Course: Nonlinear Dynamics

Laurette TUCKERMAN laurette@pmmh.espci.fr

Maps, Period Doubling and Floquet Theory

Discrete Dynamical Systems or Mappings

$$egin{aligned} y_{n+1} = g(y_n) \qquad y,g \in \mathcal{R}^N \end{aligned}$$

Fixed point: $\bar{y} = g(\bar{y})$

1D linear stability of $ar{y}$: Set $y_n = ar{y} + \epsilon_n$

$$egin{array}{rcl} ar{y}+\epsilon_{n+1}&=&g(ar{y}+\epsilon_n)\ &=&g(ar{y})+g'(ar{y})\epsilon_n+rac{1}{2}g''(ar{y})\epsilon_n^2\cdots\ &\epsilon_{n+1}&pprox&g'(ar{y})\epsilon_n \end{array}$$

 $|g'(ar{y})| <> 1 \iff |\epsilon| \downarrow \uparrow \iff ar{y}$ stable / unstable

Superstability: $g'(\bar{y}) = 0 \Longrightarrow \epsilon_{n+1} \approx \frac{1}{2}g''(\bar{y})\epsilon_n^2$

Multidimensional system

 $g'(\bar{y}) \Longrightarrow Dg(\bar{y})$ (Jacobian)

 $ar{y}$ stable \iff all eigenvalues μ of $Dg(ar{y})$ inside unit circle

 μ exits at (-1,0) μ exits at $e^{\pm i\theta}$

 μ exits at (1,0)

Illustrate exit at $(\pm 1, 0)$ via graphical construction

Change of stability \iff **Bifurcations**

Saddle-node bifurcation: $\dot{x} = \mu - x^2$

$$egin{array}{rl} x_{n+1} - x_n &= \ \mu - x_n^2 \ x_{n+1} = f(x_n) &\equiv \ x_n + \mu - x_n^2 \ f'(x_n) &= \ 1 - 2 x_n \end{array}$$

 $\mu < 0$

f(x)

no fixed point

 $ar{x}=\pm\sqrt{\mu} \ f'(\pm\sqrt{\mu})=1\mp 2\sqrt{\mu} \leqslant 1$

Supercritical pitchfork bifurcation:

Subcritical pitchfork bifurcation:

Eig at	Bifurcations	Leads to
(+1, 0)	saddle-node, pitchfork, transcritical	other steady states
$e^{\pm i heta}$	secondary Hopf or Neimark-Sacker	torus (next chapter)
(-1, 0)	flip or period-doubling	two-cycle

Period-doubling: impossible for continuous dynamical systems

Illustrate via logistic map: $x_{n+1} = ax_n(1 - x_n)$ Next value x_{n+1} is $\begin{cases} multiple of x_n \text{ for } x_n \text{ small, but} \\ reduced when x_n \text{ too large} \end{cases}$

Mentioned in 1800s, popularized in 1970s: models population

Famous period-doubling cascade discovered in 1970s by Feigenbaum in Los Alamos, U.S., and by Coullet and Tresser in Nice, France

Logistic Map

 $\begin{aligned} x_{n+1} &= f(x_n) \equiv a x_n (1-x_n) \quad \text{for } x_n \in [0,1], \quad 0 < a < 4 \\ \text{Fixed points: } \bar{x} &= a \bar{x} (1-\bar{x}) \\ \implies \begin{cases} \bar{x} = 0 & \text{or} \\ 1 &= a (1-\bar{x}) \implies 1-\bar{x} = 1/a \implies \bar{x} = 1-1/a \end{cases} \end{aligned}$

Stability

$$\begin{array}{rl} f(x) &=& ax(1-x) \\ f'(x) &=& a(1-x) - ax = a(1-2x) \\ f'(0) &=& a \Longrightarrow |f'(0)| < 1 \mbox{ for } a < 1 \\ f'\left(1-\frac{1}{a}\right) &=& a\left(1-2\left(1-\frac{1}{a}\right)\right) = -a+2 \\ &-1 < f'\left(1-\frac{1}{a}\right) < 1 \\ &-1 < -a+2 < 1 \\ &-1 < a-2 < 1 \\ \mbox{ transcrit: } 1 < a < 3 ??? \end{array}$$

Graphical construction

Seek two-cycle formed at a = 3, where $f'(\bar{x}) = -1$ $f(x_1) = x_2$ and $f(x_2) = x_1 \Longrightarrow f^2(x_1) \equiv f(f(x_1)) = x_1$

$$egin{array}{rll} f^2(x) &=& af(x)[1-f(x)] = a\left(ax(1-x)
ight) \left[1-ax(1-x)
ight] \ &=& a^2x(1-x)\left[1-ax+ax^2
ight] \ &=& a^2x\left[1-ax+ax^2-x+ax^2-ax^3
ight] \ &=& a^2x\left[1-(1+a)x+2ax^2-ax^3
ight] \end{array}$$

Seek fixed points of f^2 :

$$0 = f^{2}(x) - x = x \left[a^{2}(1 - (1 + a)x + 2ax^{2} - ax^{3}) - 1 \right]$$

contains factors x and $(x - (1 - 1/a))$
$$= -ax(a(x - 1) + 1) \left[ax^{2} - (a + 1)x + (a + 1)/a \right]$$

$$x_{1,2} = rac{a+1\pm \sqrt{(a-3)(a+1)}}{2a}$$
 for $a>3$

 f^2 undergoes pitchfork bifurcation

a

Stability of two-cycle

$$\begin{aligned} \frac{d}{dx}f^2(x_1) &= f'(f(x_1))f'(x_1) = f'(x_2)f'(x_1) \\ x_1 + x_2 &= 1 + \frac{1}{a} = \frac{a+1}{a} \qquad x_1x_2 = \frac{a+1}{a^2} \\ f'(x_1)f'(x_2) &= a(1-2x_1)a(1-2x_2) \\ &= a^2(1-2(x_1+x_2)+4x_1x_2) \\ &= a^2\left(1-2\left(\frac{a+1}{a}\right)+4\left(\frac{a+1}{a^2}\right)\right) \\ &= a^2-2a(a+1)+4(a+1) \\ &= -a^2+2a+4 \end{aligned}$$

$$\begin{array}{rcl} 0 &=& f'(x_1)f'(x_2)-1=-a^2+2a+4-1=-a^2+2a+3\\ a &=& \displaystyle \frac{2\pm\sqrt{4+12}}{2}=\frac{1\pm\sqrt{16}}{2}=\frac{2\pm4}{2}=3 & \mbox{pitchfork}\rightarrow 2\mbox{-cycle}\\ 0 &=& f'(x_1)f'(x_2)+1=-a^2+2a+4+1=-a^2+2a+5\\ a &=& \displaystyle \frac{2\pm\sqrt{4+20}}{2}=1+\sqrt{6}=3.44948\ldots & \mbox{flip bif}\rightarrow 4\mbox{-cycle} \end{array}$$

Period-doubling cascade

Successive period-doubling bifs occur at successively smaller intervals in a and *accumulate* at a = 3.569945672...

\boldsymbol{n}	2^n	a_n	$\Delta_n\equiv a_n-a_{n-1}$	$\delta_n\equiv\Delta_{n-1}/\Delta_n$
0	1	1		
1	2	3	2	
2	4	3.44948	0.449	4.45
3	8	3.54408	0.0948	4.747
4	16	3.56872	0.0244	4.640
5	32	3.5698912	0.00116	4.662
:	:	:	•	•
∞	∞	3.569945672	0	4.669

Renormalization

Feigenbaum (1979), Collet & Eckmann (1980), Lanford (1982)

$$f(x)=1-rx^2$$
 on $[-1,1]$
T acts on mappings f:
 $(Tf)(x)\equiv -rac{1}{lpha}f^2(-lpha x)$

Seek fixed point of $T : f(x) \approx (Tf)(x)$

$$egin{aligned} 1-rx^2 &pprox -f^2(-lpha x)/lpha \ &= -f(1-r(lpha x)^2)/lpha \ &= -(1-r(1-r(lpha x)^2)^2)/lpha \ &= -(1-r(1-2r(lpha x)^2+r^2(lpha x)^4))/lpha \ &= -(1-r+2r^2(lpha x)^2-r^3(lpha x)^4)/lpha \end{aligned}$$

Matching constant and quadratic terms:

$$egin{array}{ll} rac{r-1}{lpha} = 1 & rac{2r^2lpha^2}{lpha} = r \ r-1 = lpha & 2rlpha = 1 \Longrightarrow 2r(r-1) = 1 \ lpha = 0.366 & r = (1+\sqrt{3})/2 = 1.366 \end{array}$$

 $f(x) \rightarrow (Tf)(x) \rightarrow (T^2f)(x) \rightarrow \ldots \rightarrow \phi(x)$ 2nd order \rightarrow 4th order \rightarrow 8th order $\rightarrow \ldots \rightarrow$ where limiting function

 $\phi(x) = 1 - 1.528x^2 + 0.105x^4 + 0.0267x^6 + \dots$

is fixed point of T (mapping-of-mappings), i.e.

 $T(\phi) = \phi$

Single unstable direction with multiplier $\delta = 4.6692$ (table)

 ϕ , δ , are universal for all map families with quadratic maxima, such as $a \sin \pi x$, $1 - rx^2$, ax(1 - x).

If f has a stable 2-cycle, then f^2 has a stable fixed point. More generally, if f has a stable 2^n cycle, then f^2 has a stable 2^{n-1} cycle. Since T involves taking f^2 , then T takes maps with 2^n cycles to maps with 2^{n-1} cycles. Other classes of unimodal maps, characterized by the nature of their extrema, undergo a period-doubling cascade. Each class has its own asymptotic value of δ and α . Examples are functions with a quartic maximum or the tent map

$$f(x) = \left\{egin{array}{cc} ax & ext{for } x < 1/2 \ a(1-x) & ext{for } x > 1/2 \end{array}
ight.$$

a < 1: 0 is stable fixed point a > 1: 0 is unstable fixed point $\bar{x} = a/(1+a)$ is stable

Periodic Windows

 f^3 has 3 saddle-node bifurcations at $a_3 = 1 + \sqrt{8} = 3.828$ \implies two 3-cycles, one stable and one unstable $(|(f^3)'| \ge 1)$ Stable and unstable *n*-cycles created when f^n crosses diagonal

Bifurcation Diagram for Logistic Map

Each *n*-cycle undergoes period-doubling cascade

Three-cycle: before and after

Stable three-cycle for $1 + \sqrt{8} = 3.828427 < r < 3.857$

Intermittency

Slow dynamics near a bifurcation

Slow dynamics near *ghosts* of not-yet-created or *unstable* fixed points Assume that another mechanism re-injects trajectories back to $x \approx 0$ Type II intermittency associated with a subcritical Hopf bifurcation

Sharkovskii Ordering

$$\begin{array}{cccc} 3 \vartriangleright 5 \vartriangleright 7 \vartriangleright 9 \dots & (\text{odd numbers}) \\ 2 \cdot 3 \trianglerighteq 2 \cdot 5 \trianglerighteq 2 \cdot 7 \trianglerighteq 2 \cdot 9 \dots & (\text{multiples of } 2) \\ 2^2 \cdot 3 \trianglerighteq 2^2 \cdot 5 \trianglerighteq 2^2 \cdot 7 \trianglerighteq 2^2 \cdot 9 \dots & (\text{multiples of } 2^2) \\ & \vdots & & \vdots \\ \dots 2^3 \trianglerighteq 2^2 \trianglerighteq 2 \trianglerighteq 1 & (\text{powers of } 2) \end{array}$$

Sharkovskii's Theorem:

f has a k-cycle $\Longrightarrow f$ has an ℓ -cycle for any $\ell \rhd k$

f has a 3-cycle \implies f has an ℓ -cycle for any ℓ

(Most cycles not stable)

Logistic map for any $r > r_3$ has cycles of *all* lengths.

Period-doubling in Rayleigh-Bénard convection

From Libchaber, Fauve & Laroche, Physica D (1983).

A: freq f and $f/2 \Longrightarrow B: f/4 \Longrightarrow C: f/8 \Longrightarrow D: f/16$

Rayleigh-Bénard convection in small-aspect-ratio container Type III intermittency

FIG. 1. Time dependence of light intensity, roughly proportional to the horizontal temperature gradient near the cold plume. $N_{\text{Ra}}/N_{\text{Ra},c} \approx 420$.

Timeseries

FIG. 2. Return map $I_{n+2} = f(I_n)$, constructed from the data shown in Fig. 1 superposing two laminar periods. The amplitudes of the light modulation in the turbulent bursts have not been drawn.

Poincaré map maxima (I_k, I_{k+2})

Subharmonic (period-doubled signal) grows til burst, followed by laminar phase

From M. Dubois, M.A. Rubio & P. Bergé, Phys. Rev. Lett. 51, 1446 (1983).

Rayleigh-Bénard convection in small-aspect-ratio container Type I intermittency non-intermittent timeseries $Ra = 280 Ra_c$ intermittent timeseries $Ra = 300 Ra_{c}$

From P. Bergé, M. Dubois, P. Manneville & Y. Pomeau, J. Phys. (Paris) Lett. 41, 341 (1980).

Poincaré map of Lorenz system

3D trajectory of the Lorenz system for standard chaotic value of r = 28 Timeseries of X(t)Timeseries of Z(t)

From P. Manneville, Course notes

Successive pairs of maxima of Z resemble tent map:

From P. Manneville, Course notes

From continuous flows to discrete maps

Where do discrete dynamical systems come from? Hopf or global bifurcations \implies limit cycles Study these using Poincaré or first return map:

Continuous dynamical system $x(t) \in \mathcal{R}^d$, $x^d(t)$ goes through β for some set of trajectories

 $y_{n+1} = g(y_n) \iff \left\{ egin{array}{ll} x(t) = (y_n, eta) &, \ \dot{x}^d(t) > 0 \ x(t') = (y_{n+1}, eta) &, \ \dot{x}^d(t') > 0 \ ext{above not satisfied for any } t'' \in (t, t') \end{array}
ight.$

From P. Manneville class notes, DEA Physique des Liquides

From Moehlis, Josic, & Shea-Brown, Scholarpedia

Floquet theory

Linear equations with constant coefficients:

$$a\ddot{x} + b\dot{x} + cx = 0 \implies x(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$$

where $a\lambda^2 + b\lambda + c = 0$
 $\dot{x} = cx \implies x(t) = e^{ct}x(0)$
 $\sum_{n=0}^{N} c_n x^{(n)} = 0 \implies x(t) = \sum_{\substack{n=1\\N}}^{N} \alpha_n e^{\lambda_n t}$
where $\sum_{n=0}^{N} c_n \lambda^n = 0$

Generalize to linear equations with periodic coefficients:

 $a(t)\ddot{x} + b(t)\dot{x} + c(t)x = 0 \implies x(t) = \alpha_1(t)e^{\lambda_1 t} + \alpha_2(t)e^{\lambda_2 t}$ a(t), b(t), c(t) have period $T \implies \alpha_1(t), \alpha_2(t)$ have period T

Floquet theory continued

 $a(t)\ddot{x}+b(t)\dot{x}+c(t)x=0\Longrightarrow x(t)=lpha_1(t)e^{\lambda_1t}+lpha_2(t)e^{\lambda_2t}$

$lpha_1(t), lpha_2(t)$	Floquet functions
$oldsymbol{\lambda}_1,oldsymbol{\lambda}_2$	Floquet exponents
$e^{\lambda_1 T}, e^{\lambda_2 T}$	Floquet multipliers

 λ_1, λ_2 not roots of polynomial \Longrightarrow must calculate numerically or asymptotically

$$\dot{x}=c(t)x \implies x(t)=e^{\lambda t}lpha(t) \ \sum_{n=0}^N c_n(t)x^{(n)}=0 \implies x(t)=\sum_{n=1}^N e^{\lambda_n t}lpha_n(t)$$

Floquet theory and linear stability analysis

Dynamical system: Limit cycle solution:

Stability of $ar{x}(t)$:

 $\dot{\bar{x}}$

$$\dot{x} = f(x)$$

 $ar{x}(t+T) = ar{x}(t)$ with $\dot{ar{x}}(t) = f(ar{x}(t))$
 $x(t) = ar{x}(t) + \epsilon(t)$
 $f(ar{x}(t)) + f'(ar{x}(t))\epsilon(t) + b$

$$egin{array}{rcl} + \dot{\epsilon} &=& f(ar{x}(t)) + f'(ar{x}(t)) \epsilon(t) + \ldots \ \dot{\epsilon} &=& f'(ar{x}(t)) \epsilon(t) \end{array}$$

Floquet form! $\epsilon(t) = e^{\lambda t} \alpha(t)$ with $\alpha(t)$ of period T

 $\begin{array}{l} \operatorname{Re}(\lambda) > 0 \implies \bar{x}(t) \text{ unstable} \\ \operatorname{Re}(\lambda) < 0 \implies \bar{x}(t) \text{ stable} \\ \lambda \text{ complex} \implies \text{most unstable or least stable pert} \\ \text{ has period different from } \bar{x}(t) \end{array}$

Region of stability

Imaginary part non-unique \implies choose $\operatorname{Im}(\lambda) \in (-\pi i/T, \pi i/T]$ In $\mathcal{R}^N, \bar{x}(t)$ stable iff real parts of all λ_j are negative Monodromy matrix: $\dot{M} = Df(\bar{x}(t))M$ with M(t = 0) = IFloquet multipliers/functions = eigenvalues/vectors of M(T)

Faraday instability

Faraday (1831): Vertical vibration of fluid layer \implies stripes, squares, hexagons In 1990s: first fluid-dynamical quasicrystals:

Edwards & Fauve J. Fluid Mech. (1994)

Kudrolli, Pier & Gollub Physica D (1998)

Oscillating frame of reference \implies **"oscillating gravity"**

$$egin{aligned} G(t) &= g\left(1-a\cos(\omega t)
ight) \ G(t) &= g\left(1-a\left[\cos(m\omega t)+\delta\cos(n\omega t+\phi_0)
ight]
ight) \end{aligned}$$

Flat surface becomes linearly unstable for sufficiently high a

Consider domain to be horizontally infinite (homogeneous) \Longrightarrow solutions exponential/trigonometric in x = (x, y)Seek bounded solutions \Longrightarrow trigonometric: $\exp(i\mathbf{k} \cdot \mathbf{x})$

Height
$$\zeta(x,y,t) = \sum_{ ext{k}} e^{i ext{k}\cdot ext{x}} \hat{\zeta}_k(t)$$

Oscillating gravity \Longrightarrow temporal Floquet problem, $T=2\pi/\omega$

$$\hat{\zeta}_k(t) = \sum_j e^{\lambda_k^j t} f_k^j(t)$$

Height
$$\zeta(x,y,t) = \sum_{\mathrm{k}} e^{i\mathrm{k}\cdot\mathrm{x}}\hat{\zeta}_k(t)$$

Ideal fluids (no viscosity), sinusoidal forcing \Longrightarrow Mathieu eq. $\partial_t^2 \hat{\zeta}_k + \omega_0^2 \left[1 - a\cos(\omega t)\right] \hat{\zeta}_k = 0$

 ω_0^2 combines g, densities, surface tension, wavenumber k

$$\hat{\zeta}_k(t) = \sum_{j=1}^2 e^{\lambda_k^j t} f_k^j(t)$$

 $\operatorname{Re}(\lambda_k^j) > 0$ for some $j, k \Longrightarrow \hat{\zeta}_k \nearrow \Longrightarrow$ flat surface unstable \Longrightarrow Faraday waves with wavelength $2\pi/k$

$\operatorname{Im}(\lambda_k^j)$	$e^{\lambda T}$	waves	period
0	1	harmonic	same as forcing
$\omega/2$	-1	subharmonic	twice forcing period

Floquet functions

From Périnet, Juric & Tuckerman, J. Fluid Mech. (2009)

Hexagonal patterns in Faraday instability

From Périnet, Juric & Tuckerman, J. Fluid Mech. (2009)

Cylinder wake

with downstream recirculation zone

Von Kármán vortex street ($\text{Re} \geq 46$)

Laboratory experiment (Taneda, 1982)

Off Chilean coast past Juan Fernandez islands

von Kárman vortex street: $Re = U_\infty d/ u \geq 46$

spatially: two-dimensional (x, y)(homogeneous in z)

temporally: periodic, $St = fd/U_\infty$ appears spontaneously

 $\mathrm{U}_{2D}(x,y,t mod T)$

Stability analysis of von Kármán vortex street

2D limit cycle $U_{2D}(x, y, t \mod T)$ obeys:

$$\partial_t \mathrm{U}_{2D} = -(\mathrm{U}_{2D} \cdot oldsymbol{
abla}) \mathrm{U}_{2D} - oldsymbol{
abla} P_{2D} + rac{1}{Re} \Delta \mathrm{U}_{2D}$$

Perturbation obeys:

 $\partial_t \mathbf{u}_{3D} = -(\mathbf{U}_{2D}(t) \cdot \nabla) \mathbf{u}_{3D} - (\mathbf{u}_{3D} \cdot \nabla) \mathbf{U}_{2D}(t) - \nabla \mathbf{p}_{3D} + \frac{1}{Re} \Delta \mathbf{u}_{3D}$

Equation homogeneous in z, periodic in $t \Longrightarrow$

 $\mathbf{u}_{3D}(x, y, z, t) \sim e^{ieta z} e^{\lambda_eta t} \mathbf{f}_eta(x, y, t mod T)$

Fix β , calculate largest $\mu = e^{\lambda_{\beta}T}$ via linearized Navier-Stokes

From Barkley & Henderson, J. Fluid Mech. (1996)

mode A: $\operatorname{Re}_{c} = 188.5$ mode B: $\operatorname{Re}_{c} = 259$ $\beta_{c} = 1.585 \Longrightarrow \lambda_{c} \approx 4$ $\beta_{c} = 7.64 \Longrightarrow \lambda_{c} \approx 1$

Temporally: $\mu = 1 \Longrightarrow$ steady bifurcation to limit cycle with same periodicity as U_{2D}

Spatially: circle pitchfork (any phase in z)

From M.C. Thompson, Monash University, Australia (http://mec-mail.eng.monash.edu.au/~mct/docs/cylinder.html)

transition to mode A initially faster than exp \implies subcritical transition to mode B initially slower than exp \implies supercritical Describe via complex amplitudes A_n , B_n amplitude and phase of mode A, B at fixed instant of cycle

 $\begin{bmatrix} \mathbf{N} \\ \mathbf{M} \\ \mathbf{N} \\ \mathbf{N}$

Numerical and experimental frequencies From Barkley & Henderson, JFM (1996)

Solution to minimal model From Barkley, Tuckerman & Golubitsky, PRE (2000)

Interaction between A and B:

 $egin{array}{rcl} A_{n+1} &= & \left(\mu_A + lpha_A |A_n|^2 + \gamma_A |B_n|^2 - eta_A |A_n|^4
ight) A_n \ B_{n+1} &= & \left(\mu_B - lpha_B |B_n|^2 + \gamma_B |A_n|^2
ight) B_n \end{array}$

As Re is increased: mode $A \Longrightarrow A + B \Longrightarrow$ mode B