
method (11.12). The Stokes method is 11 times faster than the integration method for the plane
Couette flowcalculation and50 times faster for the pipeflowcalculation. Top left panel is reproduced
from [16] (©2009 by Cambridge University Press), bottom left panel is reproduced from [17]
(©2008 by the Royal Society) and the rest of panels are reproduced from [18] (©2019 by Springer
International Publishing)
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states are often called Exact Coherent Structures.) In [18] a comparison of methods
(11.12) and (11.11) has been carried out for the computation of unstable steady states
for plane Couette flow via Channelflow [20] and traveling waves for pipe flow via
OpenPipeFlow [21]. This comparison is summarized in Fig. 11.7. We find that the
tradeoff between fewer operator actions for (B"t )

T/"t − I vs. fewer timesteps for
each operator action for BT − I is such that the BT − I method is 10 to 50 times
faster in the Reynolds-number range that we have studied. However, some time-
integration codes rely on"t being small (in particular, to impose incompressibility),
making them difficult to incorporate into a single-timestep Newton’s method.

Traveling waves can be calculated using the same methods as steady states. Writ-
ing U = U (x − Ct), U is a solution to

∂tU = −CU = F (U ) (11.13)

i.e. (U,C) is a solution to

0 = CU + F (U ) (11.14)

An additional condition on the phase must be imposed to compensate for the addi-
tional variable C . Although traveling waves can be computed using either (11.11)
or (11.12), general periodic orbits cannot use (11.11), since the entire periodic orbit
must be integrated. That is, one must find roots of U (T ) −U (0) and not of F (U )

or CU + F (U ).

11.3 Linear Stability Analysis

In the bifurcation diagrams presented in Figs. 11.5 and 11.6, thick lines denote sec-
tions of branches in which the steady states are linearly stable. Unlike states com-
puted via time-integration, which are necessarily stable, those computed byNewton’s
method can also be unstable. How does one then determine their stability? The lin-
ear stability of a steady state is controlled by the eigenvalues λ j of FU . If none of
the eigenvalues have positive real parts, then the steady state is stable. Otherwise
it is unstable to perturbations of the form of the eigenvectors corresponding to the
eigenvalues whose real parts are positive. In Fig. 11.8a, we show the leading eigen-
values corresponding to the axisymmetric states of Fig.11.5. For the same reasons as
for the conductive state, bifurcation-theoretic principles require that the correspond-
ing eigenvectors each be trigonometric in the azimuthal direction, with a single
wavenumberm. Another bifurcation-theoretic principle states that a new bifurcating
branch (with azimuthal wavenumber m) is generated via a circle pitchfork at each
zero-crossing of these eigenvalue curves. This is one of the reasons that we know
that many other branches exist in addition to those shown in the already quite com-
plex Fig. 11.3. Figure11.8b shows the single leading eigenvalue (that with largest
real part) corresponding to the states in Fig. 11.6. States for which this eigenvalue
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Fig. 11.8 a Leading eigenvalues of upper two-tori (solid) and one-torus (dashed) branches. The
upper two-tori branch has two positive eigenvalues at onset, which subsequently cross zero, lead-
ing to stability over the interval 2300 ≤ Ra ≤ 5438. The upper one-torus branch has five positive
eigenvalues at onset. These subsequently cross zero, leading to stability for Re > 4918, above
which the branch is stable. Each zero-crossing is associated with the formation of a new branch. b
Leading eigenvalue for each of the three-fold-symmetric branches: Marigold, Mitsubishi, Clover-
leaf, Mercedes (from highest to lowest). Dots indicate bifurcations between the branches and final
stabilization of Mercedes branch for Ra > 5503. Reproduced from [3]

is positive are unstable. From this figure it can be seen that all of the m = 3 states
are unstable until the leading eigenvalue of the Mercedes branch finally becomes
negative, as also seen in Fig. 11.6.

We now discuss the method by which these eigenvalues are computed. The most
straightforward way to conduct linear stability analysis is to form the matrix FU and
to diagonalize it, i.e. to compute all of its eigenvalues. If, however, (11.1) consists
of one or more partial differential equations in two or three spatial dimensions, then
U and u are on the order of size 1002 = 104 or 1003 = 106, and so the matrix FU

is too large to diagonalize completely. The solution is to calculate only the leading
eigenvalues, i.e. those whose real part is the largest and their eigenvectors. To do so,
we turn again to Krylov methods.

Like the Krylov methods for solving linear equations, those for finding selected
eigenvalues rely on repeated operator action to build up a Krylov space. The eigen-
values that are easiest to find are the dominant ones, those of largest magnitude. The
simplest such method is the power method, in which only one vector is retained,
which converges to the dominant eigenvector. Generalizations, e.g. the block power
method, converge to the dominant eigenvectors which, for dissipative systems like
the Navier–Stokes equations, correspond to highly damped modes of FU rather than
the bifurcating modes that are of interest. We can apply a mapping to FU , using the
fact that this maps the eigenvalues of FU to their images under this mapping, while
leaving the eigenvectors unchanged. Thus, we continue to use the power method or
the block power method, but on a different matrix whose dominant eigenvalues are
those we seek.

Two such operator mappings are illustrated in Fig.11.9. Consider the two opera-
tors
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Fig. 11.9 Spectrumof amatrixA, alongwith that of eA"t and A−1.We seek the leading eigenvalues
of A (blue crosses) but these are difficult to obtain via the power or block powermethods because they
are not the dominant ones. When the exponential or inverse is applied to A, the leading eigenvalues
of A become the dominant ones of eA"t (green crosses) and of A−1 (red crosses) and are hence
much easier to obtain

exp("t(L+NU )) and (L+NU )
−1 (11.15)

We approximate the action of these operators on a vector u(n) by using variants of
the Euler time-stepping operator (11.2). The exponential power method uses

u(n+1) = BU,"t u(n) ≡ (I − "tL)−1(I + "tNU )u(n) ≈ exp("t(L+NU ))u(n)

(11.16)

for small "t . The inverse power method uses

(L+NU )u(n+1) = u(n) (11.17)

which, as seen in (11.11), is equivalent to

[
(I − TL)−1(I + TNU ) − I

]
u(n+1) = (I − TL)−1u(n) (11.18)

Equations (11.16) and (11.18) are analogous to the twomethods described in (11.12)
and (11.11) for computing steady states.

For simplicity, we have presented the power method, which computes a single
eigenvalue-eigenvector pair. Both the exponential powermethod or the inverse power
method can be generalized to compute a number of eigenpairs, by keeping a number
K of iterates of the matrix as follows. We renumber the first retained iterate to be u0.
The vectors {u0, . . . uK−1} are orthonormalized to yield a set {v0, . . . vK−1}, whose
span is the Krylov space. A K × K matrix is defined via Hi, j ≡ ⟨vi , Av j ⟩. The small
matrix H captures the action of the full matrix A on the Krylov space if AvK+1

does not venture too far outside the Krylov space, i.e. if there is some choice of
coefficients {c j } for which ||AvK−1 − ∑K−1

j=0 c j v j || is sufficiently small. In this case
the K eigenvalues of H are candidates for approximate eigenvalues of A. To capture
complex eigenvalues, K must be chosen such as to include both members of the pair.
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(a) (b)

Fig. 11.10 a Four leading eigenvalues for spherical Couette flow. Two eigenvalues form a complex
conjugate pair for Re < 744; their real part is shown as solid green squares and the imaginary part
as hollow black squares. The cross at (Re = 750, λ = −0.152) shows the targeted eigenvalue. b
Convergence of error |λ − λ̄| for various Krylov space dimensions and spatial resolutions. Solid
red circles: K = 2 and spatial resolution 16 × 128. Hollow green triangles: K = 4 and spatial
resolution 16 × 128. Hollow blue squares: K = 2 and 32 × 256. Reproduced from [22]

The eigenvalues in Fig. 11.8 were obtained using the exponential power method
(11.16), i.e. timestepping the linearized equations. This method is reliable and easy
but, because the approximation in (11.16) requires a small timestep "t , the operator
resembles the identity and so the iteration proceeds slowly. In contrast, iteration
using (11.18) is extremely rapid, converging to the eigenvector corresponding to the
eigenvalue closest to zero, typically in 10 or fewer actions of the inverse. Each inverse
action requires the solution of (11.18), typically via GMRES, BiCGSTAB or IDR. A
shift is easily included in (11.18) by subtracting s I from the explicit term NU , thus
finding eigenvalues close to s instead of 0. Figure11.10a shows eigenvalues computed
for spherical Couette flow (flow between differentially rotating concentric spheres)
using different shifts via the inverse power method (11.18); see [22]. Figure11.10b,
like Fig. 11.7, shows the speed of convergence in terms of number of actions of BT ,
and establishes that it is unchanged when the spatial resolution is increased, thus
demonstrating the effectiveness of Stokes preconditioning.

A complex shift can be used to target eigenvalues on or close to the imaginary axis,
which are those that lead to Hopf bifurcations. However, it is not clear how to scan
large portions of the imaginary axis, if the frequencies being sought are unknown.

11.4 Floquet Analysis

We now discuss the stability of periodic orbits U (t), i.e. solutions such that U (t +
T ) = U (t). Infinitesimal perturbations u to a periodic orbit U (t) are governed by
the equation

∂t u = FU (t)u (11.19)
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which is a Floquet problem, i.e. a linear differential equation whose coefficients are
periodic in the independent variable, here time. Solutions to (11.19) are of the form

u(x, t) = eλt v̂(x, t mod T ) (11.20)

where x is used to designate any possible spatial dependence, λ is a Floquet exponent,
and v̂ is a Floquet function. As is the case for ordinary linear stability problems, there
are as many pairs (λ, v̂) as there are degrees of freedom in U . U (t) is stable if none
of the Floquet exponents λ have positive real part. Otherwise, U (t) is unstable to
perturbations of the form of the Floquet function v̂(x, t mod T ) corresponding to λ.

Floquet problems cannot generally be solved analytically, even whenU is a scalar
and (11.19) is an ordinary differential equation. Floquet problems can be solved
numerically in a variety of ways. One way is to integrate (11.19) starting from an
initial condition u(t = 0) that is a unit vector, simultaneously with the determination
of the limit cycleU (t) by integrating the original problem (11.1). Assembling all the
resulting vectors u(t = T ) leads to the monodromy matrix, whose eigenvalues are
the Floquet multipliers eλT .

As is the case for ordinary stability problems, for problems with two or three
spatial dimensions, it is usually too onerous to assemble and diagonalize the full
monodromy matrix. The usual procedure is then to use Krylov methods, which
compute a subset of the leading eigenvalues via a number K of matrix actions where
K is much smaller than the total size of the system. The matrix action in this case is
the integration of (11.19) over a time T .

We now present a sample of some large-scale Floquet problems that have been
solved computationally. When a fluid layer is subjected to vertical oscillations of
a sufficient amplitude, a standing-wave pattern forms on the surface, as was first
studied by Faraday in 1831. The flat surface is a solution; the imposed vertical
oscillation means that its destabilization is described by a Floquet problem. In an
infinite horizontally homogeneous fluid layer, a solution is the product of a plane
wave, an exponential, and a Floquet function

ζ(x, t) = eik·xζ(t) = eik·xeλt
∑

n

ζneinωt (11.21)

where ζ is the interface height, ω = 2π/T is the frequency of the imposed vertical
oscillation and k is the wavevector of the planewave that is a candidate for instability.
The sum in (11.21) is the temporal Fourier series of the unknown T -periodic Floquet
function. When viscosity is absent, the problem reduces to the Mathieu equation
[23]:

ζ̈ +
(
gk + σ

ρ
k3

)
ζ = a cos(ωt)ζ (11.22)

where a is the acceleration associated with the imposed oscillation, g is the gravita-
tional acceleration, σ is the surface tension, and ρ is the density.
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Fig. 11.11 a Critical acceleration for the onset of Faraday waves as a function of the wavenumber.
The solid curves represent the neutral curves obtained by Floquet analysis, while the values found
via full nonlinear simulation are indicated by the circles. b Linear evolution of the surface height of
Faraday waves, in the first two instability tongues. Floquet functions are plotted with the solid line,
while results from full nonlinear simulation near threshold are plotted with symbols. Reproduced
from [25]

This Floquet problem has been solved by an original method [24]: rather than
fixing the oscillation amplitude a and calculating the resulting Floquet exponents,
the Floquet exponent λ is set to 0 (the harmonic case) or to iω/2 (the subharmonic
case) thus determining the threshold ac directly as follows. In terms of the Fourier
coefficients ζn , (11.22) becomes

(
(λ + inω)2 +

(
gk + σ

ρ
k3

))
ζn = a [cos(ωt)ζ ]n (11.23)

where [·]n means the nth component of the expression within. Equation (11.23)
is an eigenvalue problem with the vector of temporal Fourier coefficients {ζn} as
the eigenvector, a as the eigenvalue, a diagonal matrix on the left-hand-side, and
a bi-diagonal matrix on the right-hand-side. The inclusion of viscosity complicates
the diagonal matrix on the left-hand-side but the basic idea of the method remains
the same. Results obtained using this method are shown in Fig. 11.11. These are
compared with the threshold calculated from a full three-dimensional free-surface
code [25].

One of the most classic hydrodynamic configurations is the wake of a circular
cylinder in a uniform flow. Above a critical Reynolds number, a temporally periodic
two-dimensional flow develops, in which vortices of alternating sign are generated
close to the cylinder and advected downstream, a flow called theBénard–vonKármán
vortex street. Above a second critical Reynolds number, this spanwise-independent
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Fig. 11.12 a Instantaneous visualization of a temporally periodic state in an open shear-driven
cavity at Re = 4500. The vertical velocity fluctuations travel rightwards over the cavity. b Floquet
multipliers of the periodic state in panel a, emphasizing the multiplier that traverses the unit circle
at a slightly higher Reynolds number, thus destabilizing this periodic state. Reproduced from [26]

temporally periodic flow U2D(x, y, t mod T ) becomes unstable to a spanwise peri-
odic mode. This instability is governed by a Floquet problem, whose leading mode
can be written as

u3D(x, y, z, t) ∼ eiβzeλtv(x, y, t mod T ) (11.24)

Barkley and Henderson [27] showed that the Bénard–von Kárman vortex street
becomes unstable at Re = 188 to a Floquet mode with spanwise wavelength of
about four cylinder diameters and a Floquet exponent λ = 0, meaning that no new
time dependence is introduced into the resulting spanwise-dependent flow.

Another classic configuration is that generated by a uniform flow over a square
cavity. Above a critical Reynolds number, a new flow appears that is temporally
periodic and approximately spatially periodic in the streamwise direction, shown
via its vertical velocity fluctuations in Fig. 11.12a. A Floquet analysis [26] shows
that above a second critical Reynolds number, this flow is in turn destabilized via a
Floquet mode with a complex Floquet exponent, as shown in Fig. 11.12b.

11.5 Heteroclinic Orbits

Among the more exotic phenomena displayed by dynamical systems are heteroclinic
orbits: limit cycles whose period is infinite. Although the theory and understanding
of heteroclinic orbits is well-grounded, they cannot be seen experimentally, since
they are broken by any perturbation, and in fact can barely be seen computationally.
Heteroclinic orbits can be divided into two broad categories. In one case, they occur
at a single parameter value, at one end of the parameter range of existence of a
limit cycle. Such a heteroclinic cycle is the signature of a global bifurcation that
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creates or destroys a limit cycle that, at neighboring parameter values, has a long but
finite period. These cycles evade experimental observation because they occur only
at isolated parameter values. Their existence is inferred from the divergence of the
nearby periodic orbits. The other case is that of heteroclinic cycles that are robust,
meaning that they exist over a range of parameters. These heteroclinic cycles result
fromsymmetry properties. They evade experimental observationbecause symmetries
in nature are rarely exact.

11.5.1 SNIPER Bifurcations

One mechanism by which heteroclinic cycles appear is via a SNIPER (Saddle-Node
In a PERiodic orbit, or Saddle-Node-Infinite-PERiod bifurcation) bifurcation [29,
30]. On one side of the bifurcation, there exists a closed curve consisting of a chain of
alternating stable and unstable fixed points connected by trajectories of the system.
(In the simplest case, there is a single pair of stable and unstable fixed points; in a
symmetric system, additional pairs exist.) The stable and unstable points meet and
annihilate one another in saddle-node bifurcations, leaving in their wake a closed
curve that forms one continuous closed trajectory, i.e. a limit cycle. At a bifurcation
point ϵc, the period of the limit cycle is infinite; slightly beyond ϵc, the period behaves
like (ϵ − ϵc)

−1/2.
A heteroclinic cycle was first observed for a full hydrodynamic configuration

in a simulation of Rayleigh–Bénard convection in a cylinder [28]. In this case, the
configuration is axisymmetric and the radius is five times the height. Two successive
pitchfork bifurcations lead to four steady states, each consisting of a set of four or
five concentric convection rolls, as shown in Fig. 11.13. When the Rayleigh number
is increased past the SNIPER bifurcation point, the rolls begin to travel radially
inwards. The innermost roll shrinks and disappears, while a new roll appears at the
outer boundary.

SNIPER bifurcations have been computed in other systems. In another axisym-
metric cylindrical convective configuration, the top and bottom disks bounding the
domain are rotated at equal and opposite speeds (the von Kármán flow described
below in Sect. 11.5.2), in addition to having fixed and different temperatures [31].
The height and radius are equal, with one large concentric roll filling almost the entire
domain. During the cycle a small roll appears alternatively at the outer radial bound-
ary, alternating between the top and the bottom of the cylinder. The limit cycle exists
in a region of the (Reynolds number, Rayleigh number) parameter plane delimited by
a SNIPER bifurcation curve and aHopf bifurcation curve. SNIPER bifurcations have
also been observed in simulations of other variants of cylindrical Rayleigh–Bénard
convection [32, 33], and have been hypothesized to play a role in the reversals of the
earth’s magnetic field [34].
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Fig. 11.13 SNIPER bifurcation in axisymmetric cylindrical convection. Upper left: instantaneous
streamfunction during the limit cycle at reduced Rayleigh number ϵ ≡ (Ra − Rac) = 1.39 at suc-
cessive times. The numbers label slowly varying quasi five-roll and quasi four-roll states. Upper
right:Nusselt number time series for ϵ = 2.60 (above) and for ϵ = 1.39 (below). The period diverges
at the SNIPER bifurcation. Lower right: Schematic bifurcation diagram using reduced Rayleigh
number ϵ as the control parameter and a projection A of the states as order parameter. Above (a, b)
are numerically calculated streamfunction contours of representative five-roll steady states. Below
(c–g) are phase portraits at the values of ϵ denoted by tickmarks. Solid lines and filled circles denote
stable states, while dashed lines and hollow circles denote unstable states. The straight bold curve
represents the limit cycle formed in the SNIPER bifurcation. Lower left: Phase portraits using as
coordinates the projections onto the two most unstable eigenvectors of the conductive state. Letters
correspond to the schematic phase portraits shown below the schematic bifurcation diagram on the
right. f is computed at ϵ = 1.38, for which all trajectories terminate at one of two steady states. g is
computed at ϵ = 1.39, for which the SNIPER bifurcation has led to a limit cycle. The numbers (4, 5,
4′, 5′) describe the instantaneous states corresponding to those in the streamfunction visualizations
above. Adapted from [28]
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11.5.2 1:2 Mode Interaction

Turning now to robust heteroclinic cycles, i.e. those that exist over a range of parame-
ters, one important mechanism is provided by the 1:2mode interaction. This scenario
occurs in a configuration with O(2) symmetry, when pitchfork bifurcations to modes
with azimuthal wavenumbersm = 1 andm = 2 modes occur at close parameter val-
ues. In this case, Armbruster et al. [35] predict the existence of m = 1 and m = 2
steady states, traveling waves, modulated traveling waves, and robust heteroclinic
cycles. These cycles are trajectories between twom = 2 states that differ by a change
in phase ofπ/2. Several full hydrodynamic computations have displayed realizations
of this 1:2 mode interaction scenario. Nore et al. [13] investigated the flow in a cylin-
der whose height is twice the radius and whose two bounding disks cylinder rotate
in equal and opposite directions, sometimes called von Kármàn flow. The basic state
is axisymmetric and consists of an axial shear of the azimuthal velocity combined
with two superposed toroidal cells driven by Ekman pumping and separated at the
midplane between the top and bottom disks. The flow undergoes circle pitchfork
bifurcations that break the axisymmetry, leading to an undulation in the separating
surface and to radially oriented vortices.

Figure11.14a shows results of linear stability analysis, in particular, them = 1 and
m = 2modes (calledmixedMand pure P, respectively, because the higher harmonics
of m = 1 contain both odd and even wavenumbers, while those of m = 2 contain
only even wavenumbers). The eigenmodes are represented visually via the vertical
velocity at the midplane. Figure11.14b shows the sequence of bifurcations in this
case, adapted from those predicted in [35]. The mixed branch engenders traveling
waves (via a drift pitchfork bifurcation) and then modulated traveling waves (via

Fig. 11.14 The 1:2 mode interaction in counter-rotating von Kármán flow. a Eigenvalues corre-
sponding to azimuthal wavenumbersm = 1 and 2 of the basic state for Re < ReP , the threshold of
bifurcation to the pure mode state, and of the pure mode state for Re > ReP . Contours of vertical
velocity of each eigenvector are shown. b Schematic bifurcation diagram showing bifurcations:
circle pitchforks from the basic branch to mixed (M) and pure (P) branches, drift to traveling
waves (TW), Hopf to modulated waves (MWH), pitchforks (MP, M’P) connecting mixed and pure
branches. The heteroclinic orbit is stable between thresholds Het and M’P. Timeseries of traveling
waves and the heteroclinic cycle are shown. Adapted from [13]
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a Hopf bifurcation). The branch of pure states is unstable at onset, but engenders
a heteroclinic cycle that consists of alternation between states that are π/2 out of
azimuthal phase from one another.

Returning to Fig. 11.14a, many of these transitions coincide with the crossings
of eigenvalues, as explained in the Armbruster et al. [35] scenario. The left part
(Re ≤ 401) shows the result of linearization about the basic state; the mixed and
pure branches are created via pitchfork bifurcations when the m = 1 and m = 2
eigenvalues cross zero. The right part (Re ≥ 401) shows the result of linearization
about the pure states. Azimuthal phase becomes significant and so the eigenmodes
of the basic state each split into those symmetric (S) and antisymmetric (A) with
respect to the pure mode. The m = 2 eigenmodes split into the classic negative
amplitude and neutral phase modes. The m = 1 eigenvalues decrease; the mixed
branch is annihilated when the eigenvalue associated with 1S becomes negative, and
when its magnitude surpasses that of the still-positive eigenvalue associated with
1A, the heteroclinic cycle becomes stable. Excursions consist of growth along the
1A direction and decay along the 1S direction. When the eigenvalue associated with
1A becomes negative, the pure mode becomes stable. This case shows the power
of combining full nonlinear time-dependent simulations with computational linear
stability analysis.

Heteroclinic cycles associated with the 1:2 mode interaction have been com-
puted in other hydrodynamic systems.Mercader et al. [37] simulated non-Boussinesq
two-dimensional Rayleigh–Bénard convection in a rectangle of width π (between
the favored wavelengths of approximately 2 and 4). Bengana and Tuckerman [36]
simulated Taylor–Couette flow between counter-rotating cylinders and discovered
two very different cycles, one whose excursions resemble the non-axisymmetric
azimuthally traveling ribbon state, and another whose excursions remain axisym-
metric, shown via the phase portraits in Fig. 11.15. Both cycles are based at the same
saddles and the crossover between them corresponds to the crossover between two
leading eigenvalues, that corresponding to 1A and a complex eigenvalue correspond-
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Fig. 11.15 Phase portraits of two heteroclinic orbits in counter-rotating Taylor–Couette flow. a
Excursions are non-axisymmetric and spiral in and out of the saddles. b After a spiralling ini-
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ing to a non-axisymmetric eigenmode. In all of these computations, the cycles may
behave in a regular or slightly irregular way. Their period is not infinite, so strictly
speaking, they should be called near-heteroclinic cycles.

All of the cycles described above were calculated using only time-integration.
However, there exist more specialized numerical methods aimed specifically at cal-
culating heteroclinic cycles [38–40].

11.6 Hamiltonian Systems: Bose–Einstein Condensation

ABose–Einstein condensate can be represented by a complex wave function,(x, t)
that obeys the Gross–Pitaevskii equation

−i∂t, =
[
1
2
∇2 − V (x) − a|,|2 + µ

]
, (11.25)

where a is the nondimensionalized scattering length and

V (x) ≡ 1
2 |ω · x|2 (11.26)

is a confining harmonic potential. The Lagrange multiplier µ is associated with the
constraint that the particle numberN ≡

∫
|,|2d3x be kept constant. (In this section,

we use N to denote particle number, in contrast to Sects. 11.1–11.3, in which it
denotes the nonlinear terms).

We have considered a potential with cylindrical symmetry, i.e. with inverse length
scalesωx = ωy = ωr andωz , in either the pancake (ωr < ωz) or cigar (ωr > ωz) con-
figuration. Equation (11.25) is distinguished from the equations considered in the
previous sections by the presence of the imaginary i . As a Hamiltonian system, its
bifurcations are different from those of dissipative systems. With the cylindrically
symmetric potential, we find that (11.25) exhibits a Hamiltonian saddle-node bifur-
cation. A saddle and a center coexist and annihilate one another at a critical value of
µ or, equivalently, N .

The search for steady states is not affected by the presence of i ; we merely solve

0 =
[
1
2
∇2 − V (x) − a|,|2 + µ

]
, (11.27)

This is done via the same technique as in Sect. 11.2, with L, = 1
2∇2, and N =

−(V (x)+ a|,|2 − µ),. These steady states are shown for the pancake case via
their energy
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Fig. 11.16 Stationary
solutions of the GP equation
as a function of the particle
number N for a potential
(11.26) of pancake form with
ωz = 5ωr . Energy functional
(above) and square of the
bifurcating eigenvalue λ2±
(below). Exact numerical
solution (black solid lines) is
compared with Gaussian
approximation (red dashed
lines). Reproduced from
[41]
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in the upper part of Fig. 11.16. We mention some other methods that have been used
to compute such states. For a spherically symmetric potential ωr = ωz , the wave-
function is one-dimensional, so that linear systems arising in Newton’s method are
much smaller and can easily be solved directly. One method approximates the func-
tional dependence of ,(x) as Gaussian; this yields a problem without any spatial
dependence in which the few scalar parameters of this approximation are computed
via Newton’s method. Figure11.16 includes the resulting branches, which are qual-
itatively, but not quantitatively, the same as the exact solutions. Another method,
called relaxation or imaginary time, integrates

∂t, =
[
1
2
∇2 − V (x) − a|,|2 + µ

]
, (11.29)

turning the system into a dissipative one. However, this method does not find the
branches that are unstable under the evolution of (11.29), and so cannot obtain the
full diagram of Fig. 11.16.

We now turn to the stability of the real steady states, of (11.25). The eigenmodes
(λ,ψR,ψI ) satisfy

λ

(
ψR

ψI

)
=

[
0 −(L+ DWI )

L+ DWR 0

] (
ψR

ψI

)
(11.30)

where
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L, ≡ 1
2
∇2,, DWR ≡ µ − V (x) − 3a,2, DWI ≡ µ − V (x) − a,2.

(11.31)

The eigenvalues occur in equal and opposite pairs and the pair closest to zero deter-
mines the nature of each branch. For states on the stable elliptic branch E−, this pair
is imaginary, so λ2 is negative; |λ−| is the energy of excitations around this branch.
Along the unstable hyperbolic branchE+, this pair is real, so thatλ2

+ is positive. At the
saddle-node bifurcation, these eigenvalues meet at zero. All of the other eigenvalues
are imaginary pairs.

In order to calculate the critical eigenvalue pair, we have used the inverse power
method (see Sect. 11.3). Moreover, we square the matrix, which leads to a block
diagonal matrix whose blocks both have the same eigenvalues λ2:

λ2
(

ψR
ψI

)
=

[−(L+ DWI )(L+ DWR) 0
0 −(L+ DWR)(L+ DWI )

] (
ψR
ψI

)
(11.32)

Preconditioning by L−2, we carry out the inverse square iteration via:

− L−2(L+ DWI )(L+ DWR)ψ
(n+1)
R = L−2ψ

(n)
R (11.33)

These methods and results are described in detail in [11, 41].
In a separate investigation,, is prolonged to include a second complex component

and a periodic lattice component is added to the confining potential

V (r, z) = 1
4
|ω · x|2 + A

[
sin2(2ωr x)+ sin2(2ωr y)

]
(11.34)

leading to a problem that is not axisymmetric. Using the steady-state methods
described above, we have computed a non-axisymmetric solution consisting of stable
symbiotic vortex-bright solitons shown in Fig. 11.17; see [42].

Fig. 11.17 Stable symbiotic vortex-bright structure in the presence of an optical lattice with poten-
tial (11.34) with ωz = 5ωr . Surfaces of constant density are shown in blue for the vortex and
in yellow for the soliton. This 3D stationary state is stabilized by the second component, which
displaces the vortex component at its core. Reproduced from [42]



272 L. S. Tuckerman

11.7 Looking Ahead

In this chapter, we have described a number of dynamical-systems phenomena,
namely steady states and limit cycles; bifurcations, instability and Floquet modes;
and heteroclinic cycles, that occur in many nonlinear physical systems. Many of
these phenomena, such as unstable steady states or heteroclinic orbits, are accessible
only to computation.

The numerical simulations described in the previous sections have uncovered
several new dynamical-systems scenarios. Faraday waves provide an example for
which full nonlinear three-dimensional simulations have led to the discovery of
new phenomena. First, in simulations of Faraday waves in a minimal hexagonal
domain [43, 44], the hexagons give way after many subharmonic oscillation periods
to a pattern we have called beaded stripes. These are succeeded in turn by quasi
hexagons, and then by regular alternation between asymmetric beaded stripes and
quasi hexagons, as shown in Fig. 11.18. The bifurcation-theoretic genesis of this
complicated scenario is unknown. Secondly [45], a large square domain containing
Faraday waves spontaneously divides into a two-by-two grid in which the square
waves are in phase with those diagonally opposite, as shown in Fig. 11.19. Finally,
Faraday waves on the surface of a drop induced by a radially directed oscillatory
force display patterns [46], many of which resemble Platonic solids, as expected
[47]. However, some of the patterns we observe undergo a slow and long-lasting
drift in orientation, such as the axisymmetric pattern of Fig. 11.20. This feature
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Fig. 11.19 Supersquare pattern at instants separated by intervals of T/2, where T is the forcing
period and 2T is the subharmonic response period. In a and c, wells are surrounded by ridges with
peaks at each corner, while in b, the squares are centered around low peaks. The large squares on
the bottom left and top right are in phase, as are those on the bottom right and top left. Reproduced
from [45]

Fig. 11.20 Axisymmetric ℓ = 4 pattern seen in capillary waves during one subharmonic response
period 2T . The interface sometimes resembles a top and sometimes a finite cylinder. Each fluid
drop is surrounded by its spherical domain. The magnitude of the velocity is indicated by the colors.
Reproduced from [46]

remains unexplained. The configurations in Figs. 11.19 and 11.20 were computed
with amassively parallelmultiphase time-integration code [48].Althoughbifurcation
analysis has been carried out for thin films [49], most tools for numerical bifurcation
analysis have not yet been applied to full three-dimensional nonlinear free-surface
problems.

Inmost quantitative sciences, a surprisingly important bottleneck is that of numer-
ical linear algebra, and this is certainly the case for nonlinear dynamics. The main
focus of computational science is time-integration, which has been tamed to yield
algorithms whose timing is approximately linear in the size M of the system. Over
the years, many monographs, e.g. [50–53], dedicated volumes, e.g. [54–56], review
articles, e.g. [15, 57, 58], and software packages such as AUTO [59], DSTOOL [60],
PDECont [61], MatCont [62], LOCA [63], JuliaDynamics [64], pde2path [65] have
been dedicated to targeting simple or complicated bifurcation-theoretic objects for
general dynamical systems. However, such algorithms usually require the solution of
linear systems or matrix diagonalization. Straightforward algorithms for these tasks
scale like M3, and if the matrix is derived from a two or three-dimensional partial
differential equation thenM = MxMyMz may be on the order of 106 ormore. Krylov
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space methods can be used, in which the solution is obtained as a superposition of
K vectors obtained by matrix actions. The timings for these scale like KM or K 2M ,
so the crucial challenge is to keep K low.

A number of strategies for speeding up the iterative solution of linear systems
have been proposed in this chapter, more specifically transforming the matrix or the
nonlinear problem to one that is more tractable. These include using the exponential
or the inverse of the operator and preconditioning by the Laplacian. An extension
of this approach is as follows. Consider a steady-state problem containing a linear
operator L and a bilinear operator N .

0 = F (U ) ≡ LU +N(U,U ) (11.35)

In order to compute u, an improvement to the estimateU , Newton’s method requires
us to solve

FUu = F(U )

Lu +N(U, u)+N(u,U ) = LU +N(U,U ) (11.36)

whereu is a decrement toU that should decrease ||LU +N(U )||. TheStokesmethod
described in Sect. 11.2 preconditions (11.36) with L−1

L−1 [Lu +N(U, u)+N(u,U )] = L−1 [LU +N(U,U )] (11.37)

It is easy to generate other decompositions of (11.35) that lead to other precondi-
tioners. For any fixed field Ubase, we may write

U = Ubase + Ũ (11.38)

The operator whose roots are sought is unchanged, but it now formally acts on the
unknown Ũ

F(Ũ ) = LUbase +LŨ +N(Ubase,Ubase)+N(Ubase, Ũ )+N(Ũ ,Ubase)+N(Ũ , Ũ )

(11.39)

and has Jacobian

DFŨ ũ = Lũ +N(Ubase, ũ)+N(ũ,Ubase)+N(Ũ , ũ)+N(ũ, Ũ ) (11.40)

where ũ is a decrement to Ũ that should decrease F(Ũ ). IfUbase is sufficiently simple,
it may be possible to invert

L+N(Ubase, ·)+N(·,Ubase) (11.41)

The inverse of (11.41) may be a much better preconditioner for F than L−1 since it
includes parts ofN that were previously left out of the preconditioning. As an exam-
ple of this approach, [18] discusses the computation of steady states and traveling
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waves in wall-bounded shear flows. For such flows, there is a known laminar base
flow Ubase = U (y)ex for which

(Ubase · ∇)u+ (u · ∇)Ubase = U (y)∂xu+ uy∂yU (y)ex (11.42)

Incorporating one or both of these terms into the Stokes preconditioner would almost
surely greatly lower the number K of Krylov vectors needed.

Another way in which the search for steady states may be accelerated is by apply-
ing an operator or functional G to F , transforming the steady-state problem to

0 = G(0) − G(F (U )) (11.43)

Again, this is advantageous if the Jacobian of G(F ), i.e. GFFU is better conditioned
than FU , or if a better preconditioner for it is available. In fact the two approaches
(11.11) and (11.12) constitute a special case of such a transformation, where G is
taken to be the time integral of F

G(F (U )) ≡
∫ t+T

t
F (U (τ ))dτ (11.44)

Similarly, if F is decomposed into L+N , as in (11.35), then applying G leads to
the problem

0 =G(L(U )) − G(−N(U )) (11.45)

that could be preconditioned by [G(L)]−1 if G is linear. It would be desirable to
popularize such strategies and to augment these by finding new ones, or, even better,
to automate the search for an optimal transformation.
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