
Master M1 (ICFP): Numerical Methods for Partial Differential Equations

Midterm 2019

Here are three timestepping schemes for solving the ordinary differential equation
du

dt
= f(u)

Crank Nicolson un+1 = un +
∆t

2
(f(un) + f(un+1)) (1)

Midpoint un+1 = un +∆tf

(

un +
∆t

2
f(un)

)

(2)

Leapfrog un+1 = un−1 + 2∆tf(un) (3)

1) Use Taylor series expansions of the exact and approximate solutions about un to show that

all three methods are second-order accurate, i.e. that the single-step error is proportional to

(∆t)3. Find the constant of proportionality (the constant multiplying (∆t)3) for each of the

three methods. You may treat only the differential equation

du

dt
= λu (4)

i.e. you do not need to consider the case of a general f(u).
Exact solution:

un+1 = eλ∆tun =
[

1 + λ∆t+ 1

2
(λ∆t)2 + 1

6
(λ∆t)3 . . .

]

un

Crank-Nicolson:

un+1 =
1 + λ∆t

2

1− λ∆t

2

un

=

(

1 +
λ∆t

2

)

(

1 +
λ∆t

2
+

(

λ∆t

2

)2

+

(

λ∆t

2

)3

+ . . .

)

= 1 + 2

(

λ∆t

2

)

+ 2

(

λ∆t

2

)2

+ 2

(

λ∆t

2

)3

+ . . .

The first non-matching term is that in (λ∆t)3 and the error is

(

1

4
−

1

6

)

(λ∆t)3 =
1

12
(λ∆t)3

Midpoint method:

un+1 = un + λ∆t

(

un +
λ∆t

2
un

)

= 1 + λ∆t+
1

2
(λ∆t)2



This series has no term in (λ∆t)3. The error is

(

0−
1

6

)

(λ∆t)3 = −
1

6
(λ∆t)3

Leapfrog:

un+1 = un−1 + 2λ∆tun

= un − λ∆tun +
1

2
(λ∆t)2un −

1

6
(λ∆t)3un + . . .+ 2λ∆tun

= un + λ∆tun +
1

2
(λ∆t)2un −

1

6
(λ∆t)3un + . . .

The first non-matching term is that in (λ∆t)3 and the error is

(

−
1

6
−

1

6

)

(λ∆t)3 = −
1

3
(λ∆t)3

2) We now consider the stability of the three methods for the diffusion and the wave equation.

You may use the result that the general solution to a linear constant-coefficient difference equa-

tion

0 = a1un+1 + a0un + a−1un−1 + a−2un−2 + a−3un−3 . . . (5)

is a linear combination of solutions of the form

un = crn (6)

2a) For the diffusion equation, we consider (4) for λ = −k2 real and negative, motivated by

∂tu = ∂xxu u(x, t) = û(t)eikx

dû

dt
= −k2û û(t) = e−k2tû(0) (7)

For the three methods, find the constraint on ∆t > 0 such that the numerical sequence un decays

when integrating (4) with λ real and negative.

Crank-Nicolson:

un+1 =
1 + λ∆t

2

1− λ∆t

2

un =
1− k

2∆t

2

1 + k2∆t

2

un

We require

|1−
k2∆t

2
| < |1 +

k2∆t

2
|

If −1 ≤ k2∆t ≤ 1, then we require

−k2∆t < k2∆t



If k2∆t > 1, then we require

k2∆t

2
− 1 < 1 +

k2∆t

2
−1 < 1

which is satisfied for all ∆t > 0. So Crank-Nicolson is always stable for the heat equation.

Midpoint method:

un+1 =

(

1 + λ∆t+
1

2
(λ∆t)2

)

un

= 1− k2∆t+
1

2
(−k2∆t)2

We require

|1− k2∆t+
1

2
(k2∆t)2| < 1

From the graph, we see that this inequality is satisfied as long as 0 < k2∆t < 2 and it is in this

range of ∆t that the midpoint method is stable for the heat equation.

Leapfrog method:

un+1 = un−1 + 2λ∆tun

Writing un = crn, we have

r2 = 1 + 2λ∆t r

0 = r2 − 2λ∆t r − 1

r± = λ∆t±
√

(λ∆t)2 + 1

For stability, we need |r±| < 1 for both values of r when λ = −k2 < 0. From the graph

supplied, we see that r+ > 1 for λ > 0 and r− < −1 for λ < 0 so this method is never stable.

2b) For the wave equation, we consider (4) for λ = ik imaginary. motivated by

∂tu = ∂xu u(x, t) = û(t)eikx

dû

dt
= ikû û(t) = eiktû(0) (8)

For the three methods, find the constraint on ∆t > 0 such that the numerical sequence un retains

the same amplitude when integrating (4) with λ imaginary.

Crank-Nicolson:

un+1 =
1 + λ∆t

2

1− λ∆t

2

un =
1 + ik∆t

2

1− ik∆t

2

un



We require

|1 +
ik∆t

2
| = |1−

ik∆t

2
|

This is true for all values of ∆t. So Crank-Nicolson is always stable for the wave equation.

Midpoint method:

un+1 =

(

1 + λ∆t+
1

2
(λ∆t)2

)

un

= 1 + ik∆t+
1

2
(ik∆t)2

We require

1 = |1 + ik∆t−
1

2
(k∆t)2|

=

(

1−
1

2
(k∆t)2

)2

+ (k∆t)2

= 1− (k∆t)2 +
1

4
(k∆t)4 + (k∆t)2

= 1 +
1

4
(k∆t)4

This is only true when ∆t = 0. So the midpoint method is never stable for the wave equation.

Leapfrog method:

We have un ∼ rn with

r± = λ∆t±
√

(λ∆t)2 + 1

For stability, we need |r±| = 1 for both values of r when λ = ik.

r± = ik∆t±
√

(ik∆t)2 + 1 = ik∆t±
√

1− (k∆t)2

For |k∆t| < 1, the square root is real and we have

|r±|
2 = (k∆t)2 +

(

1− (k∆t)2
)

= 1

For |k∆t| > 1, the square root is imaginary and we have

r± = ik∆t± i
√

(k∆t)2 − 1

|r±| = |k∆t±
√

(k∆t)2 − 1|

From the graphs, we can see that r+ > 1 for |k∆t| > 1 and r− < 1 for |k∆t| < −1, leading to

instability. Thus, we require |k∆t| < 1 for stability.

To solve the diffusion equation, we can use the Crank-Nicolson method with any value of ∆t
or the midpoint method with ∆t < 2/k2. To solve the wave equation, we can use the Crank-

Nicolson method with any value of ∆t or the leapfrog method with ∆t < 1/|k|.


