Master M1 (ICFP): Numerical Methods for Partial Differential Equations
Midterm 2019

d
Here are three timestepping schemes for solving the ordinary differential equation d_ltt = f(u)

At
Crank Nicolson Upt1 = Up + o (f(un) + f(tnt1)) (1)
At
Midpoint Upt1 = Uy + ALS (un + 7f (Un)) 2)
Leapfrog  tns1 = Upy + 24t f(uy,) (3)

1) Use Taylor series expansions of the exact and approximate solutions about u,, to show that
all three methods are second-order accurate, i.e. that the single-step error is proportional to
(At)3. Find the constant of proportionality (the constant multiplying (At)?) for each of the
three methods. You may treat only the differential equation

du_

i.e. you do not need to consider the case of a general f(u).
Exact solution:

Ups1 = M, = [T+ AAL+ L(AAL)? + 2AAY? . ] u,
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The first non-matching term is that in (A\A¢)? and the error is
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Midpoint method:

At
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This series has no term in (AAt)3. The error is

(0 _ é) (AAL)? = —é()\At)?’

Leapfrog:
Upi1 = Up_1 + 2AAtu,
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The first non-matching term is that in (A\A¢)3 and the error is
1 1 1
—= — 2 ] (DAL = —=(MAL)?
( 5 6) (AA?) 5 (AA?)

2) We now consider the stability of the three methods for the diffusion and the wave equation.
You may use the result that the general solution to a linear constant-coefficient difference equa-
tion

0= a1Upy1 + AUy + A_1Up_1 + A_2Up_2 + A_3U,_3 ... )

is a linear combination of solutions of the form

Uy, = cr’ (6)
2a) For the diffusion equation, we consider (4) for A\ = —k? real and negative, motivated by
Oyu = Ogptt u(z,t) = a(t)e’*™
du 2
d—;‘ — a(t) = e *a(0) @

For the three methods, find the constraint on A¢ > 0 such that the numerical sequence u,, decays
when integrating (4) with A\ real and negative.

Crank-Nicolson:
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If —1 < k2At < 1, then we require

—K*At < K*At



If k%At > 1, then we require
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which is satisfied for all At > 0. So Crank-Nicolson is always stable for the heat equation.
Midpoint method:
1 2
Upr1 = [ 1+ AAL + §(AAt) U,
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From the graph, we see that this inequality is satisfied as long as 0 < k*At < 2 and it is in this
range of At that the midpoint method is stable for the heat equation.

Leapfrog method:
Upi1l = Up_1 + 2AAtu,
Writing u,, = cr”, we have

2 =1+4+2)\Atr
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re = ANt £/ (AAE)2 + 1
For stability, we need |ry| < 1 for both values of r when A = —k* < 0. From the graph
supplied, we see that 7, > 1 for A > Oand r_ < —1 for A < 0 so this method is never stable.

2b) For the wave equation, we consider (4) for A = ¢k imaginary. motivated by

Oyu = Ou w(z,t) = a(t)e™*™
o = i i(t) = ¢™i(0) ®)

For the three methods, find the constraint on A¢ > 0 such that the numerical sequence u,, retains
the same amplitude when integrating (4) with A imaginary.

Crank-Nicolson:
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This is true for all values of At. So Crank-Nicolson is always stable for the wave equation.
Midpoint method:
1 2
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This is only true when At = 0. So the midpoint method is never stable for the wave equation.

Leapfrog method:
We have u,, ~ r™ with

ry = )\At + ()\At)2 + 1

For stability, we need |ry| = 1 for both values of  when A = ik.

re = ikAt + /(ikAD)? +1 = ikAt + /1 — (kAt)?
For |kAt| < 1, the square root is real and we have
Ire|* = (kAE)? + (1 — (kAL)?) =1
For |kAt| > 1, the square root is imaginary and we have

re = ikAt +iy/ (kA2 — 1
| = |kAt £ /(RADZ — 1

From the graphs, we can see that . > 1 for |[kAt| > 1 and r_ < 1 for |kAt| < —1, leading to
instability. Thus, we require |kAt| < 1 for stability.

To solve the diffusion equation, we can use the Crank-Nicolson method with any value of At
or the midpoint method with At < 2/k?. To solve the wave equation, we can use the Crank-
Nicolson method with any value of At or the leapfrog method with At < 1/|k|.



